
Abstract—This paper describes an efficient exact algorithm
to solve Preemptive Resource Constrained Project Scheduling
Problem (Preemptive RCPSP). We propose a very original and
efficient branch and bound procedure based upon minimal in-
terval order enumeration, which involves column generation as
well as constraint propagation and which is implemented with
the help of the generic SCIP software. We perform tests on the
famous PSPLIB instances which provide very satisfactory re-
sults. To the best of our knowledge it is the first algorithm able
to solve at optimality all the set of j30 instances of PSPLIB in a
preemptive way. Moreover, this algorithm allows us to update
several best known lower bounds for the j60, j90 and j120 in-
stances of PSPLIB.

I. INTRODUCTION

HIS paper deals with the Preemptive Resource
Constrained Project Scheduling Problem (RCPSP: see

[1], [2]). RCPSP aims at scheduling a set of activities,

submitted to precedence and resource constraints, while

minimizing the induced makespan (total duration of the

project) value. The precedence constraints mean that some

activities must be completed before others can start. The

resource constraints specify that each activity requires

constant amounts of renewable resources during all the time

it is processed, these resources having limited capacities.

This problem has been extensively studied in its non

preemptive version ([3], [4]), which means that every

activity has to be run as a whole, without any kind of

interruption. There exist several variants of RCPSP (see [5],

[6] for recent surveys). We talk about Preemptive RCPSP

when an activity may be run in several steps: one may

launch such an activity, interrupt it, keep on with this activ-

ity a little further, and so on. There exists few works on Pre-

emptive RCPSP: [7] developed a branch and bound algo-

rithm, [8] proposed a tree search procedure augmented with

pruning rules (best-first tree search), [9] proposed an integer

linear program which add preemption penalties, [10] and

[11] dealt with preemption in an heuristic way and [12] de-

signed a genetic algorithm for multi mode Preemptive

RCPSP.

T

For the sake of simplicity, authors often assume that all

processing times are integral and that preemption only oc-

curs at integer valued dates. Still, one easily checks that such

a hypothesis is very restrictive, and only allows to get an ap-

proximation of the optimal value of the problem. In this pa-

per, we consider the problem under its most general form

and suppose that preemption is allowed for all activities and

may occur at arbitrary rational dates, and that no penalties

are related to preemption.

Our approach is a Branch and Bound one which involves

constraint propagation, as well as the management of spe-

cific rational Antichain linear program whose variables are

associated with subsets of activities which may be simulta-

neously processed during the schedule. This LP, which was

was first introduced by [13], provides us with a lower bound

of both Preemptive and Non Preemptive RCPSP. But deal-

ing with it requires implementing a pricing or column gener-

ation scheme. It was proved in [14] that if the input RCPSP

instance satisfies some ad hoc properties, then any optimal

solution of the Antichain linear program may be turned into

a feasible optimal schedule, without any increase of the

makespan value. What we do here is to use this property in

order to perform a tree search which may be viewed as be-

ing embedded into the enumeration process of all minimal

extensions of the precedence relation which define interval
orders. The resulting process happens to be very efficient,

since it is able to solve in an exact way all 30 activity in-

stances of the PSPLIB library, and to improve best existing

lower bounds for several 60/120 activity instances of this li-

brary.

So the paper is organized as follows: we first recall what

is Preemptive RCPSP (Section II), and next introduce the

theoretical tools related to the Antichain LP and to interval

orders (Section III), which will provide us with the basis of

our algorithmic approach. Section IV describes the algo-

rithm INT-ORD-ENUM and its implementation, and Section

V is devoted to a presentation of experimental results.

II. PREEMPTIVE RCPSP

An instance I = (X, K, <<) of the Resource Constrained
Project Scheduling Problem is defined by:

• A set X = {1,...,n} of n activities: ∀ i ∈ X, di denotes

the duration of activity i
• A set K = {1,...,m} of m resources: ∀ i ∈ X, ∀ k ∈ K,

rik denotes the requirement of activity i for resource k;

those resources are given back to the system once the

activity is over

Branch and Price for Preemptive Resource Constrained Project
Scheduling Problem Based on Interval Orders in Precedence Graphs

Aziz Moukrim
HEUDYASIC Laboratory
Technological University

COMPIEGNE
Email: aziz.moukrim@hds.utc.fr

Alain Quilliot
LIMOS CNRS UMR 6158

LABEX IMOBS3, Université
Blaise Pascal

Bat. ISIMA, BP 10125
Campus des Cézaux,

63173 Aubière, France
Email: quilliot@isima.fr

Hélène Toussaint
LIMOS CNRS UMR 6158
LABEX IMOBS3, CNRS

Bat. ISIMA, BP 10125
Campus des Cézaux,

63173 Aubière, France
Email: toussain@isima.fr

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 321–328

978-1-4673-4471-5/$25.00 c© 2013, IEEE 321

• ∀ (i,j) ∈ X2, i << j means that i precedes j: activity j
cannot start before i is over (Precedence constraints)

In the case of Non Preemptive RCPSP, scheduling only

means computing the starting times ti, i ∈ X, of the activities.

A schedule σ = (ti, i ∈ X) is feasible if it satisfies:

- the Precedence constraints;

- the Resource constraints: at any time t during the

process, and for any resource k, the sum ∑i∈Act(σ,t) rik does

not exceed the global resource amount Rk, Act(σ, t) = {i
such that ti < t < ti + di} denoting the set of the activities

currently run at time t according to schedule σ.

So, solving Non Preemptive RCPSP means computing σ
with a minimal makespan (total duration of the process).

In case preemption is allowed, scheduling an activity i
means first decomposing i into a sequence of sub-activities

i1, .., ih(i), with durations di,1,.., di,h(i), such that: ∑ q = 1..h(i) di,q =

di, and next scheduling all these sub-activities in the sense of

standard RCPSP. Since there does not exist any “a priori”

restriction either on the number of sub-activities or on their

durations, which may be arbitrarily small, the existence of

an optimal solution of Preemptive RCPSP has to be dis-

cussed.

III. FUNDAMENTAL TOOLS

A. The Antichain Linear Program: A Lower Bound
Let I = (X, K, <<) be some Preemptive RCPSP instance,

defined according to notations of Section II. We suppose

(we clearly may do it) that precedence relation << is transi-

tive. Then we define an antichain as being any subset a of X

such that there does not exist (i,j) ∈ a2 such that i << j. We

say that such an antichain is valid if: ∀ k ∈ K, ∑i∈a rik ≤ Rk .
It comes that a subset a ⊆ X of activities is a valid antichain
iff activities in a may be simultaneously run inside some

feasible schedule. We denote by A the set of all valid an-
tichains.

Then we become able to set the following linear program,

which we call Antichain Linear Program associated with

Preemptive RCPSP instance I = (X, K, <<), which was al-

ready introduced in [13, 14], and which we denote by (P)Ant:

(P)Ant

Minimize ∑a∈ A za

Subject to

 ∀ i ∈ X, ∑ a∈ A  i ∈ a za = di

 ∀ a ∈ A, za ≥ 0

(C1)

Explanation: if σ is any feasible schedule related to in-

stance I, we may associate with σ and with any valid an-

tichain a, the total amount of time z(σ)a during which the ac-

tivities which are simultaneously run according to σ are ex-

actly the activities of a. Then we see that z(σ) = (z(σ)a, a∈
A) is a feasible solution of (P)Ant since constraints (C1) ex-

press the fact that any activity i has to be completely done,

or, equivalently, that the duration of all antichains contain-

ing i must be equal to the duration of i. It comes that the op-

timal value of (P)Ant provides us with a lower bound of the

optimal value of I, which we denote by LB(I).

B. Dealing with (P)Ant: Column generation
Since the set A may be very large, even when the activity

set X is small, we need to handle the Antichain LP (P)Ant

through column generation. Column generation is an usual

technique to solve a LP which contains an exponential num-

ber of variables. It consists in initializing this LP with a few

number of active variables (which may be obtained from ap-

plication of some heuristic), and then in iteratively solving

the induced restricted problem at optimality and using the

dual variables to generate a new improving primal variable.

The search for this improving primal variable is called the

related Pricing Problem. The new variable is added to the

restricted problem and the process goes on until no improv-

ing variable can be found: then the solution of the restricted

problem is the optimal solution. When this technique is as-

sociated to a Branch and Bound process (usually for integer

formulation) it gives rise to a Branch and Price process. In

our case, let us consider some active antichain subset B ⊆ A,

together with some dual solution λ of the restricted LP

(P)B
Ant defined by (we suppose that B is such that this pro-

gram admits a feasible solution):

(P)B
Ant

Minimize ∑a∈ B za

Subject to

 ∀ i ∈ X, ∑ a∈ B i ∈ a za = di

 ∀ a ∈ B, za ≥ 0,

(C1)

Then solving the related pricing problem PRICE(λ) means

computing some valid antichain a, such that:

Σ i ∈ a λi > 1.

Though this problem is NP-Complete, it may be efficiently

handled through a combination of greedy search and Integer

Linear Programming (LIP). A well-fitted LIP formulation of

the PRICE(λ) problem comes as follows:

Pricing
LIP Formu-

lation
L-PRICE(λ)

Maximize ∑i∈X λi yi

Subject to

 ∀ (i,j) ∈ X2 | i << j, yi + yj ≤ 1

 ∀ k ∈ K, ∑i∈X rikyi ≤ Rk

 ∀ i ∈ X, yi ∈ {0,1}

(C2)

(C3)

C. Turning a Solution of (P)Ant into a Feasible
Schedule ?

Unfortunately, Linear Program (P)Ant only provides us

with a lower bound of Preemptive RCPSP instance I: if vec-

tor z = (za, a∈ A) is a feasible solution of (P)Ant, it may not

be possible to turn it into a feasible solution of I. As a matter

of fact, we may provide the valid antichain set A with an ori-

ented graph structure (A, E<<) by setting that there exists an

arc (a, b) ∈ E<< from antichain a to antichain b, if there exist

activities i ∈ a and j ∈ b, such that i << j.
Then we easily check that:

Theorem 1: Let z be some feasible solution of (P)Ant, and
A(z) ⊆ A be the set A(z) = {a ∈ A such that za ≠ 0} of active

322 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

antichains according to z. Then there exists a feasible
schedule σ such that z = z(σ) if and only if the subgraph
(A(z), E<<) does not contain any circuit.

Proof: Left to the reader.

Still, we may notice that program (P)Ant provides us with

additional understanding of Preemptive RCPSP: if σ is any

feasible Preemptive RCPSP schedule, if z(σ) = (z(σ)a, a∈ A)

is the related solution of (P)Ant, and if A(z(σ)) is the related

active antichain set, then one sees that solving the restricted

linear program (P)A(z(σ))
Ant through Primal Simplex Algorithm

provides us with another feasible schedule σ* with

makespan no larger than the makespan of σ. Moreover, Lin-

ear Programming Theory tells us that the number of active

antichains related to σ*, that means the cardinality of

A(z(σ∗)) does not exceed the number of constraints of

(P)A(z(σ))
Ant, which is equal to the cardinality of the activity set

X. This makes appear Preemptive RCPSP as a combinatorial

problem related to the search of some acyclic subgraph (B,

E<<) of the antichain graph (A, E<<), such that:

- Card(B) ≤ Card(X);

- The optimal value of the program (P)B
Ant is minimal.

 This confirms the existence of an optimal solution.

Also, we may notice that no activity which is not in the

set Min(X) of the activities which are minimal in the sense of

the precedence relation <<, may start before the time when at

least one activity in Min(X) is completed. We deduce that

the lower bound which derives from the resolution of the

(P)A
Ant program may be improved by adding the following

constraint to (P)A
Ant:

∑a∈ A-Min za ≥ Inf(di, i ∈ Min(X)), with A-Min = {a ∈ A,

such that a ⊆ Min(X)}.

We denote by LB*(I) this improved lower bound.

D. Interval Orders
A partially ordered set (Z, <) is an interval order if the el-

ements z of Z may be represented as closed intervals [o(z),

d(z)] of the real line, in such way that, for any pair z, z’ in Z:

- z < z’ if and only if d(z) < o(z’).

It is known (see [20]), that the partially ordered set (Z, <) is

an interval order if and only if there does not exist x, y, z, t ∈
Z such that:

- x < y and t < z; (C4)

- there does not exist any other pair u < v with u, v ∈
{x, y, z, t} than the pairs in (C4) above.

Figure 1 below shows the forbidden pattern associated with

interval orders:

x y

z t
Fig. 1: Interval order forbidden pattern

If we consider now our Preemptive RCPSP instance I = (X,

K, <<), we see that:

Theorem 2: If the partial order (X, <<) is an interval order,
then the oriented antichain graph (A, E<<) is acyclic (does
not contain any circuit).

Proof: We suppose the converse, and consider some circuit

Γ in (A, E<<) with minimal length. Then we must distinguish

two cases:

- first case: Length(Γ) = 2, which means that Γ contains two

antichains a and b. Then we see that there must exist i1, j2

∈ a, i2, j1 ∈ b such that: i1 << j1 and i2 << j2. Then it be-

comes easy to check that i1, j1, i2, j2 define a forbidden pat-

tern in the above sense, which induces a contradiction.

- second case: Length(Γ) ≥ 3, which means that Γ contains 3

consecutive antichains a, b, c, and that there must exist x ∈
a, y, z ∈ b, t ∈ c, such that x << y and z << t. But we also

deduce from the minimality of Length(Γ) and from the fact

that a, b, c are antichains that x, y, z, t must define a for-

bidden pattern in the above sense, which induces again a

contradiction. End-Proof.

This result will impact in a very significant way the de-

sign of the algorithm which will be presented in the next

section. Clearly, if σ is a feasible schedule for the Preemp-

tive RCPSP instance I = (X, K, <<), it is possible to extend

the precedence relation << into an interval order <<σ, in such

a way σ remains consistent with <<σ. In order to do it, we

only need to set, for any activity pair i, j in X:

- i <<* j iff End-Time(i) ≤ Start-Time(j).
Putting this last remark and Theorem 2 together makes

appear that we only need, in order to deal with the Preemp-

tive RCPSP instance I, to enumerate the extensions <<* of

the order relation << which are interval orders. As a matter

of fact, we may restrict ourselves to those extensions <<*

which are minimal for inclusion, that means which are such

that there does not exist any extension <<’ of << which is an

interval order and which is such that: <<’ ⊂ <<*, <<’ ≠ <<*.

So, next section is devoted to an accurate description of the

way this enumeration process is performed.

IV. THE BRANCH/BOUND ALGORITHM INT-ORD-ENUM

A. A Reformulation of Preemptive RCPSP Instance I
Sections II and III lead us to reformulate Preemptive

RCPSP instance I = (X, K, <<) as follows:

Preemptive RCPSP Reformulation: Compute an ex-

tension <<* of the precedence relation << which is an in-

terval order and which is such that, if z* is an optimal so-

lution of the related LP (P)Ant, obtained through Primal

Simplex Algorithm and column generation, the optimal

value 1.z* is the smallest possible.

Remark: Clearly, program (P)Ant must be understood here

with respect to <<*and to the related Antichain set A* ⊆ A.

So, our algorithm INT-ORD-ENUM is a Branch/Bound

algorithm, which performs some enumeration of the exten-

AZIZ MOUKRIM ETY AL. : BRANCH AND PRICE FOR PREEMPTIVE RCPSP BASED ON INTERVAL ORDER IN PRECEDENCE GRAPH 323

sions <<* of <<. We must now specify the main components

of such a tree search process, which are about:

- the extensions of Preemptive RCPSP instance I = (X,

K, <<) which define the nodes of the related search

tree;

- the way branching is performed;

- the way bounding and related filtering are performed;

- the way constraint propagation is performed;

- the branching strategy;

- the way the whole algorithm is implemented.

B. The Nodes of the INT-ORD-ENUM Search Tree
A node of the search tree induced by a branch/bound algo-

rithm is usually defined by a set of additional constraints

imposed to the initial problem. In the case of the Preemptive

RCPSP instance I = (X, K, <<), those constraints are:

- additional precedence constraints i << j;
- anti-precedence constraints i ---> j: i ---> j means that i

<< j is forbidden.

So, we may identify any node of the search tree with a pair

(Add<<, Add--->), where Add<< and Add---> are respectively the

sets of additional precedence constraints and anti-prece-

dence constraints which constrain <<* as follows:

- (<< ∪ Add<<) ⊆ <<*;

- (Add---> ∩ <<*) = Nil.

Explanation of the anti-precedence constraints: it must be

understood that those constraints have sense only with re-

spect to the reformulation of subsection IV.A. That means

that they are not going to play any role either with respect to

an eventual feasible schedule or with respect to the program

(P)Ant, but that they only will impact the way additional

precedence constraints may be added to the initial ones.

Clearly, if current order relation happens to define an in-

terval order, the related node is a terminal node (a leaf).

C. The Branching Mechanism
If current precedence relation, which is managed in such a

way it always remains transitive, is not an interval order,

then it must contain some forbidden pattern i1, j1, i2, j2:

- i1 << j1 and i2 << j2; (C5)

- no other pair u << v exists with u, v ∈ { i1, i2, j2, j1}

than the pairs in (C5) above.

This forbidden pattern allows us to perform a binary

branching process by successively considering the 2 follow-

ing alternatives:

- 1 th alternative (1 th son): insert i1 << j2 into Add<<;

- 2 th alternative (2 th son): insert i2 << j1 into Add<< and in-

sert i1 ---> j2 into Add--->;

D. Lower Bound, Upper Bound and Related
Filtering

Lower Bound: The lower bound which derives from a cur-

rent node defined by a pair (Add<<, Add--->), is provided by

the optimal value of the program (P)Ant, where valid an-

tichains are considered as deriving from (<< ∪ Add<<). This

problem is handled through column generation, as explained

in Section III.C, and the Pricing problem PRICE(λ) is han-

dled while using the ILP model of Section III.C. Every col-

umn which has been generated at some time during the

process is kept into memory.

Upper Bound: Also, we make in such a way that we are

provided, as part of a pretreatment, with an initial upper

bound UB: in order to get this initial upper bound, we apply

to instance I, a greedy randomized algorithm designed for

the Non Preemptive RCPSP (see [19]) and which, in case of

30 activity PSPLIB instances, approximates the optimal Non

Preemptive RCPSP optimal value by less than 2% in aver-

age. Of course, UB is updated as soon as some feasible solu-

tion is computed by the INT-ORD-ENUM search process.

Related Filtering: Of course, if the optimal solution z* of

LP (P)Ant, is such that the subgraph (A(z*), E<<) does not ad-

mit any circuit, we consider that we have been reaching

some terminal node of the search tree. In case related value

1.z* is smaller than the value of the current solution (current

upper bound UB of the forthcoming section IV.E, we update

this current solution as a feasible schedule σ such that z* =
z*(σ). We notice that it is sufficient to consider the subgraph

(A(z*), E<<) as defined with respect to initial precedence re-

lation <<, since our goal is to make possible turning a solu-

tion of (P)Ant, into a feasible schedule in the sense of initial

precedence relation <<.

E. Constraint Propagation

We apply several kind of inference rules α ╞ β, whose se-

mantics come as follows:

- α (precondition part) denotes constraints which are al-

ready associated with current node S of the three

search;

- β (consequent part) denotes the additional relations

which have to inserted into sets Add<< and Add--->..

The first class of rules deals with transitivity, and makes

in such a way that, at any time during the process, current

relation <<* = (<< ∪ Add<<) remains transitive:

Rule 1: i <<* j, z <<* i ╞ z << * j;
Rule 1’: i <<* j, j << * z ╞ i << * z;

Of course, any relation i <<* i induces a Failure signal.

The second one deals in a classical way with largest paths

and current upper bound UB. We add two dummy activities:

s (source) and p (sink) defined as usual and, at every time

Fig. 2: the Branching Mechanism

324 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

during the process, we are provided, for every activity i,
with:

• π(i) = earliest finish time for i, which means the

length of a largest path from s to i;
• Π(i) = the length of the largest path between the be-

ginning of i and p: Π(i) = UB - LS(i) where LS(i) is
the latest starting time for i

Doing this allows us to implement the following classical

inference rules, which tend to keep the current precedence

relation (<< ∪ Add<<) from inducing the existence of a

largest path with length ≥ UB:

Rule 2: π(i) = α, i << * y and α+dy > π(y)╞ π(y) = α+dy;

Rule 2’: Π (i) = α, y <<* i and α+dy > Π (y)╞ Π (y) =

α+dy ;
Rules 2 and 2’ update values π(y) and Π
(y), y ∈ X, as soon as necessary. Of course,

the existence of any path with length ≥
UB induces a Failure signal.

Rule 3: π(i) = α, α + Π(y) > UB ╞ i ---> y ;
Rule 3’: Π (i) = α, α + π(y) > UB ╞ y ---> i;

Rules 3 and 3’ forbid any additional precedence relation

which would induce the existence of a largest path with

length ≥ UB to be inserted into Add<<.

Rule 4: π(i) = α, UB − Π(y) + dy ≤ α − di╞ y << * i;
Rule 4’: Π (i) = α, UB − α + di ≤ π(y) − dy ╞ i <<* y;

Rules 4 and 4’ insert into Add<<. additional precedence re-

lations which should be satisfied in any schedule with

makespan no more than UB.

The last class of rules deals with the forbidden patterns of

Section III.D, and aims at keeping current relation (<< ∪
Add<<) from containing any such a pattern:

Rule 5: i <<* j, z <<* t and z ---> j ╞ i <<* t ;
Rule 5’: i <<* j, t <<* z and i ---> z ╞ t <<* j ;
Rule 6: i ---> j, z <<* j and i << * t╞ z <<* t;
Rule 6’: i ---> j, i <<* z and t ---> z ╞ t ---> j.

We see here the true role of constraints i ---> j, which help

us in inserting additional precedence constraints into the

Add<< set, with a strong impact on the antichain set A* and

on the optimal value of the related linear program (P)Ant,. Of

course, any time such a pattern appears, it induces a Failure

signal.

F. Branching Strategy
We described in IV.B the Branching mechanism, which

relies on the extraction of some forbidden pattern i1, j1, i2, j2:

- i1 << j1 and i2 << j2; (C5)

- no other pair u << v exists with u, v ∈ { i1, i2, j2, j1}

than the pairs in (C5) above.

Since it is known that the way branching parameters are

chosen is a critical issue as soon as Branch/bound and con-

straint propagation are performed. So we must now specify

the strategy which is used here in order to compute a

well-fitted 4-uple i1, j1, i2, j2.

As a matter of fact, we apply here the well-known “most

constraint variable” principle, and focus on the shortest cir-

cuits of the subgraph (A(z*), E<<) and on the antichains in

A(z*) which are the most involved in those circuits.

As told in Section IV.D, branching has to be performed

only if there exists some circuit in the subgraph (A(z*), E<<),

where z* is the optimal solution of the LP (P)Ant, solved after

constraint propagation has been performed. Then we distin-

guish two cases:

- First case: there exists a circuit with length 2. In such a

case, circuits with length 2 define in a natural way a non

oriented graph (A(z*), F) on the set A(z*): two antichains

a, a’ in A(z*) define an edge of this graph if they also de-

fine a circuit of the oriented graph (A(z*), E<<), We con-

sider an antichain a0 which is with maximal degree DF(a0)

in the graph (A(z*), F), together with some antichain a1,

with maximal degree DF(a1) among the F-neighbours of a0.

Then we derive the forbidden pattern i1, j1, i2, j2, according

to the proof of Theorem 2 in Section III.D and to Figure 3

(a).

- Second Case: there does not exist any circuit with length

2. Then we compute the largest strongly connected compo-

nent A0 of the oriented graph (A(z*), E<<), together with

the antichain a0, which is such that:

o There exists at least one pair a1, a2, such that (a1, a0)

and (a0, a2) are in the arc set E<<, while (a1, a2) ∉ E<<;

o The sum D-
F(a0) + D+

F(a0) of the inner and outer de-

grees of a0 in the subgraph (A0, E<<) induced from by

A0 is maximal.

Finally we compute some circuit Γ which contains a0 as

well as a1, a2 above and which is with minimal length, and

we derive the forbidden pattern i1, j1, i2, j2, according to the

proof of Theorem 2 in Section III.D and to Figure 3 (b).

Fig. 3: Extracting a forbidden pattern

G. Implementation
The global Branch/bound algorithm INT-ORD-ENUM

Branch/Bound is implemented according to a Breadth First

Search strategy which may be summarized as follows:

INT-ORD-ENUM Algorithmic Scheme.

1. Pretreatment: Compute a feasible Non Preemptive

RCPSP schedule σ, while using a greedy randomized

insertion flow heuristic as in [19]. Derive an upper

bound UB, together with an initial antichain subset B
⊂ A, such that the linear program (P)B

Ant admits a

feasible solution; Initialize the breadth search node

list L as the list {(Add<< = Nil, Add---> = Nil)};

AZIZ MOUKRIM ETY AL. : BRANCH AND PRICE FOR PREEMPTIVE RCPSP BASED ON INTERVAL ORDER IN PRECEDENCE GRAPH 325

2. Main Process: Breadth First Tree Search.

Let L be the current node list, ordered according to

LP (P)B
Ant related values, and S be the first node in L;

S is defined by two additional constraint sets Add<<

and Add--->; Delete S from L; Perform Constraint

Propagation and extend Add<< and Add--->; If Failure
then go back to 2. Else go to 3.;

3. Solve the LP (P)B
Ant related to S through column gen-

eration and test the oriented graph (A(z*), E<<) deriv-

ing from the obtained optimal solution z*; If 1.z* ≥

UB then go to 2. Else go to 4.;

4. If the graph (A(z*), E<<) is acyclic then derive from

z* a feasible schedule σ, update the upper global

bound UB and go back to 2. Else go to 5.;

5. Compute branching parameters i1, j1, i2, j2, according

to Section IV.F and create both related children:

o 1 th son: insert i1 << j2 into the set Add<<;

o 2 th son: insert i2 << j1 into the set Add<<;

and i1 ---> j2 into the set Add--->;

Insert those two children nodes in L, according to

their related LP (P)B
Ant value; Go back to 2.;

Process ends as soon as the LP value related to the first el-

ement of S is no smaller than UB. Then current value UB
provides the optimal makespan value;

This algorithm is implemented in C++, and linear pro-

grams (P)B
Ant and L-PRICE(λ) are handled by CPLEX.12 lin-

ear solver. But the global INT-ORD-ENUM process is em-

bedded into the SCIP framework for branch cut and price al-

gorithms [16]. The SCIP framework consists in a template

library which implements through breadth first search

generic branch and bound schemes involving Linear Pro-

gramming together with pricing scheme. In the present case,

what we mainly had to do was providing the C++ proce-

dures which performed, for every node S, the construction

of the (P)B
Ant and L-PRICE(λ) programs, the constraint prop-

agation process and the branching strategy, and assembly

them inside SCIP.

H. An Example
Let us consider an instance of 6 activities and 1 resource.

Each activity has a duration equal to 1 and a resource re-

quirement equal to 1. The precedence constraints are given

by the following precedence graph:

Fig. 4: Precedence graph

We initialize the set of antichains with the 6 singleton an-

tichains. The tree constructed by our method and the branch-

ing decisions are given as below:

Fig. 5: Solving instance of figure 4

The resulting optimal solution is given according to the

following Gantt chart.

Fig. 6: Gantt chart of optimal preemptive solution

V. NUMERICAL EXPERIMENTS

Experiments were carried on in C++, on linux CentOS

proc. Intel(R) Xeon(R) 2.40GHz. The instances which we

used were PSPLIB instances ([17]).

Our main achievement here was to solve in an exact way

and in a rather short time (never more that 95 CPU seconds)

Preemptive RCPSP on all 30 activity instances of the

PSPLIB library, which had been, until now, never done.

This first experiment is described in coming section V.A.

Also, we could get an evaluation of the bounding process

related to linear program (P)B
Ant, and check that in average,

LB(I) approximates the optimal Non Preemptive RCPSP op-

timal value by less than 6%. By the same way, we checked

that the augmented lower bound LB*(I) hardly improve

LB(I) by less than 0.5%.

326 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Finally, though we were not able to handle in an exact

way all 60/120 activity instances of the PSLIB library, we

could derive from the instances which we were able to han-

dle new lower bounds for several Non Preemptive RCPSP

instances of the PSPLIB library. This second part of the ex-

periment will be described in Section V.B.

A. Exact results on j30
The columns of table I have the following meaning:

- No Preemp. opt.: optimal value for non preemptive

RCPSP (available in PSPLIB website)

- Preemp. opt.: optimal for preemptive RCPSP (our

results)

- #nodes: number of nodes created (0 means optimal

value was found by heuristic in preprocessing and

prooved to be optimal by the first constraint propaga-

tion)

- cpu (s): cpu time in seconds

TABLE I

RESULTS ON J30 INSTANCES OF PSPLIB

No Preemp.
opt.

Preemp.
opt. #nodes cpu(s)

Mean 58.99 58.07 72.73 2.04

Min 34.00 34.00 0.00 < 0.1

Max 129 129 2130 94.11

std dev. 14.09 13.80 214.87 8.03

B. Comparative Analysis of LB(I), MB*(I)

The following table II provides us with average values for

the 480 instances of PSPLIB with 30 activities:

TABLE II: EVALUATION OF THE BOUND LB(I)

Mean
LB(I)

Mean
LB*(I)

Mean
Premp. opt.

Mean No
Premp. opt.

56.73 56.79 58.07 58.99

Remark: in almost 50% of the cases (exactly 236 instances

among 480), the values LB(I), Premp. Op. and No Premp.

Opt. coincide.

C. New best lower bounds
Our method gives new best lower bound for j60, j90 and

j120 instances (in a limit of time of 3 hours).

The columns of table III have the following meaning:

- best No preemp. UB: best known upper bound for

no preemptive RCPSP (available in PSPLIB web-

site)

- Preemp. LB: lower bound for preemptive RCPSP

(our method)

- deduced no preemp. LB: lower bound for no pre-

emptive RCPSP which we deduce from Preemp.
LB

- Best known LB: the best known lower bound cur-

rently available in PSPLIB website and updated

with the recent results of [18].

TABLE III

NEW BEST LOWER BOUNDS

instance
best no
preemp.

UB

Preemp.
LB

deduced
no

preemp.
LB

Best known
LB

j6013_1.s
m

112 106.41 107 105

j6029_2.s
m

133 126.20 127 123

j6029_3.s
m

121 117.29 118 115

j6029_4.s
m

134 129.29 130 126

j6029_5.s
m

110 104.04 105 102

j6029_6.s
m

154 145.30 146 144

j6029_7.s
m

123 116.00 116 115

j6029_9.s
m

112 106.83 107 105

j6045_1.s
m

96 91.00 91 90

j6045_2.s
m

144 137.32 138 134

j6045_3.s
m

143 137.50 138 133

j6045_4.s
m

108 102.49 103 101

j6045_5.s
m

106 100.41 101 100

j6045_6.s
m

144 136.42 137 132

j6045_7.s
m

122 116.04 117 113

j6045_8.s
m

129 122.17 123 119

j6045_9.s
m

123 118.20 119 114

j6045_10.s
m

114 106.48 107 104

j9045_6.s
m

175 163.26 164
163

j12036_4.s
m

236 217.35 218 217

j12056_3.s
m

241 222.12 223 220

j12056_4.s
m

222 206.62 207 205

j12056_5.s
m

280 261.80 262 261

j12056_7.s
m

283 263.29 264 260

j12056_8.s
m

289 268.04 269 265

j12056_9.s
m

288 266.34 267
264

VI. CONCLUSION

Our method is very efficient. Besides exactly solving

small size Preemptive RCPSP instances, it is also able to

provide us with very good lower bounds for larger scale

Non Preemptive RCPSP. We are looking for adapting this

method to the non preemptive RCPSP.

REFERENCES

[1] R. Kolisch, R. Padman. Deterministic project scheduling, Omega, 48,

pp. 249-272 (1999)

AZIZ MOUKRIM ETY AL. : BRANCH AND PRICE FOR PREEMPTIVE RCPSP BASED ON INTERVAL ORDER IN PRECEDENCE GRAPH 327

[2] P. Brucker, A. Drexl, R. Mohring, K. Neumann, E. Pesch.
Resource-constrained project scheduling: notation, classification,
models and methods, EJOR 112, pp. 3-41 (1999)

[3] W. Herroelen. Project Scheduling-Th./Pract., Prod./Op. Management,
14, 4, pp. 413-432 (2006)

[4] S.S. Liu, C.J. Wang. RCPSP profit max with cash flow, Aut. Const. 17,
pp. 966-74 (2008)

[5] S. Hartmann, D. Briskorn. A survey of variants of RCPSP. EJOR 207,

pp.1-14 (2010)

[6] M.J. Orji, S. Wei. Project Scheduling Under Resource Constraints: A
Recent Survey. International Journal of Engineering Research & Tech-
nology (IJERT) Vol. 2 Issue 2, (2013)

[7] E. Demeulemeester and W. Herroelen. An efficient optimal solution

procedure for the preemptive resource-constrained project scheduling
problem. European Journal of Operational Research, 90, pp. 334–348
(1996).

[8] S. Verma. Exact methods for the preemptive resource-constrained
project scheduling problem, research and publication, Indian institute
of management 2006, ahmedabad, india,w.p.no. 2006-03-08.

[9] B.A. Nadjafi, S. Shadrokh. The preemptive resource-constrained

project scheduling problem subject to due dates and preemption penal-
ties: an integer programming approach, Journal of Industrial Engineer-
ing, 1 pp. 35-39 (2008)

[10] F. Ballestin, V. Valls, S. Quintanilla, Preemption in resource- con-
strained project scheduling, European Journal of Operational Re-
search, 189 pp.1136-1152 (2008)

[11] M. Vanhoucke, D. Debels, The impact of various activity assump-
tions on the lead time and resource utilization of resource- constrained
projects, Computers and Industrial Engineering, 54 pp.140-154J
(2008)

[12] M. Vanhoucke, A genetic algorithm for the net present value maxi-

mization for resource constrained projects, EVOComp; LNCS 5482 pp.
13-24 (2009)

[13] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact
algorithm for the resource-constrained project scheduling based on a
new mathematical formulation. Management Science, 44 pp. 714–729,
(1998).

[14] A. Damay, A. Quilliot, E. Sanlaville. Linear programming based al-

gorithms for preemptive and non preemptive RCPSP, EJOR, 182, 3, pp.
1012-1022 (2007)

[15] A. Mehrotra, and M. A. Trick. A column generation approach for ex-
act graph coloring, INFORMS Journal on Computing, 8:4, pp. 133-151
(1996)

[16] http://scip.zib.de/

[17] http://www.om-db.wi.tum.de/psplib/

[18] Andreas Schutt, Thibaut Feydy, Peter J. Stuckey Explaining

Time-Table-Edge-Finding Propagation for the Cumulative Resource
Constraint. Lecture Notes in Computer Science Volume 7874, pp.
234-250 (2013) (last results on http://ww2.cs.mu.oz.au/~pjs/rcpsp/)

[19] A.Quilliot, H.Toussaint: Flow Polyedra and Resource Constrained
Scheduling Problem, RAIRO-RO, 46-04, p 379-409, (2012)

[20] F.S.Roberts: Discrete Maths Models; Prentice Hall, Englewood

Cliffs, N.Y, (1976).

328 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

