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Abstract—Although the logic of belief update has mainly
concerned a belief state of one agent thus far, the real world
settings require us to implement simultaneous belief changes.
Here, however, we need to manage so many indices: agent
names, time stamps, and the difference of information. In this
paper, we introduce the notation of vectors and matrices for the
simultaneous informing action. By this, we show that a matrix can
represent a public announcement and/or a consecutive message
passing, with the time of the change of belief states properly.
A collective belief state multiplied by a communication matrix,
including matrices of accessibility in Kripke semantics, becomes
a hypercuboid.

I. Who KnowsWhat atWhich Time?

THE authors have tackled legal reasoning system thus

far [12], [13], in which one of the main issues is to

properly represent who knows what at which time. In Fig. 1,

we show the informing actions of three agents: judge, lawyer,

and the suspected. At the initial stage, the judge sentenced

the suspected to be guilty, and at the same time the lawyer

pleaded innocent to the judge with a new witness. The judge

changed his mind and he was going to sentence the defendant

to be innocent, but at the same time the maladjusted defendant

insulted the judge in the court, and which badly impressed jury

members . . .

Fig. 1. Informing Agents on Time-axis

Multi-agents communication includes such many factors as

agent ID, many messages, and time. In this paper, we introduce

vectors and matrices to represent those agents’ informing

actions collectively, to clarify the complicated relations of

those many indices.

II. Preliminaries

First we show the simplest prescription for an informing

action; in a similar way to FIPA/ACL [3], we place the

precondition in the upper deck and the result in the lower

deck.1
Biϕ

B jϕ
[c
ϕ

i j
] (1)

That is, when agent i believes ϕ (Biϕ) and there is a commu-

nication from i to j (c
ϕ

i j
), agent j comes to believe ϕ (B jϕ).

At this stage, there are several issues we need to consider:

• The problem of belief revision; the recipient of informa-

tion may not believe what was informed of, or he/she

may need to change some of what he/she has believed.

• The resultant state should include nested belief states, i.e.,

both of the sender and the recipient should recognize that

the information is shared between them as BiB jϕ and

B jBiϕ. In addition, if those agents are quite introspective,

each of them also possesses BiBiϕ and ¬Bi¬ϕ.2

Incidentally, a Kripke frame is such M = 〈W,R,V〉 that

W is a set of possible worlds, R is the accessibility of belief

modal operator B , and V gives valuation to each ϕ. Dynamic

Epistemic Logic (DEL) [2] presents a change of belief state,

restricting accessibility to possible worlds, as:

M,w |= [ϕ!]ψ ⇐⇒ M
ϕ!,w |= ψ. (2)

where Rϕ! in Mϕ! is:

Rϕ!(w) = R(w) ∩ {w′ ∈ W | M,w′ |= ϕ}.

On the contrary, Public Announcement Logic (PAL) [11]

masks those contradicting possible worlds, as follows.

M,w |= [!ϕ]ψ ⇐⇒ M
[[ϕ]],w |= ψ.

where in M[[ϕ]] let W↑ϕ be the worlds in which ϕ holds and

M,w |= ϕ→ w ∈ VW↑ϕ (ψ).

Note that the significance of these methods is to make formula

[!ϕ]Bϕ valid since ϕ holds in all the accessible possible worlds.

Among various trials to represent agent communication

formally [1], [9], [10], Yamada [14] showed a command from

i to j as [!(i, j)χ] where χ is the contents of the command.

Kobayashi and Tojo [6], [7] generalized this notion to an

informing action, representing the dynamic operator as [inf
ϕ

i j
].

1In this paper, we disregard U (uncertain) and Ui f (uncertain if) operators
for simplicity.

2In general, belief modality is often implemented with KD45, including
Biϕ → BiBiϕ (Axiom 4) and Biϕ → ¬Bi¬ϕ (Axiom D), while knowledge
modality requires KT5 including Kiϕ → ϕ (Axiom T ).
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As for linear algebraic representation of belief, Fusaoka [4]

used a matrix to show probability of knowledge source. Also,

as we have mentioned, Liau [8] represented the network of

accessibility in matrix. We combined these works, though we

avoid probabilistic point of view and restricted the elements

to truth values.

III. Informing Action

The belief modality Bt
i

represents the belief state of agent

i at time t. As to information ϕ, the belief states of multiple

agents are written collectively in a vector as follows.
























Bt
1
ϕ

Bt
2
ϕ
...

























=

























1

0
...

























where 1/0 are the truth values. Therefore, our specification of

belief revision of agent j, with regard to (1), becomes:

Bt+1
j ϕ = Bt

jϕ ∨ (c
ϕ

i j
∧ Bt

iϕ). (3)

Here, c
ϕ

i j
represents the informing action from j to i.

We define the addition and the multiplication of linear

algebra as the logical ‘or’ and the logical ‘and’, respectively,

as follows.

∧ 1 0

1 1 0

0 0 0

∨ 1 0

1 1 1

0 1 0

Then, we can generalize (3) to be:

Bt+1
j ϕ =

∨

i

(c
ϕ

i j
∧ Bt

iϕ), (4)

and the dynamic operator becomes such an n × n matrix that

(c
ϕ

i j
) =

























1 0 · · ·

1 1 · · ·
...

...
. . .

























where n is the number of agents. Its (i, j)-element represents

the truth value of c
ϕ

i j
, that is the existence of informing action

from j to i. We assume that diagonal elements cii (i = 1, · · · , n)

are always true to maintain his/her original knowledge as (3).

Now, the collective belief revision becomes:
























Bt+1
1 ϕ

Bt+1
2
ϕ

...

























= (c
ϕ

i j
)

























Bt
1ϕ

Bt
2
ϕ
...

























.

Example 1: Let

(c
ϕ

i j
) =

(

1 1

0 1

)

and

(

Bt
1ϕ

Bt
2
ϕ

)

=

(

0

1

)

,

Then,
(

Bt+1
1 ϕ

Bt+1
2
ϕ

)

= (c
ϕ

i j
)

(

Bt
1ϕ

Bt
2
ϕ

)

=

(

1 1

0 1

) (

0

1

)

=

(

1

1

)

.

Namely, by the informing action from agent 2 to 1, as is (1, 2)-

element of the matrix, agent 1 comes to know ϕ.

In the following examples, we highlight our attention with

the boxed truth values.

Example 2: Suppose the following three kinds of commu-

nication matrices:

C1 =























1 1 0

1 1 0

0 0 1























, C2 =























1 1 0

0 1 0

0 1 1























, C3 =





















1 1 1

0 1 0

0 0 1





















.

If there happened a reciprocal and simultaneous communica-

tion as to the same information, the matrix becomes symmetric

(C1), that is, agent 2 tells some information to agent 1 (c12)

and at the same time so does agent 1 to agent 2 (c21). An

agent can announce some information publicly, in which case

a certain column is filled with all 1’s (the second column of

C2). If multiple different agents tell the same information to

a certain agent, then there appear multiple 1’s in the same

row; if agent 2 and 3 inform the same content to 1, then the

situation becomes C3.

IV. Transitive Communication

Let us consider to connect two communications. Now, we

introduce a vector representation for the collective belief state

of multiple agents at time t:

B
tϕ =

























Bt
1
ϕ

Bt
2
ϕ
...

























.

For the time being, we may omit ϕ unless we need to mention

it explicitly. Two consecutive informing actions can be written

in the following matrix multiplication.

























B1

B2

...

























t+2

=

























c′11 c′12 · · ·

c′
21

c′
22
· · ·

...
...

. . .

















































c11 c12 · · ·

c21 c22 · · ·
...

...
. . .

















































B1

B2

...

























t

.

A. Associativity

First, we need to prove that communication matrices are

associative. Let X and Y be communication matrices and B
t

be a collective belief state.

(XY)Bt = X(YBt).

As XY =
∨

k(xik ∧ yk j),

(XY)Bt =
∨

l

(
∨

k

(xlk ∧ ykl) ∧ Bt
l) =

∨

l

∨

k

(xlk ∧ ykl ∧ Bt
l).

On the other hand, since YBt =
∨

l(ykl ∧ bl),

X(YBt) =
∨

k

(xlk ∧
∨

l

(ykl) ∧ Bt
l) =

∨

k

∨

l

(xlk ∧ ykl ∧ Bt
l).

As the both results meet, Q.E.D.
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B. Repetitive communication

Let us consider the case that the same communication

matrix is employed repeatedly.

B
t+n = (ci j)

n
B

t.

Example 3: Suppose

C = (ci j) =























1 1 0

0 1 1

0 0 1























,

that is, c12 and c23 are true, besides self-informing. Then,

C2 =





















1 1 1

0 1 1

0 0 1





















.

Namely, agent 3 is reachable from agent 1 in two steps.

Now let Bt be the initial belief state of the community, and

let us consider the following sequence.

B
t+1 = CB

t, Bt+2 = CB
t+1, Bt+3 = CB

t+2, · · · .

Note that the number of 1’s in the matrix increases

monotonously, since cii = 1 and once an agent believes the

proposition (s)he keeps it in his/her recognition. Let B
∗ be

the fixed point such that B∗ = CB
∗. If B∗ = B

t+k, Ck is the

transitive closure of the communication graph.

C. Anti-commutativity

As is the case in usual matrix multiplication, communication

matrices are not commutative.

Example 4:





















1 0 1

0 1 0

0 0 1





















and





















1 0 0

1 1 0

0 0 1





















are communication matrices from agent 3 to 1 (left), and that

from 1 to 2 (right), respectively. If agent 3 first believes ϕ, as





















1 0 0

1 1 0

0 0 1









































1 0 1

0 1 0

0 0 1









































0

0

1





















=























1

1

1























,

agent 2 comes to believe ϕ. But, when agent 1 does not believe

ϕ, as




















1 0 1

0 1 0

0 0 1









































1 0 0

1 1 0

0 0 1









































0

0

1





















=





















1

0

1





















the first informing action, that is from 1 to 2, results in vain,

and thus 2 still remains ignorant of ϕ.

Fig. 2. Multiple Propositions in Informing Action

V. Multiple Information Tensor

Thus far, we have restricted our concern to single informa-

tion passing. However, we can represent the message passing

of multiple information ϕ1, ϕ2, ϕ3, · · · , ϕm as a tensor in Fig. 2.

The flat matrix in the front in Fig. 2 represents the resultant

state of informing action. The i-th column is the belief states

of the agents as to ϕi and the j-th row is what agent j believes,

at time t+1. In the similar way, the flat matrix in the behind is

that of belief states at time t. The in-between n×n×m-cuboid

is a simultaneous communication, where n is the number of

agents and m is the number of information. In order to clarify

the relation of elements, we place the contravariant elements

as superscripts and the covariant ones as subscripts as a tensor:

(B
ϕ

j
)t+1 = (c

i,ϕ

j
)(B

ϕ

i
)t.

In Fig. 2, we only have shown the atomic propositions. We

can add such composite propositions as ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2

simply in the figure, as these truth values are composed by

ϕi’s.

VI. Model Updating

A kripke frame for multiple agents is such M =

〈W,A,R1, · · · ,Rn,V〉 that A is a set of agents and Ri is

the accessibility of belief modal operator Bi.

A belief state of an agent can be represented also in

matrix, when we render (i, j)-element as the accessibility from

possible world i to j of Kripke semantics [8]. For example,3

w1 w2 w3

w1

w2

w3





















1 1 0

0 1 1

0 0 1





















(5)

represents R = {w1Rw1 w1Rw2, w2Rw2, w2Rw3, w3Rw3} in

W = {w1,w2,w3}. In this matrix representation, the configu-

ration of truth values directly shows the axioms of modality.

3We employ square brackets for the accessibility to distinguish it from the
communication matrix.
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For example, if the matrix is symmetric, it satisfies axiom of

symmetricity (Axiom B). If the diagonal elements are all 1’s,

it is reflexive (Axiom T ), If there is at least one 1 in each row,

it satisfies seriality (Axiom D).

A belief change becomes a change in matrix. For example,

let V(ϕ) = {w2,w3}; then matrix (5) cannot satisfy Bt
i
ϕ as

M,w1 6|= Bt
i
ϕ (for w1Rw1, M,w1 6|= ϕ). Here, we consider DEL

style belief update (2), that is, to cut some of accessibility for

an agent to come to believe an informed proposition; namely

some 1’s in the accessibility matrix at time t are replaced by

0’s at t + 1. In the case of (5), if (1, 1)-element becomes 0,

then Bt+1
i
ϕ.

Since the accessibility with the valuation maps a belief state

of a given agent to a truth value:

(Ri,V) : Bt
iϕ→ 1/0,

we identify such accessibility matrices with truth values in the

following example.

Example 5: Suppose V(ϕ) = {w2,w3}. A belief vector at

time t is:4

B
tϕ = (





















1 0 0

1 1 0

0 0 1





















,





















1 1 0

1 1 0

0 0 1





















,





















1 0 0

1 1 0

1 0 1





















, · · · ).

After a public announcement of ϕ from some agent, the revised

belief vector becomes:

B
t+1ϕ = (





















0 0 0

0 1 0

0 0 1





















,





















0 1 0

0 1 0

0 0 1





















,





















0 0 0

0 1 0

0 0 1





















, · · · ).

Now, the multiple belief states of agents at time t becomes

(n×m× k2)-hypercuboid, where n is the number of agents, m

is the number of information, and k is the number of possible

worlds.5

VII. Discussion

In the belief revision of multiple agents, as there are so

many indices appears, we have represented them in linear

logic. As we have shown, the collective belief state and the

communication matrix include more then three indices, those

matrices become hypercuboids.

We have shown that the consecutive informing action can

be realized by a product of matrices, including the n-th power,

with associativity and anti-communtativity. This discussion

naturally leads us to the inversion of matrix, as

B
t = (ci j)

−1
B

t+1,

being the inversion regarded as belief contraction [5]. How-

ever, some communication matrices do not have their inver-

sions, as their rank fails to be n. Furthermore, we cannot

give proper semantics for value ‘−1’, or ‘0’ may appear

on the diagonal elements in the inversion matrix. We need

4We show belief vectors in row vectors here just for visibility, although
they are intrinsically column vectors.

5If we fix the number of atomic propositions to m, then the number of
maximal possible worlds becomes k = 2m .

to recognize that how we can redo the revision is difficult

problem, especially in Kripke semantics.

In this paper, we evaluated formulae in the same possible

world even though time shifts. We are now to intend that we

regard the world itself as a temporal state, as:

M, t |= [c
ϕ

i j
]ψ ⇐⇒ M

c
ϕ

i j , t + 1 |= ψ.

Now, let us get back to the two issues: belief revision

and nested modalities. We could not implement simultaneous

arrivals of two different information to one agent, i.e.,

Bt+1
j := Bt

j+̇{ϕ}+̇{ψ},

regarding Bt
j

as a belief set and ‘+̇’ as revision operator.

Note that how we can revise the belief of each agent is

an independent topic from our formalism in this paper, and

depends on the preference of revision. Also, it is difficult

to send such propositions including modality as B jϕ2, which

results in the nested belief state. In addition, sending a negative

formula also affects how we can revise the accessibility; these

would be our common research topics in the community of

belief update logic in future.
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