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Abstract—In this paper, we investigate the problem of quality
analysis of clustering results using semantic annotations given
by experts. We propose a novel approach to construction of
evaluation measure, which is based on the Minimal Description
Length (MDL) principle. In fact this proposed measure, called
SEE (Semantic Evaluation by Exploration), is an improvement
of the existing evaluation methods such as Rand Index or
Normalized Mutual Information. It fixes some of weaknesses
of the original methods. We illustrate the proposed evaluation
method on the freely accessible biomedical research articles from
Pubmed Central (PMC). Many articles from Pubmed Central are
annotated by the experts using Medical Subject Headings (MeSH)
thesaurus. This paper is a part of the research on designing and
developing a dialog-based semantic search engine for SONCA
system1 which is a part of the SYNAT project2. We compare
different semantic techniques for search result clustering using
the proposed measure.

I. INTRODUCTION

CLUSTERING can be understood as an unsupervised data
mining task for finding groups of points that are close to

each other within the cluster and far from the rest of clusters.
Intuitively, the greater the similarity (or homogeneity) within
a cluster, and the greater the difference between groups, the
“better” the clustering. Clustering is a widely studied data min-
ing problem in the text domains, particularly in segmentation,
classification, collaborative filtering, visualization, document
organization, and semantic indexing.

It is a fundamental problem of unsupervised learning ap-
proaches that there is no generally accepted “ground truth”. As
clustering searches for previously unknown cluster structures
in the data, it is not known a priori which clusters should be
identified. This means that experimental evaluation is faced
with enormous challenges. While synthetically generated data
is very helpful in providing an exact comparison measure, it
might not reflect the characteristics of real world data.

In recent publications, labeled data, usually used to evaluate
the performance of classifiers, i.e. supervised learning algo-
rithms, is used as a substitute [18], [6], [1]. While this provides
the possibility of measuring the performance of clustering
algorithms, the base assumption that clusters reflect the class
structure is not necessarily valid.

1Search based on ONtologies and Compound Analytics
2Interdisciplinary System for Interactive Scientific and Scientific-Technical

Information (www.synat.pl)

Some approaches therefore resort to the help of domain
experts in judging the quality of the result [2], [7], [6]. When
domain experts are available, which is clearly not always the
case, they provide very realistic insights into the usefulness of
a clustering result. Still, this insight is necessarily subjective
and not reproducible by other researchers. Moreover, there is
not sufficient basis for comparison, as the clusters that have
not been detected are unknown to the domain expert.

There have been several suggestions for a measure of
similarity between two clusterings. Such a measure can be
used to compare how well different data clustering algorithms
perform on a set of data. These measures are usually tied to
the type of criterion being considered in evaluating the quality
of a clustering method [10].

The goal of clustering is to assign objects to subsets which
are coherent internally, but are dissimilar to each other. These
goals are usually explicitly formulated as internal criteria of
clustering quality. The word “internal” highlights the fact that
they are based on object similarity expressed in the original
feature space. Usually it may not necessarily be clear whether
modeling assumptions in the underlying model (feature space
and e.g. the notion of distance between objects) are valid.
Hence, one may ask to validate or evaluate a clustering in
a specific application, using feedback from users or experts.
When a “gold standard” clustering is provided by experts, one
may compare it with the result from a clustering algorithm.
This approach is an external criterion of clustering quality.

The problem becomes even more complicated in evaluation
of text clustering with respect to semantic similarity, whose
definition is not precise and highly contextual. As the number
of results is typically huge, it is not possible to manually
analyze the quality of different algorithms or even different
runs of the same algorithm.

The remainder of this paper is structured as follows. In
Section II we present some basic notions and problem state-
ment. This is followed by an overview of external clustering
evaluation methods in Section III. In Section IV we present
the basic semantic evaluation techniques and propose a novel
evaluation method based on exploration of expert’s tags which
is the fundamental contribution of this paper. After this we use
the proposed evaluation method to analyze the search result
clustering algorithms over the document collection publish by
PubMed. An analysis of the methods result representation and
their interpretability is presented in Section V, followed by
some conclusions and lessons learned in Section VI.
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TABLE I. ILLUSTRATION OF HARD CLUSTERING DEFINED BY AN

ALGORITHM AND BY AN EXPERT.

Doc. Hard Cluster Expert Cluster
C1 C2 C3 E1 E2 E3 E4

d1 1 1
d2 1 1
d3 1 1
d4 1 1
d5 1 1
d6 1 1

II. PROBLEM STATEMENT

A hard clustering algorithm is any algorithm that assigns
a set of objects (e.g. documents) to disjoint groups (called
clusters). A soft clustering relaxes the condition on target
clusters being disjoint and allows them to overlap. Clustering
evaluation measures[15], [10] proposed in the literature can
be categorized as either internal criteria of quality or external
criteria of quality.

An internal criterion is any measure of “goodness” defined
in terms of object similarity. These criteria usually encompass
two requirements – that of attaining high intracluster similarity
of objects and high dissimilarity of objects in different clusters.

External criteria on the other hand compare a given
clustering with information provided by experts. Typically in
the literature it is assumed that both the clustering provided
by studied algorithm and the clustering provided by experts
are hard clusterings. We believe that the requirement that
expert knowledge is described in terms of a hard clustering
is overly restrictive. In typical applications in text mining,
one faces datasets which are manually labeled by experts, but
with each document being assigned a set of tags. We can
think of such tags as of soft clusters. In this paper we aim
to provide measures of external evaluation criteria that relax
both conditions on the clustering and expert clusterings being
partitions (hard clusterings).

In what follows, our focus is on clustering of documents,
hence we will occasionally use terms “object” and “document”
interchangeably. We stress that the notion of Semantic Explo-
rative Evaluation (SEE) introduced in this paper is a general
framework which can be used to evaluate clustering of objects
of an arbitrary type.

Typically in the literature it is assumed that the input data
to clustering evaluation can be described in a form similar to
Table I, i.e. with exactly one valid cluster Ci and exactly one
valid expert cluster Ej for each document.

We will relax this condition to allow comparison of soft
clustering and a set of expert tags assigned to each document,
thus allowing input data as in Table II.

III. OVERVIEW OF CLUSTERING EVALUATION METHODS

In this section we briefly review external evaluation criteria
typically used in clustering evaluation. We assume that two
partitions (hard clusterings) of objects are given: one by an
algorithm, and another one provided by domain experts. Most
external evaluation criteria can be naturally grouped in two
groups:

TABLE II. ILLUSTRATION OF SOFT CLUSTERING FOUND BY AN

ALGORITHM AND DEFINED BY AN EXPERT.

Doc. Soft Cluster Expert Tag
C1 C2 C3 Cosmonaut astronaut moon car truck

d1 1 1 1 1
d2 1 1 1
d3 1 1 1
d4 1 1 1 1
d5 1 1 1
d6 1 1

d6

truck

d5

car

d4

car truck

d1

cosmonaut moon car

d2

astronaut moon

d3

cosmonaut

Fig. 1. Illustration of clustering from example Table II.

• Pair-counting measures, which are defined on a 2× 2
contingency matrix that summarizes similarity of pairs
of objects w.r.t. both clusterings (see Table III):
If there are k objects in the dataset, then

a+ b+ c+ d =

(

k

2

)

A typical measure that can be expressed in terms of
these numbers is

Rand Index =
a+ d

a+ b+ c+ d
.

However, there is a multitude of different variants of
other similar measures. Pfitzner et al.[15] provide an
overview of 43 measures that all fit into this scheme.

• Information-theoretic measures on the other hand
compare distributions of c(D) and e(D), which denote
respectively the cluster and the expert label (which
induces a partition) assigned to a document D drawn
randomly from the dataset. These measures can be ex-
pressed in terms of joint distribution of 〈c(D), e(D)〉,
i.e. simply by counting objects belonging to each
pair 〈Ci, Ej〉 as shown in Table IV. Numbers in
brackets denote expected values of counts assum-
ing independence of c(D) and e(D). Information-
theoretic measures thus aim to to measure the degree
of dependence between these two. An example such

TABLE III. ALL PAIR-COUNTING MEASURES CAN BE SUMMARIZED IN

TERMS OF NUMBERS a, b, c, d IN THIS TABLE.

Pairs of documents Same cluster?
True False

Same expert tag? True a b
False c d
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TABLE IV. INFORMATION-THEORETIC MEASURES ARE DEFINED IN

TERMS OF CONTINGENCY TABLE SHOWN HERE (FOLLOWING EXAMPLE IN

TABLE I).

C1 C2 C3 Total
E1 1 0 0 1
E2 0 0 1 1
E3 0 1 1 2
E4 1 1 0 2

2 2 2

measure is mutual information I between c(D) and
e(D), where

I(X,Y ) =
∑

x

∑

y

p(x, y) log

(

p(x, y)

p(x)p(y)

)

.

A measure typically used in clustering evaluation
is Normalized Mutual Information[10], though [15]
reviews 13 different measures, all defined quite simi-
larly.
Purity is a measure occasionally used as an ex-
ternal evaluation criterion. While it is not strictly
an information-theoretic measure, it can be also ex-
pressed in terms of table IV.

IV. SEMANTIC EVALUATION METHODS FOR SOFT

CLUSTERING

We stress two limitations of measures proposed in the
literature and briefly reviewed thus far:

• The first limitation, already mentioned in the previ-
ous section, is the typical assumption that both the
clustering algorithm and the experts provide partitions.
We will show how all measures mentioned (whether
directly or indirectly) in the previous section can be
naturally extended to the case of comparing a soft
clustering with expert knowledge expressed in terms
of multiple tag assignment. In the first part of this
section we will briefly review our proposed solution
to this problem, described earlier in [12].

• A more important limitation, though, is that neither of
these measures described so far resemble the thought
process that the expert himself would undergo if he
was faced with the task of manually evaluating a
clustering. In the second part of this section we will
describe a novel method of semantic evaluation that
addresses this issue.
This is the fundamental contribution of this paper.

• The third problem, that we address further in the paper,
is that of comparing different clusterings.

• Finally, methods mentioned so far do not allow us to
compare different clusters of a single clustering.

A. Comparing set covers.

Previous works by other authors on this problem in-
clude [3] (Fuzzy Clustering Mutual Information) and [8]
(comparing set covers).

In this section we consider two types of measures defined
earlier separately.

TABLE V. PAIR-COUNTING MEASURES CAN BE NATURALLY DEFINED

FOR SOFT COVERS IF WE SUBSTITUTE hard membership (SEE TABLE III)
BY THE NOTION OF similarity.

Pairs of documents Cluster-similar?
True False

Expert-similar? True a b
False c d

TABLE VI. INFORMATION-THEORETIC MEASURES CAN BE DEFINED IF

WE CAN DESCRIBE THE JOINT DISTRIBUTION OF CLUSTERS AND EXPERT

LABELS (SEE EXAMPLE IN TABLE II).

C1 C2 C3

Cosmonaut 0.139 0.083 0
astronaut 0.083 0 0
moon 0.139 0 0
car 0.056 0.125 0.125
truck 0 0.042 0.208

First we describe how to extend a pair-counting measure
of similarity of two partitions to a measure of similarity of
set covers. Pair-counting measures only pose a tiny problem.
Looking at table III, we see that for soft clusterings, rows and
columns are not well defined. In order to fully characterize a
pair of documents 〈di, dj〉, we proposed in [12] to define no-
tions of cluster-similarity and expert-similarity for documents
and base pair-counting measures on table V. This approach
naturally extends any pair-counting measure, with the focus of
our prior experiments on Rand Index [16]. We defined very
simple notions of similarity: we considered two documents

di, dj θ-expert-similar, if
|e(di)∩e(dj)|
|e(di)∪e(dj)|

≥ θ, and we defined θ-

cluster-similarity in the same way. This approach allows us
to effortlessly apply each of the 43 pair-counting measures
reviewed by Pfitzner[15].

Information-theoretic measures can be extended by count-
ing a given document in multiple cells of Table IV whenever
the document is in multiple clusters and/or multiple tags are
assigned to the document. If we wish to assign an overall
equal weight to each document, instead of raw counts, one may
further assume that the contribution of a document is inversely
proportional to the number of cells that it contributes to. This
has a straightforward probabilistic interpretation. The original
measures, like I(c(D), e(D)) are defined for deterministic
functions c and e and a random document D. In the proposed
extension, c and e are also random variables, with c(d) uni-
formly distributed across clusters containing document d, and
e(d) uniformly distributed across tags assigned to document
d. Original formulas themselves, like I(c(D), e(D)) remain
unchanged. This approach is illustrated in Table VI.

B. Semantic Explorative Evaluation

We have mentioned that the calculation of neither of the
measures reviewed so far resembles human reasoning. We
propose a different approach to the problem of semantic
evaluation.

If an expert faced the problem of manual inspection of
clustering results, he would try to explain (describe) the
contents of clusters in his own words (i.e. in terms of expert
tags). In essence, a cluster should be valid for an expert if the
expert can briefly explain its contents. The expert would find
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cluster 1

cluster 2

cluster 3

cluster 4

expert tag 1

expert tag 2

expert tag 3

expert tag 4

expert tag 5

expert tag 6

Descriptive model

Fig. 2. For each cluster (e.g. cluster 3), we build a model describing the
contents of this cluster in terms of expert tags. A measure of complexity of
the resulting model thus corresponds to semantic validity of the cluster.

a set of clusters valid if he could provide a short explanation
for each cluster.

In order to define a measure of semantic validity which is
based on this reasoning, we need to specify three things:

• description of clusters in terms of expert concepts (i.e.
a model family),

• define the length of such an explanation so that we
know if it is short,

• a penalty incurred if a cluster is indescribable in terms
of expert concepts,

• define the aggregate measure, so that we can evaluate
a set of clusters.

We specify these three ingredients as follows:

• The explanation or description of a cluster is in
essence a model of the cluster in terms of expert tags.
Any classification algorithm provides such a model.
The exact choice of the classifier is of secondary
importance as long as the same procedure is con-
sistently used to evaluate different clusterings. In our
experiments, the classifier of choice is a decision tree
with no pruning, with splits defined greedily using
Gini index.

• By appealing to Minimum Description Length princi-
ple, one may then define a measure of validity of a
fixed cluster as the complexity of the model describing
the cluster. The measure of model complexity that we
use is the average depth of the resulting tree.

• For simplicity we omit a penalty for indescribable
clusters at this point, although we guarantee during
tree construction that resulting leaves in descision trees
contain either objects from the same decision class
or objects that are indiscernible given the information
about expert tags alone.

• We define the measure of validity of a clustering as
the average validity of clusters.

The pseudocode of the presented idea is presented below
in Algorithm 1.

Algorithm 1: SEE – Semantic Explorative Evaluation.

Input:
• C = {C[i, j] : i = 1, . . . , k and j = 1, . . . , n}: the

document–cluster assignment matrix.
• E = {E[i, j] : i = 1, . . . , k and j = 1, . . . ,m}: the

expert–cluster assignment matrix.
• L: a decision tree construction algorithm.

Output: m: the average mean depth of decision trees
describing clusters.

1 for j = 1, . . . , n do
2 Construct a decision table

Hj :=
[

E; [C1,j , . . . , Ck,j ]
T
]

// Hj is the decision table constructed

from the matrix E augmented with the

j-th column of matrix C at the end as

the decision variable.

3 Tj := L(Hj);
4 // Construct the decision tree Tj by

applying algorithm L on decision table

Hj.

5 mj = MeanDepth(Tj)
6 end

7 Return m = m1+...+mn

n
;

C. Semantic Explorative Evaluation: Example

In this Section we demonstrate the proposed evaluation
method (presented above in Algorithm 1) on the example
introduced in Table II.

This table summarizes a small text corpus consisting of
just 6 documents. Half of these documents, forming cluster
C2, concern vehicles: cars and trucks, whereas the other half
concerns cosmonauts and moon: these documents form cluster
C1. Cluster C1 is the easiest one to explain for the expert:
he associates either the concept ’cosmonaut’ or ’astronaut’
with each document from this cluster. Document d1 concerns
a lunar rover and is an interesting “outlier” that needs to be
explicitly excluded from cluster C3 by the expert: the branch
on attribute “moon” in decision tree describing cluster C3

explicitly addresses this case.

The constructed decision trees T1, T2, T3 for clusters
C1, C2, C3 are presented in Fig. 3, Fig. 5 and Fig. 4, re-
spectively. According to those trees, cluster C3 seems to be
“hardest” to explain by the expert. Hence the average depth or
weighted average depth of the decision tree T3 are also higher
than for T1.

Depths of decision trees describing clusters C1, C2, C3 are
1 2
3 , 2 and 2 1

4 , respectively. Thus SEE of the clustering equals
approximately 1.97.
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Doc. Expert Tag decision
Cosm. astron. moon car truck C1

d1 1 1 1 1
d2 1 1 1
d3 1 1
d4 1 1
d5 1
d6 1

cosmonaut?

astronaut?

¬C1

F

C1

T

F

C1

T

Fig. 3. The decision table H1 (above) and the decision tree describing cluster
C1 constructed from H1. Cluster C1 is the easiest for the expert to explain.

car?

cosmonaut?

¬C2

F

C2

T

F

moon?

¬C2

F

C2

T

T

Fig. 4. Cluster C2 is not easily describable in expert terms.

D. Randomization

The last problem we aim to address is that of comparing
different clusterings. With all evaluation methods, either re-
viewed or introduced in this article, we face the same issue
when we aim to compare different clusterings: we lack an ex-
planation why one clustering may be better than the other one.
In this section, we introduce a trick which allows us to isolate a
specific sub-problem solved by a clustering algorithm, to which
we can assign a measure of quality that is easily interpretable.

truck?

car?

¬C3

F

moon?

C3

F

¬C3

T

T

F

C3

T

Fig. 5. Cluster C3 does not contain document d1, which concerns a very
specific type of a car – a moon rover. This outlier forces the expert to provide
a longer explanation to explicitly “remove” this object.

In what follows, we will think of a clustering algorithm
as of a procedure that solves two sub-problems. For hard
clustering these are:

• Determining the structure of clusters, i.e. the number
of clusters and the number of documents belonging to
each cluster.

• The assignment of documents to clusters, while pre-
serving constraints on the structure.

For soft clustering, these two sub-problems are:

• Determining the structure of clusters is actually deter-
mining the number of clusters K as well as the joint
(rather than the marginal) distribution of the number
of documents in each cluster.

• Instead of assigning documents to clusters, an algo-
rithm assigns documents to each of the 2K possible
partitions.

In what follows, we will focus on measuring the quality
of a clustering algorithm w.r.t. the second sub-problem, while
ignoring the first sub-problem. The idea is to randomize
the assignment of documents to clusters while keeping the
structure of clusters fixed and calculate the value of m for
such randomized assignments so as to determine a meaningful
“basis” or benchmark for comparison. Each measure m can
thus be transformed into an m-quantile measure, which ba-
sically says how often a clustering algorithm outperforms a
random assignment, while solving the second sub-problem.

V. THE RESULTS OF EXPERIMENTS

The following experiments are the continuation of our
previous studies in [13], [11], [12], although in this work they
merely serve as an illustration of the discussed and introduced
measures.

A. Experiment Set-Up

We have applied the model-based semantic evaluation
measure introduced in this paper to study clusterings induced
by different document representations (lexical, semantic and
structural) and using different algorithms. The document repos-
itory in our study is a subset of PubMed Central Open Access
Subset[17].

TABLE VII. AN EXAMPLE OF TAGS ASSIGNED TO THE PAPER:
“PUBMED CENTRAL: THE GENBANK OF THE PUBLISHED LITERATURE.”

BY ROBERTS R. J. ([17])

heading subheading
Internet
MEDLINE economics
Periodicals as Topic economics
Publishing economics

The majority of documents in PubMed Central are tagged
by human experts using headings and (optionally) accom-
panying subheadings (qualifiers) from a MeSH controlled
vocabulary [20]. A single document is typically tagged by
10 to 18 heading-subheading pairs. The example of tagged
document is shown in Table VII
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Query

Filter

Extend
data

List of clusters
with documents

Visualization

Clustering
Service

Evaluation

Snippets,
document identifiers

Subset of documents
with MeSH tags
(for validation)

Search
Engine

Local repository
of document
metadata

Semantic
tagging

(for clustering)

Snippets,
document
metadata,

semantic information.

Fig. 6. Experiment diagram.

There are approximately 25000 subject headings and 83
subheadings. There is a rich structural information accompany-
ing headings: each heading is a node of (at least one) tree and is
accompanied by further information (e.g. allowable qualifiers,
annotation, etc.). Currently we do not use this information,
but in some experiments we use a hierarchy of qualifiers3

by exchanging a given qualifier by its (at most two) topmost
ancestors or roots.

TABLE VIII. THE NUMBERS OF POSSIBLE TAGS IN PUBMED CENTRAL

OPEN ACCESS SUBSET[17]

source possible
tags

expert tags assigned to exam-
ple document

headings ∼ 25000 Internet, MEDLINE, Periodicals
as Topic, Publishing

subheadings 83 economics
subheading
roots

23 organization & administration

The choice of expert tags determines how precisely we
wish to interpret expert opinion. In experiments that we
describe in this paper, we interpreted subheadings as the expert
tags.

The diagram of our experiments is shown in Figure 6. An
experiment path (from querying to search result clustering)
consists of three stages:

• Search and filter documents matching to a query.
Search result is a list of snippets and document iden-
tifiers. Usually more than 200 documents are returned
for a single query. The result set is then truncated
to the top 200 most relevant (in terms of TF-IDF)
documents.

• Extend representations of snippets and documents by
citations and/or semantically similar concepts from
MeSH ontology (these MeSH terms were automati-
cally assigned by an algorithm[19], whereas MeSH

3http://www.nlm.nih.gov/mesh/subhierarchy.html

subheadings used for evaluation were manually as-
signed by human experts).

• Cluster document search results.

In our experiments, we worked with three clustering algo-
rithms: K-Means[9], Lingo[14] and Hierarchical Clustering[4].

In order to perform evaluation (and choose parameters of
clustering algorithms) one needs a set of search queries that
reflect actual user usage patterns. We extracted a subset of
most frequent one-term queries from the daily log previously
investigated by Herskovic et al. in [5] and retrieved relevant
documents from PubMed Central Open Access Subset.

Roughly one fourth of these result sets was used for initial
fine-tuning of parameters, whereas the remaining 71 queries
were further used in evaluation.

B. Experiment results

We need to stress that we used subheadings as the source
of expert tags used for semantic evaluation. There are only 83
possible subheadings in MeSH vocabulary, hence the granular-
ity of information provided for evaluation is very limited. We
have not applied pruning to resulting decision trees (the goal
of algorithm Algorithm 1 is merely to provide a description,
not a model for inference), and the resulting decision trees are
somewhat deep, as can be seen from Figure 7.

Nevertheless, as we can see from Figure 8, the m-quantile
measure is usually below 0.5 (SEE-quantile value 0.5 corre-
sponds to a random document-to-cluster assignment). Further-
more, result sets for different queries visibly differ in how
“hard” they are to cluster: m-quantile measures of different
algorithms are significantly correlated. Figure 7 should not
be directly interpreted in this way due to different structure
of result sets corresponding to different queries (e.g. different
number of documents).
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Fig. 7. Average tree depth for different result sets and clustering algorithms.
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Fig. 8. SEE-quantile measure for different clusterings and queries.
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VI. CONCLUSIONS AND FUTURE PLANS

In this paper we have introduced a novel paradigm of
semantic evaluation. Unlike traditional approaches, which are
either measures counting pairs of objects or are variations
of information theoretic approaches, our proposed procedure
resembles the process of human perception, as it is based on a
model describing the clustering in terms of expert knowledge.
We proposed a specific implementation of this evaluation
measure (i.e. a choice of the underlying model structure
and optimization framework) and further demonstrated its
application to online results clustering evaluation problem. We
have observed that even if we only used information about
MeSH subheadings assigned to documents as the source of
information for evaluation, for most result sets in our exper-
iments clusterings performed better than random assignments
of documents to clusters. Furthermore, we have observed that
some result sets are inherently harder to cluster than others, and
the performance of analyzed clustering algorithms is usually
correlated.
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Ł. Skonieczny, H. Rybiński, and M. Niezgódka, editors, Intelligent Tools

for Building a Scientific Information Platform, pages 61–76. Springer-
Verlag New York, 2012.

[20] United States National Library of Medicine. Introduction to MeSH –
2011. Available online, 2011.

122 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013


