
Grammar-Driven Development of JSON Processing Applications

Antonio Sarasa-Cabezuelo, José-Luis Sierra

Fac. Informática. Universidad Complutense de Madrid. 28040 Madrid (Spain)

{asarasa,jlsierra}@fdi.ucm.es

Abstract—This paper describes how to use conventional

parser generation tools for the development of JSON pro-

cessing applications. According to the resulting gram-

mar-driven development approach, JSON processing ap-

plications are architected as syntax-directed translators.

Thus, the core part of these components can be described

in terms of translation schemata and can be automatically

generated by using suitable parser generators. It makes it

possible to specify critical parts of the application (those

interfacing with JSON documents) by using high-level,

grammar-oriented descriptions, as well as to promote the

separation of JSON processing concerns from other appli-

cation-specific aspects. In consequence, the production

and maintenance of JSON processing applications is facil-

itated (especially for applications involving JSON docu-

ments with intricate nested structures, as well as for ap-

plications in which JSON formats are exposed to frequent

changes and evolutions in their surface structures). This

paper illustrates the approach with JSON-P as the generic

JSON processing framework, with ANTLR as the parser

generation tool, and with a case study concerning the de-

velopment of a player for simple man-machine dialogs

shaped in terms of JSON documents.

Keywords—JSON, Grammar-Driven Development, Trans-

lation Schemata, Parser Generator, ANTLR, JSON-P

I. INTRODUCTION

SON (JavaScript Object Notation) [15][34] is a data
exchange format based on a subset of the JavaScript

programming language that in recent years has achieved
enormous relevance in industry. Indeed, many times
JSON results in a more natural mechanism for repre-
senting data structures than other alternative formats
(e.g., XML [25], which is more suitable for representing
hierarchical data). In fact, JSON makes it possible to
use collections of name-value pairs and ordered se-
quences of values, which mirrors the typical data in-
cluded in mainstream programming languages struc-
tures (records, objects or hash tables for collections of
name-value pairs, and arrays or lists for ordered se-
quences of values). This JSON feature makes it natural
to map JSON documents to data structures in a target
programming language. Still, since JSON is based on
text encoding, it is independent from particular pro-
gramming languages and binary formats; indeed, it can
be inspected and, with some effort, interpreted by hu-
mans, which facilitates development, debugging and
system interconnection tasks. Finally, JSON has also
found an important application area as a storage format
in non-relational database systems [12][24].

J

As any other data interchange enabling technology,
the success of any development based on JSON relies
on finding suitable ways of processing JSON docu-
ments in the resulting applications. For this purpose,
multiple technologies for processing JSON documents
have been proposed, which can be classified into two
broad categories:
• Specific processing technologies. With these arti-

facts, it is possible to carry out specific-purpose pro-

cessing tasks (e.g, querying and document transfor-

mation). Examples of these proposals are [5][10]

[18]. While these technologies are easy to use, due to

their specific and task-oriented nature, the main

drawback of this task-specific approach is the need

to find suitable specific technologies for each partic-

ular processing task.

• Generic processing technologies. These technologies

make it possible to achieve any processing task.

They are provided by libraries and frameworks for

JSON manipulation embedded as part of a gen-

eral-purpose programming language. Examples of

these technologies include those that perform mar-

shalling and unmarshalling between JSON docu-

ments and data structures [23], and frameworks for

parsing JSON documents [4][11][13][14][16][19]

[22][29]. In addition, although these technologies

can be used to address any processing task, they are

substantially more difficult than specific technolo-

gies, resulting in higher development and mainte-

nance efforts.

Regardless of their scope of applicability, the afore-
mentioned processing approaches are data-oriented in
nature, in the sense of conceiving JSON documents as
mere data containers, and JSON processing as the map-
ping of this data into data structures in the host lan-
guages. However, since JSON is a formal language, an
alternative, language-oriented, approach is possible.
This approach will be focused on computer language
processing aspects instead of a data marshaling /
un-marshaling perspective. In particular, it will be pos-
sible to characterize types of JSON documents as for-
mal grammars, and then to orchestrate the processing of
these documents according to a syntax-directed process-
ing model. Indeed, the characterization of JSON docu-
ments as formal grammars is consistent with schema
languages like JSON Schema [17]. Thus, the proposed
language-oriented (or, more specifically, grammar-ori-
ented) approach goes a step further, by conceiving pro-
cessing tasks of JSON documents being carried out by
syntax-directed language processors operating on these

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1545–1552

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1545

JSON documents. In turn, these language processors
can be developed by using dedicated compiler construc-
tion tools (parser generators like JavaCC [21], ANTLR
[27] or CUP [3], in particular). This approach exhibits
the advantages of the variety and stability of these tools,
the high level of abstraction to specify the processing
(indeed, the approach brings the advantages of task-spe-
cific strategies to general-purpose processing settings),
greater simplicity in application maintenance, and natu-
ralness for addressing efficient stream-based processing.

This paper describes this grammar-oriented ap-
proach to the development of JSON processing applica-
tions. The rest of the paper is structured as follows: Sec-
tion II provides a short introduction to JSON. Section
III outlines the grammar-oriented approach. Section IV
shows how the approach can be actually implemented
by combining a concrete JSON processing framework
(JSON-P) with a concrete parser generation tool
(ANTLR). Section V illustrates how the approach can
be applied to concrete scenarios with the development
of a JSON-based application for playing human-com-
puter dialogs. Finally, Section VI provides some conclu-
sions and lines of future work.

II. JSON

As indicated earlier, JSON is a lightweight
text-based notation for encoding data structures. Thus,
this notation rules how to encode data structures as text
entities, known as JSON documents. For this purpose,
JSON distinguishes among the following kind of data:

Figure 1. (a) A labelled directed graph, (b) a JSON encoding of the

graph in (a).

• Basic data: (double precision floating-point) num-

bers, strings (double-quoted sequences of Unicode

characters, with standard scape conventions), Bool-

eans (true and false), and the null value.

• Compound data: arrays (ordered sequences of

comma-separated values, delimited by [and]), and

objects (unordered, comma-separated, collections of

key-value pairs delimited by { and }; each

key-value pair is in the form key: value, where key

is, in turn, a string).

Using these somewhat simple conventions, JSON
makes it possible to represent data structures of arbi-
trary complexity (it is very similar to what happens with
s-expressions in LISP [1], or with XML markup). This
flexibility, together with its seamless integration with
JavaScript, explains the successful adoption of JSON as
an enabling technology for web development, where,
for instance, it has become a de facto standard for data
exchange in RESTFul service-oriented architec-
tures [30].

Figure 1 illustrates the use of JSON to represent a
labeled directed graph with a JSON document. The en-
coding conventions followed should be apparent from
the JSON document itself. It reveals another important
feature of JSON: since it is a text-based format, with a
little effort it can become understandable to developers.
Thus, it facilitates making a good amount of system in-
ternals accessible both for humans and machines in
terms of JSON documents.

III. THE GRAMMAR-DRIVEN APPROACH TO THE

DEVELOPMENT OF JSON APPLICATIONS

In addition to the textual encoding of data structures,
JSON documents can be conceived as sentences in a
formal language. Indeed, when JSON is used to encode
a particular kind of data structure (e.g., labeled directed
graphs, as in Figure 1), it is possible to distinguish a
subset of JSON documents that meaningfully represents
instances of such a data structure. This subset of docu-
ments, in turn, can be thought of as defining another
formal language: the language of the JSON documents
allowable in the particular application domain. Thus, it
is possible to apply to JSON similar principles to those
used in other analogous fields, like XML (i.e., distinc-
tion between well-formed and valid documents, and
characterization of document types with formal gram-
mars). In particular, the use of formal grammars to de-
scribe JSON documents in a given application domain
acquires full meaning. This paradigmatic bias (i.e., go-
ing from a data-oriented perspective to a linguistic,
grammar-oriented one) leads to the grammar-driven ap-
proach presented in this paper.

The grammar-driven approach can be derived by
first considering the structure of a standard syntax-di-
rected translator (Figure 2a). This structure comprises
two basic components:
• The scanner that is in charge of tokenizing input

sentences.

• The translator, a parser augmented with semantic

actions that, when acting on the token sequence pro-

duced by the scanner, is able: (i) to recognize this se-

quence of tokens as belonging to the input language,

or otherwise to reject it as invalid, (ii) to arrange it

according to its underlying syntactic structure, and,

(iii) to process it by firing the semantic actions.

1546 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

As is widely acknowledged by the programming
language community, this organization results in a pro-
cessing model especially suited for stream processing,
which, under reasonable assumptions, is able to behave
in an extremely efficient way [2]. In addition, both the
scanner and the translator can be automatically gener-
ated from high-level specifications (regular expres-
sion-based ones concerning the scanner; translation
schemata –i.e., context-free grammars augmented with
semantic actions, concerning the translator) [2]. Indeed,
generation tools like JavaCC, ANTLR or CUP greatly
facilitate this development task.

The next step is to adapt classic syntax-directed or-
ganization to JSON processing. For this purpose, the
scanner in Figure 2a can be replaced by a new compo-
nent: the JSON scanning wrapper (Figure 2b). When
operating on JSON documents, this component will
map the logical structure of these documents into se-
quences of tokens, as expected by a syntax-directed
translator. It is important to notice that the provision of
this component does not rely on the programming of a
new generic JSON processor. On the contrary, this com-
ponent can be meaningfully piggybacked on an existing
JSON processing framework (like JSON-simple [19] or
JSON-P [16]).

Once this replacement is accomplished, the rest of
the organization remains unchanged, as evidenced by
Figure 2b. In particular, it is still possible to specify
processing (this time of JSON documents) by using
high-level translation schemata, and to automatically
turn these specifications into efficient implementations
by using parser generation tools. Therefore, tools like
JavaCC, ANTLR and CUP take a new and unpredicted
role, as tools for developing efficient, stream-oriented,
JSON processing applications.

Thus, notice that this grammar-driven development
approach makes it possible to make up grammar-driven
production environments for JSON processing applica-
tions by combining a suitable parser generation tool
with a general purpose JSON processing framework.
The adaptation between the two components will be
performed by means of a JSON scanning wrapper,
which will be dependent on the particular parser genera-
tion and processing framework. Beyond this specific
component, the approach is nicely independent of the
particular parser generator and processing framework
chosen.

Concerning the use of this kind of grammar-oriented
environments in the actual development of JSON appli-
cations, it involves:
• Customizing the JSON scanning wrapper to tok-

enize the logical structure of the JSON documents

involved in the application. It can be readily done by

providing a mapping table associating a distinct to-

ken with: (i) each key in each object, (ii) the object

opening and closing marks (i.e., { and }), (iii) each

possible basic value in the document (i.e., number,

string, true and false). The other structure in the doc-

ument (e.g., ordered sequences in lists) can be char-

acterized in purely grammatical terms. For instance,

Figure 3 despicts the mapping table for the example

of labelled graphs in section II.

Figure 3. Mapping table for documents like those of Figure 1.

• Characterizing the grammatical structure of the

source JSON documents. It can be done by using

standard BNF or EBNF notation, augmented with

some facilities for describing the structure of objects.

Figure 2. (a) Structure of a Syntax-Directed Translator and the automationaccomplish JSONof its development; (b) modification of the structure

despicted in (a) to processing

Figure 4. (a) Structure of graph-description JSON documents, (b)

description of the structure of an arc object using standard EBNF notation.

ANTONIO SARASA-CABEZUELO, JOSÉ-LUIS SIERRA: GRAMMAR-DRIVEN DEVELOPMENT OF JSON PROCESSING APPLICATIONS 1547

In particular, we propose to describe objects by ex-

pressions in the form {k1 m1: V1, …, kn mn: Vn}, where

each ki is a distinct key name, each Vi is a EBNF ex-

pression characterizing the structure of the allowable

values for ki, and each mi is a modifier controlling

the ocurrence of key-value pairs of the kind ki:v in

actual documents. In this expression, the order of ap-

pearance of the key-value pairs does not matter. In

addition, key-value pairs in the form ki: v must occur

(i) exactly one time if mi is omitted, (ii) zero or one

time if mi is set to ? , (iii) zero or more times if mi is

set to *, and (iv) one or more times if mi is set to +.

For instance, Figure 4a characterizes the grammati-

cal structure of the documents involved in the graph

example of the previous section using standard

EBNF augmented with this convention.

• Encoding the grammatical structure in the parser

generation tool. While in principle it could be possi-

ble to translate such a structure to pure EBNF (and

thus, to pure BNF) notation(s), the lack of order of

key-value pairs in objects can make this direct ap-

proach cumbersome, since it could involve enumer-

ating all the possible permutations of key-value se-

quences (see Figure 4b). Thus, it is possible to use

additional semantic facilities in the generator to fa-

cilitate such an encoding (e.g., validating semantic

actions, semantic predicates …)

• Augmenting the grammar with semantic contexts

and semantic actions in order to characterize the pro-

cessing task as a syntax-directed translation process.

The result is a translation scheme, which will be de-

pendent on the parser generator adopted.

• Providing the additional machinery necessary to

complete the processing application. Depending on

the kind of application, it could include data visual-

ization facilities, database support, a domain model

to be instantiated as result of processing the JSON

document, etc. In any case, it is interesting to pro-

vide a suitable façade in terms of which of the se-

mantic actions in the translation scheme can be writ-

ten. This façade will be called a semantic module.

• Generating the JSON processing component from its

specification as a translation scheme. For this pur-

pose, the parser generator is used.

• Gluing it all together in a suitable main program able

to launch the application itself.

It is worthwhile to notice that, as a consequence of
this grammar-oriented approach, applications are split
into two well-differentiated layers:
• A linguistic layer, which is declaratively described as

a translation scheme expressed in the specification

language of the parser generator.

• An application logic layer, which is given in terms

of conventional software components interfaced by

the semantic module.

It leads to an interesting division of labor among de-
velopers specialized in JSON processing using formal
grammars, and more conventional developers special-
ized in the development of more conventional applica-
tion / business logics. The linguistic layer takes care of
the orchestration of conventional application logic com-
ponents, each of which can largely be provided in isola-
tion from the others. In turn, this orchestration is di-
rected by the grammatical structure that underlies the

Figure 5. (a) JSONScannerWrapper and its relationships with JSON-P and ANTLR, (b) the TokenMapper interface, (c) excerpt of

nextToken in JSONScannerWrapper

1548 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

JSON documents, and it can be described and main-
tained at a high level, using declarative, grammar-based,
specifications, instead of being expressed in a more
conventional general-purpose programming language.

IV. GRAMMAR-DRIVEN DEVELOPMENT WITH JSON-P

AND ANTLR

In this section we show how to enable the gram-
mar-driven approach by combining JSON-P and
ANTLR:
• JSON-P (Java API for JSON Processing) is a gen-

eral-purpose JSON processing framework for Java

[16]. It defines an API for mapping JSON documents

into tree-like representations (the equivalent to DOM

in the XML world), and another API to process

JSON documents in a streaming fashion.

• ANTLR [27] is a multi-language parser generation

tool, which is able to generate recursive descent

parsers that combine many of the more recent pars-

ing tendencies: the use of prediction automata for

unlimited lookahead (achieved by the LL(*) parsing

method), the use of semantic predicates, and the use

of backtracking and tabulation to mimic packrat

parsing [8] (see [28] for a more in-depth description

of ANTLR internals). This combination of parsing

technologies, together with their support for multiple

implementation languages (among them, Java)

makes this tool one of the more widely used world-

wide.

Concerning JSON-P, this combination uses its facili-
ties for JSON streaming processing. In particular,
JSON-P provides a pull API similar to StAX in the
XML world, which is especially well suited for its com-
bination with ANTLR-generated parsers, since it can
naturally work as a scanner for such a parser. In this
way, the JSON Scanning Wrapper in this combination
(see Figure 5a):
• Encloses a JSONParser instance (i.e., an instance

of the pull streaming processing artifact provided by

JSON-P)

• Can be customized by an instance of a suitable To-

kenMapper implementation, which actually char-

acterizes the mapping tables (Figure 5b)

• Extends the ANTLR Lexer class. In particular, it

implements the nextToken method to return

ANTLR CommonToken instances representing the

tokens associated with the JSON logical elements.

Figure 5c shows an excerpt of this method in our

combination.

Figure 6. ANTLR encoding of the rule for arc in Figure 4a.

In this way, in the resulting environment:
• The customization of the JSON Scanning Wrapper

involves: (i) providing a suitable implementation of

the TokenMapper interface (each method in this

interface determines how to map relevant JSON ele-

ments into types for ANTLR tokens), and (ii) spe-

cializing JSONScannerWrapper to use such an

implementation as a customization table.

• The encoding of the grammatical structure can take

advantage of ANLTR validating semantic predicates

to simplify the description of object expressions in

the augmented EBNF notation. Indeed, {k1 m1: V1,

…, kn mn: Vn} is represented by OC ((vp1 K1 V1 a1) |

… | (vpn Kn Vn an))* CC vf where: (i) Ki is the type of

token corresponding to ki, (ii) ai is a semantic predi-

cate registering the number of times that ki has oc-

curred, (iii) vpi is a semantic predicate that validates

whether Ki can occur, (iv) vf is a semantic predicate

validating whether all the mandatory key-value pairs

have appeared, and (v) OC and CC are respectively

the object opening and closing tokens. Figure 6 pro-

Figure 7. (a) Dialog semantic model;(b) Snapshot for the Dialog player.

ANTONIO SARASA-CABEZUELO, JOSÉ-LUIS SIERRA: GRAMMAR-DRIVEN DEVELOPMENT OF JSON PROCESSING APPLICATIONS 1549

vides an example concerning the EBNF structure

provided in Figure 4a.

• Then, additional semantic context and semantic ac-

tions can be added to the resulting ANLTR grammar

to configure the specification of the JSON process-

ing component as a translation scheme. Once this

translation scheme is processed with the ANTLR

tool to yield the Java implementation, the corre-

sponding Lexer class must be replaced by the cus-

tomization of the JSON Processing Wrapper, in or-

der to make the parser actually operate on the logical

structure of the JSON documents.

V. CASE STUDY: GRAMMAR-DRIVEN DEVELOPMENT

OF A JSON-CUSTOMIZABLE INTERACTIVE APPLICATION

This section describes how we have applied the
grammar-driven development model defined in the pre-
vious sections to the implementation of an interactive
application oriented to play dialogs between the user
and the computer1. These dialogs can be described using
JSON documents. Subsection V.A describes how the in-
teractive application behaves and how the dialog docu-
ments are structured. Then, subsection V.B details the
grammar-driven development of this application.

A. The dialog player

The dialogs played by our application are based on

the Socratic Tutorials developed by Prof. Alfred Bork’s

team during the eighties of the past century [6]. They

obey the semantic model in Figure 7a. Thus, when

playing a dialog (Figure 7b):

• The application proffers a speech. It is a chunk of

text that can be read by the user.

• Then it displays a repertory of possible interactions

and lets the user select one of them.

• When the user selects the interaction, the application

gives him/her an associated feedback.

• Finally, it either continues with other speeches or

ends the execution.

The application can be customized with dialogs

described as JSON documents. Indeed, these documents

are a possible concrete syntax for the semantic model

depicted in Figure 7a. In this way:

• Dialogs are represented by objects with a “Dialog”

key. The value of this key is a sequence of speeches.

• Each speech is, in turn, represented by an object that

includes: (i) a mandatory “idSpeech” key, whose

value identifies the speech in the JSON document

(this value will be used for referencing the speech

from other places in the document), (ii) an optional

“isInitial” key, whose value, when true, indi-

cates the speech starts the dialog, (iii) a mandatory

“utterance” field that includes the text to be

proffered by the machine, and (iv) an optional “in-

teractions” field containing a sequence with all

1It is actually a simplification of the real system in order to fit the

space constraints of the paper. The actual system is closer to that

described in [33]

the possible interactions (if a speech without interac-

tions is reached, the player ends the execution).

• Finally, interactions are represented by objects in-

cluding: (i) a mandatory “reaction” key repre-

senting the actual text of the interaction, (ii) a

mandatory “feedback” key representing the text

of the feedback, and (iii) a mandatory

“nextSpeech” representing the speech that con-

tinues the dialog; its value can be either another

speech description, or the id of other speech in the

dialog.

Figure 8 shows an excerpt of JSON document

describing a dialog.

B. Grammar-Driven Development

The operation of the dialog player described in the

previous subsection is as follows:

• It processes the input JSON document in order to in-

stantiate the semantic model in Figure 7a.

• Then it plays the dialog by a direct interpretation of

the semantic model instance.

While the interpretation stage is straightforward
once the semantic model has been instantiated, the in-
stantiation process is considerably more cumbersome,
due in part to the changing and evolving nature of the
concrete JSON encoding. Thus, the player can be mean-
ingfully architected according to the grammar-driven
approach as follows:
• The instantiation of the semantic model is developed

in grammatical terms, using JSON-P and ANTLR.

• The semantic module is implemented as a façade

class providing instantiation operations as methods,

as well as a couple of tables required during the in-

stantiation process: one table mapping ids into

Speech instances, and another table mapping ids

into Interation instances whose next speeches

are those associated to such ids.

• The semantic model itself, along with the player

shell, constitute the application-specific logic.

Figure 8. Excerpt of a Dialog Description JSON Document.

1550 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

• The main gluing program performs the instantiation,

and then activates the player with the resulting se-

mantic model instance.

Thus, the organization is very similar to that of

applications built using DSL construction frameworks

such as Eclipse XText [7] (in this case, input

descriptions are encoded in JSON instead on a

domain-specific syntax, however).

Concerning development details, Figure 9a shows

an excerpt of the token mapping table. As indicated in

Section IV, it involves implementing the

TokenMapper interface, as made apparent in Figure

9a. Notice that, in this implementation, actual token

codes are taken from the DialogParser class. This

will be the parser class generated by ANTLR.

Therefore, token names must be kept consistent

throughout this mapping table and the subsequent

ANTLR grammar.

Once the mapping table is available, it is possible to

customize the JSON Scanner Wrapper. As indicated in

Section IV it involves to subclass

JSONScannerWrapper in order to install an

instance of the mapping table provided (Figure 9b).

The name given to this subclass must be consistent

with the name of the lexer to be generated by ANTLR.

Next step, the most relevant one, is to characterize

the syntactic structure of the JSON documents, then to

encode this structure as an ANTLR grammar following

the patterns given in Section IV, and finally to augment

this grammar with suitable semantic actions. Figure 9c

shows the resulting ANTLR translation scheme.

Then the semantic class that implements the

semantic module can be provided (Figure 9d). In this

class, in addition to creating a new speech, the

newSpeech method back-patches all the interactions

referring to such a speech, which is consistent with the

usage of the operations in the ANTLR grammar.

Next step is to generate all the parsing code from

the ANTLR grammar, and to replace the

DialogLexer generated by that shown in Figure 9b.

Finally, the application-specific logic and the main

launching program must be provided, which constitutes

a routine programming task.

Figure 9. (a) Implementation of the mapping table for the Dialog case-study; (b) specialization of the JSONScannerWrapper ; (c) ANTLR grammar

for the processing of JSON Dialog Documents; (d) semantic module.

ANTONIO SARASA-CABEZUELO, JOSÉ-LUIS SIERRA: GRAMMAR-DRIVEN DEVELOPMENT OF JSON PROCESSING APPLICATIONS 1551

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how to combine
generic, stream-oriented, JSON processing frameworks
with parser generators in order to facilitate the develop-
ment of JSON processing applications. The resulting
approach is aware of the grammatical nature of JSON
documents and enables the specification of JSON pro-
cessing tasks at a higher and more declarative level than
that provided by general-purpose programming lan-
guages. Contrary to proposals like [9], formal grammars
in our proposal operate on the logical structure of JSON
documents instead of on the raw text of these docu-
ments. In this sense, our proposal is aligned with our
previous works in XML processing [31][32], in which
we proposed similar grammar-driven models for pro-
cessing XML using grammars and parser generators.

Currently we are working on the implementation of
an environment for providing more assistance to our
grammar-driven development process model. We also
are planning to use attribute grammars [20][26] as spec-
ification mechanisms of JSON processing tasks, paral-
leling our previous work in the XML world [31]. Fi-
nally, and although our firsts tests with developers are
satisfactory, we plan to carry out a more systematic
comparative study of our approach with more conven-
tional approaches to JSON processing.

ACKNOWLEDGMENT

This work was partially supported by the project

grant TIN2010-21288-C02-01.

REFERENCES

[1] Abelson, H., Sussman, G.J. (1993). Structure and Interpretation

of Computer Programs. MIT Press

[2] Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D. Compilers:

principles, techniques and tools (2nd ed.). Addison-Wesley.

2007

[3] Appel, A.W. Modern Compiler Implementation in Java (2002).

Cambridge University Press

[4] Berg, J. (2012). Utvärdering av bibliotek för generering och

"parsning" av JSON. Degree Dissertation. KTH

[5] Beyer, K. S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh,

M., Kanne, C. C., ... & Shekita, E. J. (2011). Jaql: A scripting

language for large scale semistructured data analysis.

In Proceedings of 37th VLDB Conference.

[6] Bork, A. 1985. Personal Computers for Education. New York,

NY, USA: Harper & Row Publishers, Inc.

[7] Eysholdt, M., Behrens, H (2010). Xtext: implement your

language faster than the quick and dirty way. ACM

international conference on Object Oriented Programming

Systems Languages and Applications Companion (SPLASH

'10), 307-309.

[8] Ford, B (2002). Packrat Parsing : Simple, Powerful, Lazy,

Linear Time, Functional Pearl. 17th ACM SIGPLAN

international conference on Functional programming, pp.

36-47.

[9] Gerasika, A (2011). How to convert JSON to XML using

ANTLR. http://www.gerixsoft.com/blog/xslt/json2xml2 (last

access: April 11, 2013)

[10] Goessner, S (2007). JSONPath – XPath for JSON.

http://goessner.net/articles/JsonPath/ (last access : April 11,

2013)

[11] Gson. Google-gson - A Java library to convert JSON to Java

objects and vice-versa. https://code.google.com/p/google-gson/

(last access: April 11, 2013)

[12] Han, J., Haihong, E., Le, G., & Du, J. (2011, October). Survey

on NoSQL database. 6th international conference on Pervasive

computing and applications (ICPCA’11), pp. 363-366.

[13] iJSON. https://pypi.python.org/pypi/ijson/ (last access: April

11, 2013)

[14] Jackson. http://jackson.codehaus.org/ (last access: April 11,

2013)

[15] JSON. http://www.json.org/ (last access: April 11, 2013)

[16] JSON-P. Java API for JSON Processing (JSON-P).

http://json-processing-spec.java.net/ (last access: April 11,

2013)

[17] JSON-Schema. http://json-schema.org/ (last access: April 11,

2013)

[18] JSONSelect . http://jsonselect.org/ (last access : April 11, 2013)

[19] Json-simple. Json-simple – A simple Java Toolkit for JSON.

https://code.google.com/p/json-simple/ (last access: April 11,

2013)

[20] Knuth, D. E. Semantics of Context-free Languages. Mathema-

tical System Theory 2(2), 127–145. 1968.

[21] Kodaganallur, V (2004). Incorporating language processing

into Java applications: a JavaCC tutorial. IEEE Software 21(4),

70-77.

[22] Litjson. http://lbv.github.io/litjson/ (last access : April 11, 2013)

[23] Maeda, K. (2012). Performance evaluation of object

serialization libraries in XML, JSON and binary formats. 2nd

Conference on Digital Information and Communication

Technology and its Applications (DICTAP), pp. 177-182.

[24] Membrey, P., Plugge, E., & Hawkins, T. (2010). The definitive

guide to MongoDB: the noSQL database for cloud and desktop

computing. Apress.

[25] Nurseitov, N., Paulson, M., Reynolds, R., & Izurieta, C. (2009).

Comparison of JSON and XML data interchange formats: A

case study. Computer Applications in Industry and Engineering

(CAINE), 157-162.

[26] Paakki, J. Attribute Grammar Paradigms – A High-Level

Methodology in Language Implementation. ACM Computing

Surveys, 27, 2, 196-255. 1995

[27] Parr, T (2007). The Definitive ANTLR Reference: Building

Domain-Specific Languages. Pragmatic Bookshelf.

[28] Parr, T., Fisher, K (2011). LL(*): the Foundation of the

ANTLR Parser Generator. 32nd ACM SIGPLAN Conference

on Programming Language Design and Implementation

(PLDI’11), pp. 425-436.

[29] Rapidjson. Rapidjson - A fast JSON parser/generator for C++

with both SAX/DOM style API. https://code.go ogle.com/

p/rapidjson/ (last access: April 11, 2013)

[30] Richardson, L., & Ruby, S. (2007). RESTful Web Services.

O’Reilly.

[31] Sarasa-Cabezuelo, A., Sierra, J.L. (2013). The grammatical

approach: A syntax-directed declarative specification method

for XML processing tasks. Comp. Stand. & Interfaces 35(1),

114-131

[32] Sarasa-Cabezuelo, A., Temprado-Battad, B., Rodrí-

guez-Cerezo, D., Sierra, J. L. (2012). Building XML-driven

application generators with compiler construction

tools. Computer Science and Information Systems, 9(2),

485-504.

[33] Sierra, J.L., Fernández-Valmayor, A., Fernández-Manjón, B

(2008). From Documents to Applications Using Markup

Languages. IEEE Software, 25(2), 68-76

[34] Zakas, Z. N (2012). Professional JavaScript for Web

Developers 3rd Edition. Wrox Press.

1552 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

