
Storing Sparse Matrices to Files in the
Adaptive-Blocking Hierarchical Storage Format

Daniel Langr, Ivan Šimeček, Pavel Tvrdı́k
Czech Technical University in Prague

Faculty of Information Technology

Thákurova 9, 160 00, Praha, Czech Republic

Email: langrd@fit.cvut.cz

Abstract—When there is a need to store a sparse matrix into
a file system, is it worth to convert it first into some space-
efficient storage format? This paper tries to answer such question
for the adaptive-blocking hierarchical storage format (ABHSF),
provided that the matrix is present in memory either in the
coordinate (COO) or in the compressed sparse row (CSR) storage
format. The conversion algorithms from COO and CSR to
ABHSF are introduced and the results of performed experiments
are then presented and discussed.

I. INTRODUCTION

S
PARSE matrices are commonly present in computer mem-

ory in storage formats that provide high performance

of the matrix-vector multiplication operation. Considering a

generic sparse matrix without any particular pattern of its

nonzero elements, such storage formats are usually not space-

optimal [1]–[3]. If we need to store such a matrix in a file,

we have two options:

1) either to store the matrix in its in-memory storage format

(IMSF), in which is the matrix stored in a computer

memory;

2) or to store it in some space-efficient storage format

(SESF), which additionally requires to perform the con-

version between these formats.

Question 1. Which of these two options will take less time?

The second option should result in a smaller file and hence

its faster store operation. However, the price paid for that is

the overhead of the conversion algorithm.

Let SIMSF and SSESF denote the amount of memory required

to store a matrix in particular IMSF and SESF, respectively.

The time that will be saved when storing the matrix in a file

system in SESF instead of IMSF will be

tsaved =
SIMSF − SSESF

file system I/O bandwidth
. (1)

Let further toverhead denote the running time of the conversion

algorithm between IMSF and SESF. Storing a matrix in SESF

will pay off if tsaved > toverhead.

The answer to Question 1 is especially important for high

performance computing (HPC) applications where matrices

This work was supported by the Czech Science Foundation under Grant
No. P202/12/2011. We acknowledge the Aerospace Research and Test Estab-
lishment in Prague, Czech Republic, for providing HPC resources.

are distributed among P processors of a massively parallel

computer system (MPCS). Let LIMSF and LSESF denote the

amount of memory required to store a local part of a matrix in

IMSF and SESF, respectively, on a particular processor. If the

distribution of matrix nonzero elements among processors is

well-balanced, then LIMSF ≈ SIMSF/P and LSESF ≈ SSESF/P ,

and we can rewrite (1) to

tsaved ≈
LIMSF − LSESF

file system I/O bandwidth
× P. (2)

As the size of a computational problem, and therefore the

size of a given sparse matrix, varies, then:

• LIMSF (and hence LSESF as well) is more or less constant,

since it is limited by the amount of physical memory

available to a single processor on a given MPCS.

• toverheadtoverheadtoverhead is approximately constant, since the IMSF-to-

SESF conversion algorithm is executed independently by

all processors on their local parts of the matrix (of size

LIMSF).

• The file system I/O bandwidth—at least its listed maxi-

mum value—is constant.

• The number of processors P varies.

• tsavedtsavedtsaved varies, according to (2), proportionally to PPP .

Thus, we may expect that as the size of a computational

problem grows, beyond some point it will be faster to store a

sparse matrix to a file system in SESF instead of IMSF.

In this paper, we focus on situations where the IMSF is

either the coordinate (COO) or the compressed sparse row

(CSR) storage format [4, Section 3.4], [5, Section 4.3.1] and

the SESF is the adaptive-blocking hierarchical storage format

(ABHSF) [2]. These formats are introduced in more details

in Section II. We have developed conversion algorithms from

COO and CSR to ABHSF, which are presented in Section III.

The experiments performed with these algorithms are then

described and the results discussed in Section IV.

Note that within the context of this paper, by a storage

format we mean the way how sparse matrices are stored in

computer memory (physical/disk), by a file format we mean

the way how sparse matrices are stored in files (in a particular

storage format), and by a storage scheme we mean a storage

format at a block level for ABHSF.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 479–486

978-1-4673-4471-5/$25.00 c© 2013, IEEE 479

II. DATA STRUCTURES

Let A be an m×n sparse matrix with z nonzero elements.

The COO storage format consist of 3 arrays of size z that con-

tain row indexes, column indexes, and values of the nonzero

elements of A. We can thus define a data structure COO that

stores A in the COO storage format as follows:

structure COO := {
m, n: matrix size;

z: number of nonzero elements;

rows[]: row indexes of nonzero elements;

cols[]: column indexes of nonzero elements;

vals[]: values of nonzero elements;

}.

Note that we accompany a data name with [] if the data is

meant to be an array.
The advantages of the COO storage format are its clear

concept, simple usage, and no requirement for the order

of matrix nonzero elements. Its drawback is relatively high

amount of memory needed for storing A, i.e., high SCOO.
If we order matrix nonzero elements according to the

increasing row index, we can modify the COO storage format

such that we substitute the array of row indexes by the array

of positions of each row data in the remaining two arrays.

Such approach results in the CSR storage format, which can

be defined by the following data structure:

structure CSR := {
m, n: matrix size;

z: number of nonzero elements;

colinds[]: column indexes of nonzero elements;

vals[]: values of nonzero elements;

rowptrs[]: offsets of places where data of each row

in the colinds and vals arrays start;

}.

Since the array rows[] of COO is of size z and the array

rowptrs[] of CSR is of size m (usually m+ 1 for the sake of

simpler implementation), and since z ≫ m usually holds for

real-world sparse matrices, the CSR storage format typically

requires considerably less amount of memory for storing A
when compared with COO, i.e., SCSR < SCOO.

ABHSF is a two-level hierarchical storage format (see

Figure 1) based on partitioning a matrix into ⌈m/s⌉ × ⌈n/s⌉
blocks of size s × s and storing each nonzero block in its

space-optimal storage scheme. This approach can considerably

reduce the memory requirements for storing sparse matrices

when compared not only with COO and CSR but also with

other fixed-scheme hierarchical storage formats.
We consider the following storage schemes within this text:

1) dense: all block elements are stored including zeros,

2) bitmap: only nonzero block elements are stored and

their structure is defined by a bit map,

3) COO: equivalent of the COO storage format at a block

level,

4) CSR: equivalent of the CSR storage format at a block

level.

(a)

block matrix

level 1

level 0

blocks

(b)

Fig. 1: An 8×8 matrix (a) represented as a hierarchical data

structure with 2×2 blocks (b).

The optimal block size s for a particular matrix is appli-

cation dependent, however, block sizes between 64 and 256

provide best results in general.

We can define a data structure ABHSF that stores A in the

ABHSF format as follows:

structure ABHSF := {
m, n: matrix size;

z: number of nonzero elements;

s: block size;

brows[]: row indexes of nonzero blocks;

bcols[]: column indexes of nonzero blocks;

zetas[]: the number of nonzero elements of nonzero

blocks;

schemes[]: optimal storage scheme tag of nonzero

blocks;

bitmap[]: a bit map;

lrows[]: row indexes local to a block;

lcols[]: column indexes local to a block;

lrowptrs[]: offsets of places where data of each row

of a block start;

vals[]: values of the elements of nonzero blocks;

}.

More details about ABHSF are beyond the scope of this

paper, however, they were presented by Langr et at. [2].

Let BLOCK be an auxiliary data structure used for storing

data of a single nonzero block, defined as follows:

structure BLOCK := {
brow : row index of a block within A;

bcol : column index of a block within A;

480 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

zeta: a number of block nonzero elements;

lrows[]: local row indexes of nonzero elements;

lcols[]: local column indexes of nonzero elements;

lvals[]: local values of nonzero elements;

}.

III. ALGORITHMS

We further suppose that all indexes are 0-based (as used in

the C/C++ programming languages).

A. Conversion from COO to ABHSF

The pseudocode of the conversion process from COO to

ABHSF is presented as Algorithm 1. It is based on the

successive gathering and processing of data for each nonzero

block. To optimize this process, the nonzero elements of A
are first sorted, at line 5, according to the key represented by

the following quadruple with left-to-right significance of its

elements:
(

⌊

coo.rows[i]/s
⌋

,
⌊

coo.cols[i]/s
⌋

,

coo.rows[i] mod s, coo.cols[i] mod s
)

. (3)

Such ordering puts the nonzero elements of each nonzero

block into a continuous chunks within the arrays of the COO

data structure. Consequently, the conversion can be performed

within a single iteration over matrix nonzero elements (lines 7–

21).

The PROCESSBLOCK procedure, which stores data of a

single nonzero block into the ABHSF data structure at line 20,

is defined in Section III-C.

B. Conversion from CSR to ABHSF

The pseudocode of the conversion process from CSR to

ABHSF is presented as Algorithm 2. It is based on the same

principle as Algorithm 1, i.e., on the successive gathering and

processing of the data of individual nonzero blocks. However,

this process is here more complicated, since we cannot simply

reorder the matrix nonzero elements according to (3), as

in Algorithm 1. Therefore, instead of iterating over matrix

nonzero elements, Algorithm 2 iterates over all blocks (loops

at lines 5 and 15) and for each block it tries to obtain its

nonzero elements. If there are any, they are then processed by

the PROCESSBLOCK procedure as well.

C. Processing Blocks

The PROCESSBLOCK procedure stores data of a single

nonzero block into the ABHSF data structure. Its pseudocode

is shown as Algorithms 3.

We assume that the ABHSF data structure represents an open

file and that all updates into this data structure will be directly

translated into corresponding updates of its file representation.

Within the pseudocode, we regard all ABHSF arrays as file

output streams/virtual dynamic arrays to which the elements

are successively appended.

The space-optimal storage schemes for blocks are selected

at line 1 line by comparing their memory requirements, which

were defined by Langr et al. [2] as functions (1a)–(1d).

According to the optimal storage scheme, the block data are

then stored into the ABHSF data structure as follows:

• dense (lines 7–17): The procedure iterates over all ele-

ments of a block. If the corresponding nonzero element

is found, then its value is appended to the vals[] array

of the ABHSF data structure. Otherwise, 0 is appended

instead.

• bitmap (lines 19–30): The procedure iterates over all

elements of a block. If the corresponding nonzero element

is found, then its value is appended to the vals[] array

of the ABHSF data structure and 1 is appended to the

bitmap[] array. Otherwise, 0 is appended to the to the

bitmap[] array instead.

• COO (lines 32–36): The procedure iterates over nonzero

block elements and appends their row/column indexes

and values to the corresponding arrays of the ABHSF data

structure.

• CSR (lines 38–50): The procedure iterates over nonzero

block elements and appends their column indexes and

values to the corresponding arrays of the ABHSF data

structure, while it also constructs the array lrowptrs[] of

positions of data for each row of a block.

Note that to PROCESSBLOCK work properly, the nonzero

elements in the input BLOCK data structure need to be ordered

according to growing row index and for each row according to

the growing column index. Both Algorithm 1 and Algorithm 2

conform to this requirement.

IV. EXPERIMENTS AND DISCUSSION

We have designed and performed experiments to evaluate

the suitability of storing sparse matrices in files in ABHSF.

Within these experiments, same matrices were stored in the

COO, CSR, and ABHSF storage formats into files based on

the HDF5 file format [6] so that particular data from the COO,

CSR, and ABHSF data structures were stored as HDF5 attributes

and data sets.
Within our implementation, the ABHSF data structure repre-

sented an open file, i.e., all updates to its data were directly

translated into updates of corresponding file attributes and data

sets. The data types for data sets containing indexes were

always chosen to be unsigned integer data types of minimal

possible bit width. All floating-point numbers were stored in

files in single precision.
For all the experiments, we used the block size s = 256,

which generally provides reasonable results for a wide range

of matrices, as shown by Langr et al. [2]. To achieve maximum

performance, we implemented experimental programs so that:

• All HDF5 data sets were chosen to be fixed-size. The

conversion algorithms hence needed to be executed twice.

Within the first dry run, the sizes of data sets were

computed. Within the second run, data were actually

written into them. (Sorting of elements in Algorithm 1

was performed only once within the dry run.)

• All updates of HDF5 data sets were buffered. We used

buffers of size 1024 elements for each data set.

DANIEL LANGR, IVAN IMEEK, PAVEL TVRDK: STORING SPARSE MATRICES TO FILES 481

Algorithm 1: Conversion from COO to ABHSF

Input: coo: COO; s: integer

Output: abhsf : ABHSF

Data: block : BLOCK; k, brow , bcol : integer

1 abhsf .m← coo.m
2 abhsf .n← coo.n
3 abhsf .z ← coo.z
4 abhsf .s← s
5 sort the coo.rows, coo.cols, and coo.vals arrays all at once according to (3)

6 k ← 0
7 while k < coo.z do // iterate over nonzero elements

8 block .brow ←
⌊

coo.rows[k]/s
⌋

9 block .bcol←
⌊

coo.cols[k]/s
⌋

10 block .zeta← 0
11 while

⌊

coo.rows[k]/s
⌋

= block .brow and
⌊

coo.cols[k]/s
⌋

= block .bcol do // while element is in the actual block

12 block .lrows[block .zeta]← coo.rows[k] mod s
13 block .lcols[block .zeta]← coo.cols[k] mod s
14 block .lvals[block .zeta]← coo.vals[k]
15 block .zeta← block .zeta+ 1
16 k ← k + 1 // go to next nonzero element

17 if k ≥ coo.z then break

18

19 end

20 PROCESSBLOCK(block , abhsf) // store block data into the ABHSF structure

21 end

• All the bitmap, lrows , lcols , and lrowptrs arrays from

the ABHSF data structure were implemented in files as a

single data set.

Reasoning for the listed decisions is beyond the scope of

this paper. However, they all originated from results of our

complementary tests and measurements.

A. File Sizes for Benchmark Matrices

First, we compared sizes of files for different matrices that

emerged in real-world scientific and engineering applications.

All used benchmark matrices were taken from The University

of Florida Sparse Matrix Collection (UFSMC) [7]. We tried

to choose matrices from different computational domains and

therefore with different structural properties. Their list together

with their characteristics is presented in Table I, where z′

denotes the relative number of nonzero elements in percents,

i.e., the inverse measure of sparsity of a matrix.

We stored matrices in HDF5-based files in the COO, CSR,

and ABHSF storage formats. We further refer to these options

as HDF5-COO, HDF5-CSR, and HDF5-ABHSF, respectively.

The results are presented in Figure 2 where the file sizes are

relative (in percents) to the HDF5-ABHSF option. For com-

parison, we also included the sizes of compressed (.mtx.gz)

and uncompressed (.mtx) files in the Matrix Market file

format [8], in which matrices are originally published in

UFSMC.

The main conclusion from these results is that for all

benchmark matrices, HDF5-COO resulted in files about twice

as big as HDF5-ABHSF and HDF5-CSR resulted in files about

1.4 times bigger than HDF5-ABHSF. Therefore, if we convert

matrices to ABHSF, we can save a considerable amount

of file system capacity.

Unfortunately, we cannot simply compare the results for

the text-based Matrix Market file format and the binary-

based HDF5 file format, since in the text-based file formats,

the floating-point values are generally represented in various

precisions. However, note that for some matrices the smallest

files were achieved for the compressed Matrix Market file

format. This effect was caused by the fact that in these

special cases, many matrix elements had identical floating-

point values, which led to high efficiency of text compression.

HDF5 also allows to compress data, which should reduce the

sizes of data sets containing repeated floating-point values. We

have, however, not tested this possibility.

B. Parallel Experiments

The matrices in UFSMC are of smaller sizes suitable for

sequential rather than parallel processing. Since we did not

find any suitable scalable HPC application able to generate

very large sparse matrices, we simulated such matrices by

parallel generation of random block matrices. The developed

generating algorithm works as follows:

1) an imaginary global matrix is partitioned into P subma-

trices,

2) each submatrix is further treated by a single processor,

3) each submatrix is partitioned into blocks,

482 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Algorithm 2: Conversion from CSR to ABHSF

Input: csr : CSR; s: integer

Output: abhsf : ABHSF

Data: block : BLOCK; k, brow , bcol ,firstrow , lastrow ,nrows, row , lrow : integer; from , remains: integer array

1 abhsf .m← csr .m
2 abhsf .n← csr .n
3 abhsf .z ← csr .z
4 abhsf .s← s
5 for brow ← 0 to ⌈csr .m/s⌉ − 1 do // iterate over block rows

6 firstrow ← brow · s
7 if firstrow + s ≤ csr .m then nrows ← s
8 else nrows ← csr .m− firstrow

9

10 lastrow ← firstrow + nrows − 1
11 for row ← firstrow to lastrow do // for each row of a block row find out:

12 from[row − firstrow]← csr .rowptrs[row] // position of data to be processed

13 remains[row − firstrow]← csr .rowptrs[row + 1]− csr .rowptrs[row] // number of elements to be processed

14 end

15 for bcol ← 0 to ⌈csr .n/s⌉ − 1 do // iterate over block columns

16 block .brow ← brow

17 block .bcol← bcol

18 block .zeta← 0
19 for row ← firstrow to lastrow do // for each row of a block row

20 lrow ← row − firstrow

21 while remains[lrow] > 0 and csr .colinds
[

from[lrow]
]

< (bcol + 1) · s do

// while elements belong to the actual block

22 block .lrows[block .zeta]← lrow

23 block .lcols[block .zeta]← csr .colinds
[

from[lrow]
]

− bcol · s
24 block .lvals[block .zeta]← csr .vals

[

from[lrow]
]

25 block .zeta← block .zeta+ 1
26 from[lrow]← from[lrow] + 1
27 remains[lrow]← remains[lrow]− 1
28 end

29 end

30 if block .zeta > 0 then PROCESSBLOCK(block , abhsf)

// store block data into the ABHSF data structure

31 end

32 end

4) each block becomes nonzero with some probability,

5) each nonzero block contains a random number of

nonzero elements,

6) each nonzero element is assigned a random row/column

index and a random value.

We further set up the generator so that:

• LCOO ≈ 600 MB, therefore submatrices took about 600

MB each when stored in COO (the typical amount of

physical memory per processor is 1–2 GB on contempo-

rary MPCSs).

• Resulting matrices contained nonzero blocks of various

properties, thus various storage schemes were generally

space-optimal for them.

• Processors used different seeds for their instances of

a pseudorandom number generator to produce different

submatrices. However, these seeds were preserved in

time, thus each processor generated the very same sub-

matrices through all experiments.

The parallel experiments were carried out in the following

steps:

1) Each processor generated a random submatrix and stored

it in memory either in COO or in CSR.

2) All processors stored their submatrices to a file system

in the original IMSF, which resulted in HDF5-COO or

HDF5-CSR files.

3) All processors stored their submatrices to a file system in

the ABHSF storage format utilizing either Algorithm 1

or Algorithm 2, which resulted in HDF5-ABHSF files.

DANIEL LANGR, IVAN IMEEK, PAVEL TVRDK: STORING SPARSE MATRICES TO FILES 483

Algorithm 3: PROCESSBLOCK(b, a)

Input: block : BLOCK; abhsf : ABHSF

Output: abhsf : ABHSF

Data: scheme: scheme tag; k, row , col : integer

1 scheme ← space-optimal storage scheme for block block // functions (1a)–(1d) defined by Langr et al. [2]

2 append block .brow to abhsf .brows
3 append block .bcol to abhsf .bcols
4 append scheme to abhsf .schemes
5 append block .zeta to abhsf .zetas
6 if scheme = dense then // optimal scheme is dense

7 k ← 0
8 for row ← 0 to abhsf .s− 1 do // iterate over all block elements

9 for col ← 0 to abhsf .s− 1 do

10 if k < block .zeta and block .lrows[k] = row and block .lcols[k] = col then // if element exists

11 append block .lvals[k] to abhsf .vals // store its nonzero value

12 k ← k + 1
13 else

14 append 0 to abhsf .vals // otherwise store 0

15 end

16 end

17 end

18 else if scheme = bitmap then // optimal scheme is bitmap

19 k ← 0
20 for row ← 0 to abhsf .s− 1 do // iterate over all block elements

21 for col ← 0 to abhsf .s− 1 do

22 if k < block .zeta and block .lrows[k] = row and block .lcols[k] = col then // if element exists

23 append block .lvals[k] to abhsf .vals // store its nonzero value

24 append 1 to abhsf .bitmap // and 1 to bit map

25 k ← k + 1
26 else

27 append 0 to abhsf .bitmap // otherwise store 0 to bitmap

28 end

29 end

30 end

31 else if scheme = COO then // optimal scheme is COO

32 for k ← 0 to block .zeta− 1 do // iterate over block nonzero elements

33 append block .lrows[k] to abhsf .lrows // and store them into COO storage scheme

34 append block .lcols[k] to abhsf .lcols
35 append block .lvals[k] to abhsf .vals
36 end

37 else if scheme = CSR then // optimal scheme is CSR

38 row ← 0
39 for k ← 0 to block .zeta− 1 do // iterate over block nonzero elements

40 while row ≤ block .lrows[k] do // and store them in the CSR storage scheme

41 append k to abhsf .lrowptrs
42 row ← row + 1
43 end

44 append block .lcols[k] to abhsf .lcols
45 append block .lvals[k] to abhsf .vals
46 end

47 while row ≤ abhsf .s do // align final rows if needed

48 append block .zeta to abhsf .lrowptrs
49 row ← row + 1
50 end

51 end

484 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Matrix Domain m n z
′ [%] Symmetric

ldoor structural problem 9.5 · 10
5 9.5 · 10

5 2.6 · 10
−3 yes

Freescale1 circuit simulation 3.4 · 10
6 3.4 · 10

6 1.6 · 10
−4 no

atmosmodj computational fluid dynamics 1.3 · 10
6 1.3 · 10

6 5.5 · 10
−4 no

cage12 directed weighted graph 1.3 · 10
5 1.3 · 10

5 1.2 · 10
−2 no

ohne2 semiconductor device 1.8 · 10
5 1.8 · 10

5 3.3 · 10
−2 no

FEM 3D thermal2 thermal problem 1.5 · 10
5 1.5 · 10

5 1.6 · 10
−2 no

bmw7st 1 structural problem 1.4 · 10
5 1.4 · 10

5 1.8 · 10
−2 yes

nlpkkt120 optimization problem 3.5 · 10
6 3.5 · 10

6 4.0 · 10
−4 yes

TABLE I: The list of the benchmark matrices used for the performed experiments.

0

100

200

300

400

500

600

700

R
e

la
ti

v
e

 f
il

e
 s

iz
e

 [
%

]

.mtx

.mtx.gz

HDF5-COO

HDF5-CSR

HDF5-ABHSF

Fig. 2: File sizes in percents relative to HDF5-ABHSF for benchmark matrices and different file/storage formats.

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128

S
to

ra
g

e
 t

im
e

 [
s]

Number of processors

HDF5-COO

HDF5-ABHSF (shuffled)

HDF5-ABHSF (sorted)

Fig. 3: Storage times for cases when COO was used as IMSF.

We measured the storage times of steps 2 and 3 for different

numbers of processors. Results for the case of using COO

and CSR as IMSF are in Figure 3 and Figure 4, respectively.

All measurements were performed 3 times and the average

values are presented. Since the conversion algorithm from

COO to ABHSF contains sorting of elements, we kept nonzero

elements in memory in COO in two different orderings to

evaluate the influence of the sorting algorithm. In the first case

0

50

100

150

200

250

1 2 4 8 16 32 64 128

S
to

ra
g

e
 t

im
e

 [
s]

Number of processors

HDF5-CSR

HDF5-ABHSF

Fig. 4: Storage times for cases when CSR was used as IMSF.

the elements were randomly shuffled and in the second case

they were sorted by their (row index, column index) keys.

The obtained results clearly correspond to our assumption

introduced in Section I. In case of ABHSF, there was some

constant computational overhead imposed by the conversion

algorithms (note that this overhead was considerably higher

for the conversion from CSR, which was caused by the higher

complexity of the conversion algorithm compared with the

DANIEL LANGR, IVAN IMEEK, PAVEL TVRDK: STORING SPARSE MATRICES TO FILES 485

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128

E
ff

e
ct

iv
e

 I
/O

 b
a

n
d

w
id

th
 [

M
B

/s
]

Number of processors

Total

Per processor

Fig. 5: Measured I/O bandwidth of the file system used for

experiments.

COO case). For smaller numbers of processors, this overhead

dominated the overall storage time (tsaved < toverhead) and

therefore it was faster to store matrices to a file system in their

original IMSFs. However, as the matrix size increased (pro-

portionally to P), the amount of saved data (SIMSF−SSESF)

increased as well, and from some point, it paid off to store

matrices in ABHSF.

From the measured storage times, we have also computed

the total I/O bandwidth of the used file system. Provided that

this total bandwidth is shared by all processors evenly, we can

also express the I/O bandwidth per processor. These values are

shown in Figure 5.

C. Generalization of Results

If we assume that the total I/O file system bandwidth is

shared evenly among processors, we may rewrite (2) as

tsaved ≈
LIMSF − LSESF

file system I/O bandwidth per processor
.

This implies that the amount of saved time generally grows

inversely proportionally to the file system I/O bandwidth

per processor.

Within our experiments, we utilized a small parallel com-

puter system with the GPFS-based storage subsystem [9].

The total I/O bandwidth of this file system varied, according

to Figure 5, approximately from 100 to 200 MB/s. On this

system, the point where ABHSF started to provide faster

storage of matrices emerged around 16–32 processors, which

corresponded to the I/O bandwidth of 4–8 MB/s per processor.

On todays biggest MPCSs, the per-processor I/O bandwidth

would be typically much lower for large-scale computations.

For instance, the Hopper/NERSC MPCS consists of over 153

thousands processors (CPU cores) and the listed maximum

I/O bandwidth of its fastest file system is 35 GB/s. Therefore,

we cannot get the I/O bandwidth per processor higher than

0.23 MB/s when utilizing the whole system. In general, for

such low I/O rates, we may expect that the ABHSF storage

format would be much more superior to the original IMSF

when storing matrices to a file systems.

V. CONCLUSIONS

The contribution of this paper are new conversion algo-

rithms for sparse matrices from the COO and CSR to the

ABHSF storage formats and the evaluation of suitability of

storing sparse matrices into file systems in ABHSF using these

algorithms, with the focus on the HPC application domain. We

showed that as the size of a computational problem grows, and

so does the number of processors, there is some point from

which it pays off to store matrices to a file system in ABHSF

instead of their original IMSF.

Unfortunately, we cannot simply predict this point, since

it depends on many factors, such as the I/O bandwidth of

the file system, the actual workload of the file system, the

clock rate of processors, the bandwidth of memory units,

the available amount of physical memory per processor, the

quality of the compiler, the quality of the program code,

structural properties of the matrix, etc. However, provided that

we use a particular MPCS and a particular HPC application

that generates matrices with similar properties, many of these

factors becomes fixed. Moreover, computational power and

compiler capabilities that influence the overhead imposed by

the conversion algorithms generally do not differ much across

contemporary MPCSs. Then, the suitability of storing matrices

to a file system in ABHSF (generally in any SESF) would be

determined primarily by the I/O bandwidth of the file system

per processor.

REFERENCES

[1] Ivan Šimeček, Daniel Langr, and Pavel Tvrdı́k. Space-efficient sparse
matrix storage formats for massively parallel systems. In Proceedings of

the 14th IEEE International Conference of High Performance Comput-

ing and Communications (HPCC 2012), pages 54–60. IEEE Computer
Society, 2012.

[2] D. Langr, I. Šimeček, P. Tvrdı́k, T. Dytrych, and J. P. Draayer. Adaptive-
blocking hierarchical storage format for sparse matrices. In Proceedings

of the Federated Conference on Computer Science and Information

Systems (FedCSIS 2012), pages 545–551. IEEE Xplore Digital Library,
September 2012.

[3] I. Šimeček, D. Langr, and P. Tvrdı́k. Minimal quadtree format for
compression of sparse matrices storage. In Proceedings of the 14th Inter-

national Symposium on Symbolic and Numeric Algorithms for Scientific

Computing (SYNASC 2012). IEEE Computer Society, September 2012.
Accepted for publication.

[4] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2nd edition,
2003.

[5] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for

the Solution of Linear Systems: Building Blocks for Iterative Methods.
SIAM, Philadelphia, PA, 2nd edition, 1994.

[6] The HDF Group. Hierarchical data format version 5, 2000-2013. http:
//www.hdfgroup.org/HDF5/ (accessed June 3, 2013).

[7] T. A. Davis and Y. F. Hu. The University of Florida Sparse Matrix
Collection. ACM Transactions on Mathematical Software, 38(1), 2011.

[8] Ronald F. Boisvert, Roldan Pozo, and Karin Remington. The Matrix
Market Exchange Formats: Initial Design. Technical Report NISTIR
5935, National Institute of Standards and Technology, Dec. 1996.

[9] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for
large computing clusters. In Proceedings of the 1st USENIX Conference

on File and Storage Technologies, FAST ’02, Berkeley, CA, USA, 2002.
USENIX Association.

486 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

