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Nyı́regyháza, Hungary

Email: csajbok.zoltan@foh.unideb.hu

Tamás Mihálydeák
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Abstract—In partial approximation spaces with Pawlakian
approximation pairs, three partial membership functions are
generated. These fuzzy functions rely on the lower and upper
approximations of a set. They provide special type of fuzziness on
the universe: all of them are partial functions and derived from
the observed data relatively to available knowledge about the
objects of the universe. With the help of these functions, three new
approximation pairs are generated and so new approximation
spaces appear effectively. Using not Pawlakian approximation
pairs gives a special insight into the nature of general set
approximations, and so new models of necessity and possibility
can be given.

I. INTRODUCTION

S
ET approximations were invented by Pawlak in the early

1980’s which is known as rough set theory [1], [2],

[3]. Its general scheme may be outlined as follows. Let a

beforehand predefined family of subsets of the universe of

objects be given. It is called the base system from which

definable sets may be derived. Next, so-called lower and upper

approximations can be formed with the help of definable sets

via beforehand fixed rules in order to approximate any sets in

the universe.

The starting point of rough set theory is a nonempty finite

set U of objects and an equivalence relation ε on U [3]. The

equivalence classes are called ε-elementary sets.

Definable sets are any unions of ε-elementary sets. Any

set S ⊆ U can be naturally approximated by the lower and

upper ε-approximations of S which are denoted by ε and ε,

respectively. The former is the union of all ε-elementary sets

which are the subsets of S, whereas the latter is the union

of all ε-elementary sets which have a nonempty intersection

with S.

A number of studies deal with the relationship between

rough set theory and fuzzy set theory [4], [5], [6], [7], [8].

A detailed discussion of their connections and differences can

be found, e.g., in [9], [10], [11].

There are many possibilities to establish a relationship

between them [12], [13], [14], [15].

Just until now it has been generally accepted that the

two theories are related but distinct and complementary to

each other. Recently, however, Chakraborty has proposed a

common ground relying on the classical rough membership

function [16].

The classical rough membership function quantifies the

degree of the relative overlap between a set S ⊆ U and an

ε-elementary set [10].1 As usual, it is defined by

µε
S(u) =

|[u]ε ∩ S|

|[u]ε|
,

where | · | is the cardinality of a set, and [u]ε denotes the

ε-elementary set to which a u ∈ U belongs.

Hence, we just obtain a fuzzy membership function µε
S :

U → [0, 1] with

µε
S(u) = 1 if and only if [u]ε ⊆ S;

µε
S(u) > 0 if and only if [u]ε ∩ S 6= ∅;

µε
S(u) = 0 if and only if [u]ε ∩ S = ∅.

Thus, the rough membership function can be seen as a

fuzzyfication of rough approximation, and µε
S is a fuzzy subset

of U induced by S.

One of the main features of µε
S is that it relies on the system

of base sets, the system of equivalence classes. In other words,

rough membership functions are generated by our knowledge

(appearing, e.g., in an information system). This is a distinctive

feature of rough membership functions in contrast with fuzzy

membership functions [18]. Furthermore, following from the

definition of µε
S , there are many constraints on the values of

rough membership functions [12], [20], [21].

An important observation is that the Pawlakian lower and

upper approximation pair can be reconstructed by employing

the rough membership function. The well-known formulae are

the following:

ε(S) = {u ∈ U | µε
S(u) = 1},

ε(S) = {u ∈ U | µε
S(u) > 0}.

In the terminology of fuzzy set theory, the lower and upper

approximations ε and ε are the core and the support of the

fuzzy set µε
S , respectively.

Nevertheless, Pawlakian set approximation has some very

strong theoretical requirements:

• the system of base sets are total, i.e., their union gives

back the universe;

• base sets are pairwise disjoint.

1Note that the notion of a classical rough membership function was
explicitly introduced by Pawlak and Skowron in [10]. Nevertheless, it had been
used and studied earlier by many authors. For more historical remarks, see
[17]. Moreover, such a coefficient has already been considered by Łukasiewicz
in 1913 [18], [19].
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In many cases, however, our knowledge does not fulfill these

requirements:

• The partition shows the limit of our knowledge about the

objects of the universe in the sense that two objects are

indistinguishable if they belong to the same base set. On

the other hand, it makes explicit our knowledge because

we do distinguish two objects belonging to different base

sets. Giving up the requirement of the pairwise disjoint

property, the so–called covering–based rough set theory

is obtained [22], [23], [24], [25], [26], [27].

• The universe may involve some objects without any

information, i.e., base sets are not total. For instance,

information systems often contain NULL values. In the

papers [28], [29], the authors give a very general system

of the set approximation giving up both the pairwise

disjoint property and the covering of the universe. It is

called the (general) partial approximation framework.

In this paper, the above procedure is transferred to a partial

set approximation context:

1) First, in a partial approximation space with a Pawlakian

approximation pair, three partial membership functions

are defined in the style of the classical rough member-

ship function.

2) Then, three approximation pairs are generated with the

help of partial membership functions. The question

is whether these approximation pairs meet (at least)

the minimum requirements of approximation pairs, i.e.,

these pairs actually form approximation pairs in partial

approximation spaces.

The rest of the paper consists of three parts. In Section

2, the basic notions and notations of partial approximation

spaces are summarized. In Section 3, three approximation pairs

are generated as outlined above, and it is shown that they

meet the minimum requirements prescribed for approximation

pairs in partial approximation spaces. Section 4 consist of

some remarks on the logical application of partial membership

functions.

II. PARTIAL APPROXIMATION OF SETS

A. Basic notions and notations

Let U be a nonempty finite set and B ⊆ 2U be a nonempty

family of nonempty subsets of U . U is the universe of objects,

B is the base system and its members are B-sets or base sets

[30], [29], [31], [32], [33].

If B ∈ B is a union of a family of sets B
′ ⊆ B \ {B}, B

is called reducible in B, otherwise B is irreducible in B.

A base system B is single–layered if every base set is

irreducible, and one–layered if the base sets are pairwise

disjoint. Of course, a one–layered base system is single–

layered. From any base systems, single–layered and one–

layered base systems can be constructed [31].

By formulae, a base system B is single–layered, if

∀B ∈ B ∀B′ ⊆ B \ {B} (B ∩
⋃

B
′ 6= B),

and one–layered, if

∀B ∈ B ∀B′ ⊆ B \ {B} (B ∩
⋃

B
′ = ∅).

Informally, a base system B is single–layered if every

nonempty union of base sets has at least one member which

belongs to exactly one base set, whereas B is one–layered if

all members of every nonempty union of base sets belong to

exactly one base set.

During the approximation process, a family of sets DB ⊆
2U are applied. In the most general case, it is supposed only

just that

1) DB is an extension of B, i.e., B ⊆ DB;

2) ∅ ∈ DB.

Let l, u : 2U → 2U be an ordered pair of mappings and

denoted it by 〈l, u〉.
The intended meaning of l and u is to express the lower

and upper approximations of any subsets of U . Hence, it is

called an approximation pair. The next definition specifies its

minimum requirements.

Definition 1. An approximation pair 〈l, u〉 is a weak approx-

imation pair if

(C0) l(2U ), u(2U ) ⊆ DB (definability of l and u);

(C1) l and u are monotone, i.e. for all S1, S2 ∈ 2U if S1 ⊆ S2

then l(S1) ⊆ l(S2) and u(S1) ⊆ u(S2) (monotonicity of

l and u);

(C2) u(∅) = ∅ (normality of u);

(C3) if S ⊆ U , then l(S) ⊆ u(S) (weak approximation

property).

Clearly, l and u are many-to-one and u(2U ) 6= l(2U ) ⊆ DB

in general.

Informally, definable sets represent our available knowledge

about the the objects of the universe. They can be though of as

tools, in more detail, base sets as primary tools and definable

sets as derived tools. An approximation pair prescribes the

utilization of tools in approximation processes.

It is reasonable that base sets as primary tools are exactly

approximated from “lower side”. In classical rough set theory,

however, definable sets are exactly approximated from “lower

side” as well.

Definition 2. A weak approximation pair 〈l, u〉 is

(C4) granular if B ∈ B,

then l(B) = B (l is granular),

(C5) standard if D ∈ DB, then l(D) = D (l is standard).

Of course, if l is standard, the granularity of l also holds.

The following proposition summarizes some simple conse-

quences of the minimum requirements (C0)–(C3) in Definition

1 and the conditions (C4)–(C5) in Definition 2.

Proposition 1. Let 〈l, u〉 be a weak approximation

pair on U .

1) l(∅) = ∅ (normality of l).

2) l is idempotent, i.e., l(l(S)) = l(S) for all S ∈ 2U , and

l(2U ) = DB if and only if l is standard.
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3) a) If l(S) = S, then S ∈ DB.

b) Let l be standard. Then, l(S) = S if and only if

S ∈ DB.

4) a) If l(U) =
⋃

DB, then
⋃

DB ∈ DB.

b) Let l be standard. Then, l(U) =
⋃

DB if and only

if
⋃

DB ∈ DB.

The next definition deals with the question how lower and

upper approximations relate to the approximated sets.

Definition 3. A weak approximation pair 〈l, u〉 is

(C6) lower semi–strong if l(S) ⊆ S for all S ∈ 2U (i.e., l is

contractive);

(C7) upper semi–strong if S ⊆ u(S) for all S ∈ 2U (i.e., u

is extensive);

(C8) strong if it is lower and upper semi–strong, i.e., each

subset S ∈ 2U is bounded by l(S) and u(S): l(S) ⊆
S ⊆ u(S).

Proposition 2.

1) If 〈l, u〉 is an upper semi–strong approximation pair on

U , then u(U) = U (co–normality of u).

2) If 〈l, u〉 is an upper semi–strong approximation pair on

U and l is standard, then l(U) = U (co–normality of l).

Based on the foregoing, a general set–theoretic partial

approximation framework can be defined as follows.

Definition 4. The ordered 5–tuple GAS(U) = 〈U,B,DB, l, u〉
whose components are defined as before, is called a (general)

approximation space.

Definition 5. GAS(U) is a (general) total approximation

space or simply total, if B covers the universe, i.e.,
⋃

B = U ,

otherwise GAS(U) is a (general) partial approximation space

or simply partial.

Definition 6. GAS(U) relies on Pawlakian base, if B is a

partition of U .

Corollary 1. GAS(U) relies on Pawlakian base if and only if

its base system is total and one–layered.

Definition 7. The general approximation space GAS(U) is

a weak/standard/lower semi–strong/upper semi–strong/strong

approximation space, if the approximation pair 〈l, u〉 is weak/

standard/lower semi–strong/upper semi–strong/strong, respec-

tively.

B. Exactness in general approximation spaces

In classical rough set theory, the notions of “crisp” and

“definable” are inherently one and the same. In general ap-

proximation spaces, however, they can be differentiated.

Definition 8. Let GAS(U) be a weak approximation space

and S ⊆ U .

S is crisp, if l(S) = u(S), otherwise

S is rough.

If a set is crisp, its lower and upper approximations coincide

with the approximated set only in strong approximation spaces.

Furthermore, a crisp set is necessarily definable only in strong

approximation spaces as well. However, it can easily be shown

that a definable set is not necessarily crisp even in strong

approximation spaces ([33], Example 8). Consequently, in

general approximations spaces, the notions of “crisp” and

“definability” are generally not synonymous to each other.

C. General approximation spaces with Pawlakian approxima-

tion pairs

Definition 9. GAS(U) = 〈U,B,DB, l, u〉 is a approximation

space with a Pawlakian approximation pair, if

1) U is a finite nonempty set;

2) DB is strict finite union type, i.e., it is given by the

following inductive definition:

a) ∅ ∈ DB;

b) B ⊆ DB;

c) if B1, B2 ∈ B, then B1 ∪B2 ∈ DB;

3) 〈l, u〉 is a Pawlakian approximation pair, i.e.,

a) l(S) =
⋃

L(S), where

L(S) = {B ∈ B | B ⊆ S};

b) u(S) =
⋃

U(S), where

U(S) = {B ∈ B | B ∩ S 6= ∅}.

Proposition 3. Let GAS(U) be an approximation space with

a Pawlakian approximation pair.

1) GAS(U) is a standard lower semi–strong approximation

space.

2) GAS(U) is an upper semi–strong approximation space

if and only if B covers the universe.

Definition 10. Let GAS(U) be an approximation space with

a Pawlakian approximation pair and S ⊆ U . Then

b(S) =
⋃

(U(S) \ L(S))

is called the boundary of S.

Clearly, b(S) ⊆ u(S) for all S ⊆ U .

Corollary 2. Let GAS(U) be an approximation space with a

Pawlakian approximation pair.

1) In general, u(S) \ l(S) ⊆ b(S) for any S ⊆ U .

2) If S ⊆ U ,

b(S) = u(S) \ l(S) ⇔ b(S) ∩ l(S) = ∅.

Proof:

1) u ∈ u(S) \ l(S)

⇔ u ∈
⋃

U(S) ∧ u 6∈
⋃

L(S)

⇔ ∃B ∈ B (u ∈ B ∧B ∈ U(S) ∧B 6∈ L(S))

⇔ ∃B ∈ B (u ∈ B ∧B ∈ U(S) \ L(S))

⇒ u ∈
⋃

(U(S) \ L(S)) = b(S)

2) (⇒) b(S) ∩ l(S) = (u(S) \ l(S)) ∩ l(S) = ∅.

(⇐) b(S)
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= (b(S) ∩ l(S)) ∪ (b(S) ∩ (l(S))c)

= b(S) ∩ (l(S))c

⊆ u(S) ∩ (l(S))c = u(S) \ l(S),

which are compared to (1), we get

b(S) = u(S) \ l(S).

III. FUZZINESS IN PARTIAL APPROXIMATION SPACES WITH

PAWLAKIAN APPROXIMATION PAIRS

Let GAS(U) = 〈U,B,DB, l, u〉 be a partial approximation

space with a Pawlakian approximation pair. In other words,

GAS(U) is an approximation space with a Pawlakian approx-

imation pair and
⋃

B ⊆ U .

A. Partial membership functions

If u ∈ U , let NB(u) = {B ∈ B | u ∈ B}. The family of

sets NB(u) may be called the (reflexive) neighborhood system

of u with respect to the base system B [34], and its members

are called the neighborhoods of u.

Three different partial membership functions are defined in

GAS(U) as follows [32], [35], [36], [38], [20].

Definition 11. Let GAS(U) = 〈U,B,DB, l, u〉 be a partial

approximation space with a Pawlakian approximation pair and

S ⊆ U .

µo
S , µ

a
S , µ

p
S : U → [0, 1] are optimistic/average/pessimistic

partial membership functions, respectively, if

µo
S(u) =

{

max
{

|B∩S|
|B| | B ∈ NB(u)

}

, if u ∈
⋃

B;

undefined, otherwise;

µa
S(u) =

{

avg
{

|B∩S|
|B| | B ∈ NB(u)

}

, if u ∈
⋃

B;

undefined, otherwise;

µ
p
S(u) =

{

min
{

|B∩S|
|B| | B ∈ NB(u)

}

, if u ∈
⋃

B;

undefined, otherwise.

Remark 1. For the sake of brevity, we will use the symbol

“*” in order to denote a member of {o, a, p}.

In Definition 11, each partial membership function µ∗
S forms

a special type of fuzziness on U which is induced by the base

system B, i.e., our available knowledge (primary tools) about

the objects of the universe.

An important feature of each µ∗
S is that it is a partial

function. Clearly, if
⋃

B $ U , µ∗
S(u) is undefinable for all

u ∈ U \
⋃

B. In other words, dom µ∗
S =

⋃

B $ U .2

The following statements can easily be checked.

Proposition 4. Let GAS(U) = 〈U,B,DB, l, u〉 be a partial

approximation space with a Pawlakian approximation pair.

Then, for any S ⊆ U and u ∈ U

1) µo
S(u) = 1 if and only if

∃B ∈ NB(u) (B ⊆ S) (i.e., NB(u) ∩ L(S) 6= ∅);

2dom f denotes the domain of the map f .

2) µa
S(u) = 1, µ

p
S(u) = 1 if and only if

∀B ∈ NB(u) (B ⊆ S) (i.e., NB(u) ⊆ L(S));

3) µo
S(u) > 0, µa

S(u) > 0 if and only if

∃B ∈ NB(u) (B ∩ S 6= ∅) (i.e., NB(u) ∩ U(S) 6= ∅);

4) µ
p
S(u) > 0 if and only if

∀B ∈ NB(u) (B ∩ S 6= ∅) (i.e., NB(u) ⊆ U(S));

5) µo
S(u), µ

a
S(u) = 0 if and only if

∀B ∈ NB(u) (B ∩ S = ∅) (i.e., NB(u) ∩ U(S) = ∅).

6) µ
p
S(u) = 0 if and only if

∃B ∈ NB(u) (B ∩ S = ∅).

Proposition 4 implies the following statements.

Corollary 3. Let GAS(U) be a partial approximation space

with a Pawlakian approximation pair. Then, for the optimistic

partial membership function µo
S ,

1) µo
S(u) = 1 if and only if u ∈ l(S),

2) µo
S(u) > 0 if and only if u ∈ u(S),

3) 0 < µo
S(u) < 1 if and only if

u ∈ u(S) \ l(S),
4) µo

S(u) = 0 if and only if u ∈
⋃

B \ u(S),

for any S ⊆ U and u ∈ U .

Corollary 4. Let GAS(U) be a partial approximation space

with a Pawlakian approximation pair. Then, for the average

partial membership function µa
S ,

1) if µa
S(u) = 1, then u ∈ l(S),

2) µa
S(u) > 0 if and only if u ∈ u(S),

3) if u ∈ u(S) \ l(S), then 0 < µa
S(u) < 1,

4) µa
S(u) = 0 if and only if u ∈

⋃

B \ u(S),

for any S ⊆ U and u ∈ U .

Corollary 5. Let GAS(U) be a partial approximation space

with a Pawlakian approximation pair. Then, for the pessimistic

partial membership function µ
p
S ,

1) if µ
p
S(u) = 1 then u ∈ l(S),

2) if µ
p
S(u) > 0, then u ∈ u(S),

3) if µ
p
S(u) > 0 and u 6∈ l(S),

then u ∈ u(S) and µ
p
S(u) < 1,

4) if u ∈
⋃

B \ u(S), then µ
p
S(u) = 0.

for any S ⊆ U and u ∈ U .

The different notions of necessity and possibility can be

found in the definitions of partial membership functions µ∗
S .

The values µ∗
S(u) (u ∈ U ) of the partial membership

functions defined above informally mean the following.

The case of optimistic partial membership function:

1) if µo
S(u) = 1, i.e., u has at least one neighborhood inside

S, u can certainly be classified as belonging to S in an

optimistic sense;
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2) if µo
S(u) > 0, i.e., u has at least one neighborhood

wholly or partly inside S, u can possibly be classified

as belonging to S in an optimistic sense;

3) if 0 < µo
S(u) < 1, i.e., u does not have any neighbor-

hood inside S but has at least one neighborhood partly

inside and partly outside S, u cannot be classified as

either belonging to S or does not belonging to S in an

optimistic sense.

The case of the average partial membership function:

1) if µa
S(u) = 1, i.e., all neighborhoods of u are inside S, u

can certainly be classified as belonging to S in average

approach;

2) if µa
S(u) > 0, i.e., u has at least one neighborhood

wholly or partly inside S, u can possibly be classified

as belonging to S in average approach;

3) if 0 < µa
S(u) < 1, i.e., u has a neighborhood not inside

S and has at least one neighborhood wholly or partly

inside S, u cannot be classified as either belonging to

S or does not belonging to S in average approach.

The case of pessimistic partial membership function:

1) if µ
p
S(u) = 1, i.e., all neighborhoods of u are inside

S, u can certainly be classified as belonging to S in a

pessimistic sense;

2) if µ
p
S(u) > 0, i.e., all neighborhoods of u are wholly or

partly inside S, u can possibly classified as belonging

to S in a pessimistic sense;

3) if 0 < µ
p
S(u) < 1, i.e., u has a neighborhood not inside

S and all neighborhoods of u are wholly or partly inside

S, u cannot be classified as either belonging to S or does

not belonging to S in a pessimistic sense.

Last, for all three partial membership functions,

µ∗
S(u) = undefined

indicates that we do not have any information about u.

Consequently, defining membership degree for u should be

meaningless with respect to our knowledge about the objects

of the universe.

In classical rough set theory, lower and upper approxima-

tions and the boundary can be reconstructed setting out from

the membership function. In a fuzzy context, the reconstruc-

tion can be carried out by means of core and support of

membership functions in a standard way.

As usual, for the partial membership function µ∗
S , the core

and support are the following:

core(µ∗
S) = {u ∈ U | µ∗

S(u) = 1};

support(µ∗
S) = {u ∈ U | µ∗

S(u) > 0}.

Now, l∗, u∗ : 2U → 2U approximation pair may be defined

as usual:

l∗(S) = core(µ∗
S) = {u ∈ U | µ∗

S(u) = 1},

u∗(S) = support(µ∗
S) = {u ∈ U | µ∗

S(u) > 0}.

1) The case of optimistic partial membership functions: In

the case of the optimistic partial membership function µo
S ,

the optimistic lower and upper approximation pair is the

following:

lo(S) = core(µo
S) = {u ∈ U | µo

S(u) = 1}

= {u ∈ l(S) | ∃B ∈ NB(u) (B ⊆ S)}

= l(S)

by Corollary 3 (1), and

uo(S) = support(µo
S) = {u ∈ U | µo

S(u) > 0}

= {u ∈ u(S) | ∃B ∈ NB(u) (B ∩ S 6= ∅)}

= u(S)

by Corollary 3 (2).

Informally, lo(S) is a collection of such u ∈ U which has

at least one neighborhood included in S, and lo(S) = l(S).
uo(S) is a collection of such u ∈ U which has at least

one neighborhood having nonempty intersection with S, and

uo(S) = u(S).
In other words, in the case of optimistic partial membership

function µo
S , we get back the Pawlakian approximation pair

〈l, u〉. It implies that 〈lo, uo〉 meets the minimum requirements

(C0)–(C3) and the conditions (C4)–(C5).

2) The case of average partial membership functions: In

the case of the average partial membership function µo
S , the

average lower and upper approximation pair is the following:

la(S) = core(µa
S) = {u ∈ U | µa

S(u) = 1}

= {u ∈ U | ∀B ∈ NB(u) (B ⊆ S)}

⊆ l(S)

by Corollary 4 (1), and

ua(S) = support(µa
S) = {u ∈ U | µa

S(u) > 0}

= {u ∈ u(S) | ∃B ∈ NB(u) (B ∩ S 6= ∅)}

= u(S)

by Corollary 4 (2).

Informally, la(S) is a collection of such a u ∈ U whose all

neighborhoods included in S, and la(S) ⊆ l(S). ua(S) is a col-

lection of such a u ∈ U which has at least one neighborhood

having nonempty intersection with S, and ua(S) = u(S).
That is, in the case of average partial membership function

µa
S , we get back the upper Pawlakian approximation map, but

the Pawlakian lower approximation map has already changed.

Proposition 5. GAS(U) = 〈U,B,Da
B
, la, ua〉 is a weak

general approximation space provided that D1 \ D2 ∈ D
a
B

(D1,D2 ∈ DB).

Proof:

(C0)–(C2) They are straightforward.

(C3) If u ∈ la(S), then ∀B ∈ NB(u) (B ⊆ S), and so

∃B ∈ NB(u) (B ∩ S 6= ∅), i.e., u ∈ ua(S).
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3) The case of pessimistic partial membership functions:

In the case of the pessimistic partial membership function

µ
p
S , the pessimistic lower and upper approximation pair is

the following:

lp(S) = core(µp
S) = {u ∈ U | µp

S(u) = 1}

= {u ∈ U | ∀B ∈ NB(u) (B ⊆ S)}

⊆ l(S)

by Corollary 5 (1), and

up(S) = support(µp
S) = {u ∈ U | µp

S(u) > 0}

= {u ∈ U | ∀B ∈ NB(u) (B ∩ S 6= ∅)}

⊆ u(S)

by Corollary 5 (2).

Informally, lp(S) is a collection of such u ∈ U whose all

neighborhoods included in S, and lp(S) ⊆ l(S). up(S) is a

collection of such u ∈ U whose all neighborhoods having

nonempty intersection with S, and up(S) ⊆ u(S).
In the case of pessimistic partial membership function µ

p
S ,

both lower and upper Pawlakian approximation maps have

changed.

Proposition 6. GAS(U) = 〈U,B,D
p
B
, lp, up〉 is a weak

general approximation space provided that D1 \ D2 ∈ D
p
B

(D1,D2 ∈ DB).

Proof:

(C0)–(C2) They are straightforward.

(C3) If u ∈ lp(S), then ∀B ∈ NB(u) (B ⊆ S), and so

∀B ∈ NB(u) (B ∩ S 6= ∅), i.e., u ∈ up(S).

The next proposition deals with the conditions (C4)–(C5)

of average and pessimistic approximation pairs.

Proposition 7. Let 〈U,B,Da
B
, la, ua〉 and 〈U,B,D

p
B
, lp, up〉

be weak approximation spaces whose components are defined

as above.

If the base system B is one–layered, D
a

B
= D

p
B

= DB

and the weak approximation pairs 〈la, ua〉 and 〈lp, up〉 are

standard, i.e., la(D) = D and lp(D) = D for all D ∈ DB.

Proof:

Since l is standard, la(D) ⊆ l(D) = D for all D ∈ DB.

On the other hand, B is one–layered, and so every definable

set D ∈ DB is a finite union of pairwise disjoint base sets, e.g.,

D = B1∪· · ·∪Bn, where Bi’s are pairwise disjoint. Moreover,

for every u ∈ D there exists exactly one i ∈ {1, 2, . . . , n} in

such a way that NB(u) = {Bi}.

Hence, we get for all D ∈ DB,

la(D) = {u ∈ U | ∀B ∈ NB(u) (B ⊆ D)}

k {u ∈ D | ∀B ∈ NB(u) (B ⊆ D)}

= {u ∈ B1 ∪ · · · ∪Bn | ∀B ∈ NB(u) (B ⊆ D)}

= {u ∈ B1 | ∀B ∈ NB(u) (B ⊆ D)}

∪ · · · ∪ {u ∈ Bn | ∀B ∈ NB(u) (B ⊆ D)}

= B1 ∪ · · · ∪Bn = D.

Therefore, la(D) = D.

The standard property of lp can be proved similarly.

IV. SOME REMARKS ON THE LOGICAL APPLICATIONS

In the previous sections, first, three partial membership

functions have been defined in partial approximation spaces

with Pawlakian approximation pairs, then three approximation

pairs have been generated with the help of them. It has

been shown that, among others, they meet the minimum

requirements prescribed for approximation pairs in partial

approximation spaces, i.e., they actually form approximation

pairs.

Optimistic, average and pessimistic partial membership

functions have already been studied by the second author

from the logical point of view in [38], [32]. It turned out

that they are in connection with decision–theoretic rough set

models (DTRS) which can be considered as the probabilistic

extensions of algebraic rough set models [37].

Optimistic, average and pessimistic partial membership

functions may serve as a bases of the semantics of a partial

first–order logic. In the paper [35], the semantic system of

a partial first–order logic with three different types of partial

membership functions is presented. The proposed logical sys-

tem gives an exact possibility to introduce different semantic

notions of logical consequence relations which can be used in

order to make clear the consequences of our decisions.

V. CONCLUSION AND FUTURE WORK

In this paper, having defined three partial membership func-

tions, three approximation pairs have been generated in partial

approximation spaces with Pawlakian approximation pairs.

We have investigated how these pairs meet the requirements

prescribed for approximation pairs in partial approximation

spaces. As a result, in this way we have constructed two not

Pawlakian approximation pairs.

In the future, it should be worth performing similar in-

vestigations in partial approximation spaces setting out from

arbitrary approximation pairs, in particular, which have been

obtained in this paper.
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ZOLTÁN ERNŐ CSAJBÓK, TAMÁS MIHÁLYDEÁK: FUZZINESS IN PARTIAL APPROXIMATION FRAMEWORK 41


