
Absrtact—Texture is   considered as one of the most crucial

image  features  used  commonly  in  computer  vision.   It  is

important  source  of  information  about  image  content,

especially for single-band images. In this paper we present the

results  of  research  carried  out  to  assess  the  usefulness  of

selected textural features of different groups in panchromatic

very high resolution (VHR) satellite image classification.  The

study is based on images obtained from EROS A satellite. The

aim of our tests was to estimate and compare the accuracy of

main land cover types classification, with a particular focus on

determining  usefulness  of  textural  features  based  on

multifractal formalism. 

Presented research confirmed that  it  is possible to use the

textural features as efficient global descriptors of VHR satellite

image content.  It was also prove that multifractal parameters

should be considered as  valuable textural features in the con-

text of land cover classification.

I. INTRODUCTION

 EXTURE as a primary factor of visual perception is a

necessary  feature  of  image  description.  It  is  usually

easy to recognize texture, but it is more difficult to define it,

because texture, in contrast to colour, is not determined by a

single  point,  but  involve  neighbouring  area  and  can  be

related  to  a  direction  or  a  scale.  It  was  created  large

spectrum of  parameters,  due  to  a  lot  of  possible  textural

descriptors, to help to extract information about texture (also

in the context of satellite images [1]). Textural characteristic

can be calculated based on the entire image (global features),

fragments of this image delineated by segmentation results

or small clusters of pixels formed by moving windows [2],

[3],  [4].  Different  texture  analysis  techniques,  such  as

Markovian  analysis  (including  Haralick  measures),  spatial

autocorrelation,  multi-scale autoregressive models,  wavelet

transforms  or  fractals  have  been  successfully  used  to

describe  the  content  of  the images  [2],  [3],  [5].  They are

considered  especially  important  in  case  of  single-band

images, like medical ones. 
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The textural analysis becomes also an important compo-

nent of the process of information extraction from satellite

images, especially in Object-Based Image Analysis approach

where textural features supplement the set of typical charac-

teristics obtained from histogram features and image objects'

shape.  However,  it  is  even  more  valuable  tool  when  sin-

gle-band panchromatic images of very high spatial resolu-

tion are considered. Textural analysis may facilitate informa-

tion extraction from such images by enabling the automatic

classification of their content. It is also especially important

from  the  content-based  image  retrieval  (CBIR)  point  of

view. Due to the increase of high resolution remote  sensing

imagery, the developments in this direction are particularly

desirable.

In our work we propose multifractal formalism, as a gen-

eralization of the fractal geometry, in order to more complete

analyze the texture of satellite images [6]. In  our previous

study [7] we compared efficiency of selected textural  fea-

tures  as  global  content-based  descriptors  of  panchromatic

WorldView2  Very  High  Resolution  satellite  images.  We

wanted to investigate how accurately remotely sensed image

can be automatically classified to the broad land cover types

such as  agriculture,  urban areas,  water  bodies,  and forest,

based on textural information derived from the entire image.

We were able to construct decision trees capable for very ac-

curate classification of images from our test image database

into these main landuse categories. The research proved that

degree  of  multifractality  can  be  considered  as  important

global image characteristic. 

However, tested WorldView2 images were characterised

by very homogeneous landuse – over 90% of the image was

in the dominating landuse category – and high radiometric

quality. In  case  of the present  study we applied the same

methodology of analysis to panchromatic EROS A satellite

images.  This  is  also  a  VHR  sensor,  although  older  then

WorldView2  and  acquiring  images  with  a  little  bit  lower

spatial resolution (2 m in case of EROS A vs. 0.5 m in case

of WorldView2) and higher level of noise. Moreover, images

in our EROS A test image database are not such homoge-

neous regarding the landuse of imaged terrain – the dominat-
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ing landuse category covers over 50% of the image. Our pre-

vious work [6] showed that selected multifractal parameters

can be used as features describing the content of these im-

ages. The aim of the present study is to compare their effi-

ciency  with  other  textural  parameters.  We also  intend  to

carry out experiment to determine the parameters most ap-

propriate as classification features.

II. DATA

The test  data  used in  the experiment  are  the same like

used in [6] and consist of two partially overlapping EROS-A

scenes (panchromatic high-resolution images, ground resolu-

tion – 2 m) of Krakow area (south Poland) acquired on 10th

and 15th October 2007. Images were acquired using similar

pointing angles  (29 and 27.5 degrees)  and ground sample

distances (2.20 and 2.15 m respectively). The images were

orthorectified using orbital model. 

We created our testing image database from the 512x512

pixel orthoimage tiles. To make more image tiles available

for the study, the ortophotomaps were cut into tiles twice.

The second set of tiles was cut with the origin of tiles shifted

256 pixels east and 256 pixels north. Every image in the cre-

ated database  was labeled according to its  prevailing land

cover category (agriculture,  forest,  urban),  based on photo

interpretation done in other studies for the purpose of land-

scape ecological  research.  Only images  where  dominating

land cover class covered over 50% of imaged area were used

for analysis.

The final database consisted from following sets of im-

ages:

• Image  set  EROS1  –  262  image  tiles  cut  from

Scene 1 (agriculture – 199, urban – 40, forest - 23);

• Image  set  EROS1s  –  259  image  tiles  cut  from

Scene 1  with  shifted  origins  (agriculture  –  204,

urban – 35, forest - 20);

• Image  set  EROS2  –  344  image  tiles  cut  from

Scene 2 (agriculture – 298, urban – 25, forest - 21);

• Image  set  EROS2s  –  349  image  tiles  cut  from

Scene 1  with  shifted  origins  (agriculture  –  308,

urban – 24, forest – 17).

III. METHODS

The analytical approach adopted in the study is the same

as in [7]. 

A. Textural parameters

Chosen global textural characteristics were calculated for

every image chip. As the result every image in the database

was described by 295 attributes, which may be grouped into

9 attribute groups (AG):

• AG1: the label (land cover class);

• AG2:  four  histogram-based  characteristics  (mean,

variance, skewness and kurtosis);

• AG3: six multifractal parameters (ΔSUM, ΔMAX, ΔBCD,

Δp
SUM,  Δp

MAX,  Δp
BCD);  Δ stands  for  the  degree  of

multifractality  and  Δp for  the  degree  of

multifractality for q > 0; SUM, MAX and BCD are

three different measure types (measure SUM takes

sum of pixel values on a given box; measure MAX

choses maximum value of  pixels  in a  given  box;

measure  BCD takes deviation of  gray levels  in a

box) [8], [6]. 

• AG4:  220  co-occurrence  matrix-based  parameters

[9], [10]: angular second moment, contrast, correla-

tion,  sum of  squares,  inverse  difference  moment,

sum average, sum variance, sum entropy, entropy,

difference  variance,  difference  entropy;  these  pa-

rameters were computed 20 times, for (d,0), (0,d),

(d,d), (d,-d) where the distance d can take values of

1, 2, 3, 4, and 5;  

• AG5:  20  run  length  matrix-based  parameters  [9],

[11]:  run  length  nonuniformity,  gray  level

nonuniformity,  long  run  emphasis  moment,  short

run emphasis inverse moment, fraction of image in

runs; these parameters were computed 4 times (for

vertical,  horizontal,  45-degree  and  135-degree

directions); 

• AG6:  5  absolute  gradient-based  parameters  [9]:

mean  absolute  gradient,  variance  of  absolute

gradient, skewness of absolute gradient, kurtosis of

absolute  gradient,  percentage  of  pixels  with

nonzero gradient; 

• AG7: 5 autoregressive model parameters [12], [13]:

θ1, θ2, θ3, θ4, σ;

• AG8: 20 parameters derived from wavelet analysis

[14], [15], [16];

• AG9:  fractal  dimension  determined  by  using

differential boxing-counting (DBC) method [17].

•
Features from attribute groups AG4 – AG8 were obtained

using MaZda software [16]. Histogram-based features, mul-

tifractal parameters and fractal dimension were calculated in

MatLab. 

B. Fractal Dimension and Multifractal Parameters

There are several methods for estimating a fractal dimen-

sion (FD) in an image [18], [19]. In the most commonly used

Box-Counting  methods  fractal  dimension  is  calculated  by

covering an object with boxes of varying size l and is given

by the relation:

DF=lim
l →0

ln N (l)
ln 1/ l

(1)

where N(l) denotes the number of boxes of size l needed to

cover considered object. Methods differ mainly in the ways

they approximate the quantity N(l). Most of them are applied

to images that must be turned into binary images.

In our work we calculate fractal dimension by using dif-

ferential  box-counting  (DBC)  method  [20],  [17].  This
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method,  proposed  by  Sarkar  and  Chaudhuri  [20],  allows

working directly on grey-scale images and thus the binariza-

tion process is avoided. 

In DBC algorithm an image of size M × M is considered

as a three-dimensional  spatial surface,  where (x,y) denotes

pixel position and the third coordinate (z) denotes pixel gray

level. The  (x,y) plane is partitioned into grids of size  s × s,

where M /2⩾s>1  and s is an integer. On each grid there

is a column of boxes of size s × s × s′,where s′ is the height

of each box, G/s′  = M/s, and G is the total number of gray

levels. Let the minimum and maximum gray level of the im-

age in (i,j)-th grid fall into the kth and lth boxes, respectively

[20]. Then the contribution of  N(l) in the pixel (i,j) of the

grid is nl(i,j)=l-k+1. Taking contributions from all grids, we

have

N ( l )=∑
i , j

n l(i , j) (2)

Then N(l)  is computed to different values of l. Finally, the

fractal dimension DF is estimated from the least square linear

fit of log (N(l)) against log (1/l) (see Equation 1). It is worth

noting  that  presented  DBC  methods  was  compared  with

other four methods proposed by Peleg [21], Pentland [22],

Gangepain and Roques-Carmes [23], and Keller et al. [24],

respectively. The DBC method was considered as a better

method,  as  was  also  supported  by  the  other  investigation

[25].  Moreover, some modifications of DBC method have

been lately proposed [26].

In our research we also  consider one of the multifractal

functions: generalized dimensions,  Dq,  as well quantitative

parameter  strictly  connected  with  this  function.  The

generalized dimensions Dq are calculated as a function of a

continuous index q, where -∞ < q < ∞ (e.g., see [27], figure

3.1). Index q can be compared to a microscope for exploring

different regions of the considered image.

As for FD estimation, many methods exist to obtain the

multifractal  functions [20].  Here,  the Box-Counting based

moment method has been applied [28]. In the first step of

analysis an image is divided into boxes of size δ × δ. Next,

for each box following multifractal measure is calculated:

μ i ( δ )=
pi ( δ )

∑
i=1

N ( δ )

pi ( δ )
,

 (3)

where  i =  1,  ...,  N(δ)  = 2n  labels  the  individual  boxes of

size δ. Here pi(δ) denotes three different measures [29], [8]:

p i

SUM ( δ )= ∑
(k ,l )∈Ωi

g (k , l) (4)

p i

MAX ( δ )=max(k , l )∈Ω
i
g ( k , l ) (5)

p i

BCD ( δ )=max(k ,l )∈Ω i
∣d ( k , l )∣ (6)

where g(k,l) is a gray-scale intensity at point (k,l), Ωi is a set

of  all  pixels  (k,l)  in  the ith  box  and  d(k,l)  denotes  the

deviation of gray levels in box i.

In the next step of our analysis, a weighted summation is

performed over all boxes in a  particular grid returning the

partition function of order q, i.e.

χ ( q , δ )=∑
i=1

N ( δ )

(μ i(δ ))q
(7)

which  scales  with  the  box length  δ → 0  and  N(δ) → ∞

according to:

χ ( q , δ ) ∝δ
Dq ( q−1)

(8)

From  the  Equation  (8)  we  obtain  generalized

dimensions [30]

Dq=lim
δ → 0

log( χ (q ,δ))
(q−1) log(δ)

(9)

The difference of the maximum and minimum dimension Dq,

associated with the least dense and the most dense regions in

the considered measure, is given by

∆=D−∞−D+∞ (10)

and can be regarded as a degree of multifractality (e.g.,

[31], [27]).  The degree of multifractality Δ is a measure of

complexity of considered data; higher values of Δ inform us

about greater  non homogeneity on image and suggest  that

different fractals are needed for its full description. In partic-

ular,  for  monofractal  scaling  the  degree  of  multifractality

equals zero.

Finally, as a result of multifractal analysis performed for

each image we obtain the  following set of six parameters:

the degree of multifractality (Δ) for measure SUM (ΔSUM),

MAX (ΔMAX) and BCD (ΔBCD), as well the degree of multi-

fractality for positive values of index  q  (Δp
SUM, Δp

MAX and  

Δp
BCD).  Presented  parameters  state  quantitative  and  global

characteristics used to compare complexity of images.

C. Classification

The decision (classification) tree approach was used for

classification. We decided to use this method as it has good

computational efficiency and the obtained tree can be pre-

sented as a set of easily interpretable rules. It has also been

already  successfully  applied  for  the  semantic  labeling  of

satellite images  [32], [33]. 

In our study, the classification was done using See5 soft-

ware  (Rel.  2.07).  The  software  generates  decision  trees

based on C5.0 algorithm, improved commercial version of

well-known C4.5 [24].

Classification was done based on different sets of features

(classification features sets, CFS):
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• CFS1: all classification features (AG2 – AG9);

• CFS2:  all  classification  features  apart  from

histogram-based ones (AG3 – AG9);

• CFS3:  co-occurrence  matrix-based  features

(AG4);

• CFS4:  co-occurrence  matrix-based  and

histogram-based features (AG2 and AG4);

• CFS5: run length matrix-based features (AG5);

• CFS6:  run  length  matrix-based  and

histogram-based features (AG2 and AG5);

• CFS7: absolute gradient-based features (AG6);

• CFS8:  absolute  gradient-based  and

histogram-based  features (AG2 and AG6);

• CFS9:  autoregressive  model  parameters

(AG7);

• CFS10:  autoregressive  model  parameters  and

histogram-based  features  (AG2 and AG7);

• CFS11:  parameters  derived  from  wavelet

analysis (AG8);

• CFS12:  parameters  derived  from  wavelet

analysis  and  histogram-based   features  (AG2

and AG8);

• CFS13: fractal dimension and histogram-based

features (AG2 and AG9);

• CFS14: histogram-based  features (AG2);

• CFS15: multifractal parameters (AG3);

• CFS16:  multifractal  parameters  and

histogram-based  features (AG2 and AG3);

Such approach enabled us both, to evaluate the individual

performance of each group of textural characteristics (used

alone  and  together  with  histogram-based  features)  and  to

assess the usefulness of combining of features from different

groups.

Five approaches with different pruning and thresholding

options as well as with or without winnowing of attributes

were used for every set of classification features. Boosting

with ten trials was used in every classification run.

In  the area where satellite scenes overlap,  existed some

number of ‘twin’ tiles  covering exactly the same area.  To

eliminate the possibility of using them as training and test

data at the same time, in our study we have used the image

data sets as shown in Table I. 

The average overall classification accuracy was calculated

for each classification approach and each set of tested classi-

fication features (CFS). The lowest of five classification er-

rors was then assigned as a measure of classification quality

for particular tested set of attributes. 

IV. RESULTS AND DISCUSSION

The results of classification tests are shown in Table II.

The best results for each of classification tests gave the clas-

sification accuracies in the range from 94 to 96 percent. In

two classification tests the best results were obtained when

all calculated textural parameters were included in classifica-

tion feature set. However, in Classification 2 the best result

was achieved  using the classification feature  set  consisted

only of  absolute gradient-based and histogram-based  fea-

tures (CFS8). This kind of textural features is also the best

one, when looking into the performance of particular texture

attribute groups. This result is surprising as  in the previous

study for WorlView2 images [7], this attribute group gave

rather poor results when compared to other ones. It should

be noticed however, that the achieved level of accuracy was

quite similar (93 – 95% in case of EROS A and 93% in case

of WorldView2). The performance of other textural charac-

teristics was much worse in the actual study. It is especially

the case of autoregressive model parameters (CFS9), which

performance  for  EROS  A  images  classification  can  be

pointed as the worst one. For WorldView2 images this group

of attributes was between the best ones [7].

The results presented in Table II show that, in general, the

classification performance increases  when textural  features

are combined with histogram-based ones. This conclusion is

consistent with the results of our previous studies [6], [7].

Multifractal  parameters  used  together  with

histogram-based  features  gave  the  second-best  result  for

Classification 2.  However,  in  the  two  other  tests  their

performance was rather average.

When  features  from  all  attribute  groups  are  combined

(CFS1 and CFS2) the classification tree built may be quite

complex  as  many  of  available  features  can  be  used  in

classification process.  In the classification method used in

our study, the number of features used for classification may

be reduced by using the winnowing approach. We compared

the results of the overall accuracy achieved for both options

(without winnowing and winnowed) in Table III.

It should be noted, that for two of three tests the classifi-

cation performance of winnowed set is comparable to  the

full one and still better then performance of any other classi-

fication features set. In these cases the final set of winnowed

attributes is the same and consists of two co-occurrence ma-

trix-based parameters, multifractal parameter and skewness

of absolute gradient. This result is very similar to achieved

for WorldViev2 images, where also the result based on three

winnowed parameters was better then any of the results of

particular attribute groups [7]. In case of that study the set of

winnowed attributes consisted of multifractal parameter (Δp
-

MAX,)  skewness of absolute gradient and the feature derived

from autoregressive model (σ).

TABLE I.

TRAINING AND TEST DATA SETS

Training data set Test data set

Classification 1 EROS1 EROS2s

Classification 2 EROS2s EROS1 

Classification 3 EROS1 and EROS2s EROS1s and EROS2
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V. CONCLUSIONS

The aims of the presented study were twofold: (i) to test

the  usefulness  of  the  selected  textural  parameters  as

classification features of panchromatic VHR satellite images

and  (ii)  to  compare  the  efficiency  of  the  multifractal

parameters  (which  we  propose  for  more  complete

description  of  the  texture  of  remote  sensing  images)  and

other  textural  features  in  the  context  of  land  cover

classification. The present study of EROS A satellite images

was  a  continuation  of  the  research  done  previously  for

WorldView2 data [7]. Some results confirmed, but partially

the results of this research differ from the earlier ones.

In both studies we prove that for VHR satellite images it

is possible to use the textural features as efficient global de-

scriptors  of image content.  The observed in this study in-

crease in classification accuracy when textural features are

supplemented by histogram-based ones was also present in

the results of our earlier experiments [6], [7]. Similarly, we

noticed earlier the possibility of successful reduction of clas-

sification features. It is worth noting, that in both our experi-

ments we were able to reduce the number of classification

features from 295 to 3 or 4 with very limited (or even negli-

TABLE III.

INFLUENCE OF ATTRIBUTES WINNOWING ON CLASSIFICATION RESULTS

Overall classification error [%] 

without winnowing 

Overall classification error [%] 

with winnowing 
Winnowed attributes

Classification 1 5.5 5.5

S(5, 5) Contrast

Δp
SUM

S(1, 0)  Difference Variance

 skewness of absolute gradient

Classification 2 9.7 12.0

S(3, -3)  Difference Entropy

 S(0, 1)  Entropy

 S(5, 0)  Sum Entropy

Horzl_ Long Run Emphasis Moment

45dgr_ Short Run Emphasis Inverse Moment

Classification 3 3.8 4.7

(5, 5) Contrast

Δp
SUM

S(1, 0)  Difference Variance

 skewness of absolute gradient

TABLE II.

CLASSIFICATION RESULTS

Classification 1 Classification  2 Classification  3

Classification 

feature set

Overall 

clasification  error [%]

Classification 

feature set

Overall 

clasification  error [%]

Classification 

feature set

Overall 

clasification  error [%]

CFS 1 5.5 CFS 8 5.8 CFS 2 3.8

CFS 2 5.5 CFS 16 6.9 CFS 1 4.4

CFS 8 7.0 CFS 7 9.3 CFS 3 4.9

CFS 3 7.3 CFS 2 9.7 CFS 11 4.9

CFS 11 7.3 CFS 6 9.7 CFS 8 5.1

CFS 4 7.8 CFS 12 9.7 CFS 12 5.1

CFS 13 7.8 CFS 1 10.0 CFS 4 5.4

CFS 12 8.7 CFS 3 10.0 CFS 10 5.9

CFS 15 8.7 CFS 4 10.0 CFS 6 6.1

CFS 16 8.7 CFS 14 10.0 CFS 13 6.4

CFS 7 9.3 CFS 15 10.4 CFS 16 6.9

CFS 6 9.9 CFS 13 12.2 CFS 15 7.4

CFS 10 10.2 CFS 5 13.5 CFS 7 7.7

CFS 14 11.0 CFS 11 16.6 CFS 5 8.2

CFS 9 14.0 CFS 10 21.6 CFS 14 10.6

CFS 5 14.5 CFS 9 43.6 CFS 9 13.7
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gible) impact on the overall classification accuracy. This is

very  important,  as  calculating  of  textural  parameters  for

VHR satellite images is very computationally expensive. 

When comparing the classification efficiency of different

groups of textural parameters, in the present study the best

results were obtained for absolute gradient-based features. In

the WorldView2 experiment done previously the best accu-

racy was achieved for multifractal parameters. It is interest-

ing that in the case of the absolute gradient group the level

of error  obtained in both research  is quite similar  and for

other kinds of textural features the errors are much higher

for EROS A classification. In our opinion there are at least

two possible sources of such results and much lower value

of classification accuracy achieved for EROS A images in

general (96.2% comparing to 99.6% for WorldView2). 

First of all, the differences are present in the input images

themselves. The WorldView2 images have higher spatial res-

olution (0.5 vs. 2.0 m) and are considered as better radiomet-

rically.  The  higher  level  of  noise  potentially  present  in

EROS A data may deteriorate the quality of textural  mea-

sures derived from images. It is possible that absolute gradi-

ent-based features are less sensitive to the noise present in

the imagery.

The second source of differences in the results may be in

a different image content. In case of WorldView2 data used

in previous experiment, the images were almost entirely (at

least in 90%) covered by single land cover class. In present

study the EROS A images were labeled based on the prevail-

ing land cover category defined as covering over 50% of im-

aged area.  This could result in much higher complexity of

image content, and in turn, in lower classification accuracies.

Both possibilities should be taken into account during fur-

ther research. Some noise may be added to WorldView2 im-

ages, as well as more homogenous EROS A images (or WV2

images of the areas having more complex land cover) may

be used.

Presented  research  prove that  for  VHR satellite  images

multifractal  parameters  should  be  considered  as  valuable

textural features. Based on this features the second-best clas-

sification result was obtained in the one of the three perfor-

med tests. For two other tests the multifractal feature (Δp
SUM)

was in the set of the four winnowed attributes, enabling very

efficient  classification approach.  It  should be stressed that

similar result was obtained also in previous WorldView2 ex-

periment. In both cases, the very limited (and very efficient)

sets of textural parameters were chosen by winnowing, con-

taining  the  multifractal  parameter  (although  not  the  same

one) and the skewness of absolute gradient  feature.  How-

ever, the importance of these parameters for classification of

VHR satellite images indicated in reported studies should be

proven  during  further  research  extended  for  other  VHR

satellite sensors and images of different areas.
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