
An Evaluation of Data Race Detectors Using Bug
Repositories

Jochen Schimmel, Korbinian Molitorisz, Walter F. Tichy
Karlsruhe Institute of Technology (KIT), Germany

{schimmel, molitorisz, tichy}@kit.edu

Abstract—Multithreaded software is subject to data races. A
large number of data race detectors exists, but they are mainly
evaluated in academic examples. In this paper we present a study
in which we applied data race detectors to real applications. In
particular, we want to show, if these tools can be used to locate
data races effectively at an early stage in software development.

We therefore tracked 25 data races in bug repositories back
to their roots, created parallel unit tests and executed 4 different
data race detectors on these tests. We show, that with a combi-
nation of all detectors 92% of the contained data races can be
found, whereas the best data race detector only finds about 50%.

Index Terms—Data Races, Unit Testing, Multicore Software
Engineering, Empirical Study

I. INTRODUCTION

A
LMOST all race detection approaches are evaluated in

source code, that is freely available or in productive use.

But can these detectors also be effectively used during soft-

ware development before delivery and prevent shipping errors?

We conducted an empirical study to answer this question. For

our experimental setup we browsed bug repositories of open

source applications for reports of data races. For each report

we tracked back the revision history to the point, at which the

defect has been checked into the code repository for the first

time. We used this revision to evaluate which of the data race

detectors would have been able to find the race at the distinct

moment where it was unintentionally inserted.

A first key finding was, that it was almost impossible to

simply apply a race detector on our evaluation programs:

The application of most race detectors was impractical and

the true data races were outbalanced by the huge number of

false positives. Furthermore, most data race detectors available

consume too much memory and computation time. Results

tend to be impressive when applied to small programs, but

with increasing sizes of real world applications, race detection

approaches become increasingly impractical. Our solution to

this problem was to create parallel unit tests[1] for all pro-

grams: A parallel unit test calls two (or more) methods under

test in parallel within separate threads. In contrast to regular

unit tests, they do not contain assertions. A data race detector

decides on the test result. It executes parallel test cases rather

than the program itself. By writing such parallel unit tests, we

divided the programs into smaller fractions and focused error

detection on the relevant portions, that were small enough

to be handled by the race detectors. As a consequence, we

could successfully apply all four race detectors to the bug

repositories and locate 92% of the data races.

This paper is structured as follows: In section II, we

introduce the sample applications we used as benchmark for

the data race detectors and present the bugs we found in the

respective repositories. Section III presents the four data race

detectors we evaluate. We discuss the results of our study

in section IV and detail on parallel unit tests in section V.

The paper concludes with related studies in section VI and a

conclusion of the key findings.

II. SAMPLE APPLICATIONS AND BUG REPOSITORIES

Apache Tomcat is a web server written in Java and uses

Bugzilla as bug tracking system. In Tomcat, each web request

is handled by a separate thread and all of them access common

data. No or incorrect synchronization of the common data

leads to program stalls or incorrect data. In Bugzilla we

tracked down 23 reports of data races in Tomcat due to

synchronization errors.

Spring is an application development framework library for

Java and uses Jira to track bugs. Spring contains framework

classes, that can be executed both sequentially or in parallel.

We tracked 24 data race reports in the bug database caused

by altered program semantics when executing the parallel

versions of the framework classes.

Eclipse is an integrated development environment for Java

and other programming languages and tracks bugs using

Bugzilla. Eclipse executes long-running computations in back-

ground threads to keep the user interface responsive. We

tracked 18 synchronisation errors in Bugzilla concering long-

running background threads.

Defect Classification: We categorize the defects according

to their root into four different error patterns: (1) Atomicity

violation, (2) wrong usage of Java library, (3) if-race and (4)

bad optimization. A data race may account to more than one

of the four error patterns. However, some of the defects we

found are specific and do not apply to any of these categories.

Atomicity violations are data races caused by incorrect

granularity of synchonization. Here, different memory location

have data- or control flow dependencies. They form a logical

unit and may only be changed atomically or in a transaction.

Even if each location might be synchonized separately, the

acceess to the whole unit is not.

The Java library contains thread-safe classes, i.e. they can

be used in multithreaded applications without additional locks.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1349–1352

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1349

TABLE I
DATA RACES AND DETECTION RESULTS

Program Details Bug Details MTRAT ConTest Jinx Jchord Enriched PUT

Bug-ID Program Σ Methods Impact Atom. Lib if-Race Opt. Det. Det. (%) Det. (%) Det. FPs Det. (%)

4418 Tomcat 1 Crash x x x 70 60 x 1 90

31018 Tomcat 1 Crash x x 60 0 0

48790 Tomcat 1 Wrong Results x x 0 0 x 0

728 Tomcat 2 Crash x x 80 0 x 1 0

48177 Tomcat 1 Crash x x 100 90 x 100

46085 Tomcat 2 Deadlock x 0 0 x 10 0

48172 Tomcat 2 Wrong Results x 0 0 x 1 0

36173 Tomcat 2 Crash x x x 0 0 2 0

SPR-5658 Spring 1 Crash x 0 0 0

SPR-4932 Spring 1 Crash x x 20 20 10

SPR-4938 Spring 1 Deadlock x x x x 70 10 10+ 90

INT-748 Spring 2 Crash x 30 0 10+ 30

SPR-3228 Spring 2 Crash x 70 100 80

SPR-4672 Spring 1 Crash x 0 0 0

SPR-2000 Spring 2 Crash x 100 0 100

SPR-3432 Spring 1 Crash 0 0 x 0

INT-1072 Spring 2 Crash x 80 90 10+ 0

44809 Eclipse 2 Crash x 20 0 x 10+ 0

104294 Eclipse 1 Crash x x 100 100 x 10+ 100

163685 Eclipse 2 Crash x 0 0 0

296822 Eclipse 2 Wrong Results x 0 0 x 1 0

31159 Eclipse 1 Wrong Results x x 0 50 100

272742 Eclipse 1 Crash x 30 0 x 0

298648 Eclipse 1 Wrong Results x x 90 0 x 10+ 0

36659 Eclipse 1 Crash x 60 100 x 0

Σ (25 total) 1: 14 / 2: 11 2 9 11 4 13 15 9 13 12 9

The second error-pattern we define classifies code locations as

defect in which classes are treated as thread-safe but that are

not designed to be used like this.

Almost half of all errors we found are if-races: An if-

race occurs, when a variable is checked for a certain value

inside a conditional expression leading to a branch. In there,

the variable is updated to a new value. For correct program

semantics, both statements must be within the same lock

because the thread could otherwise be interrupted in between

and the variable is changed by another parallel operation.

The bad optimization pattern does not reflect a certain code

design pattern, but rather describes different kinds of errors

which come from the intention to improve program runtime

but not its code behaviour. In fact, these code changes have

unintended side effects. We could only identify these errors

because of comments we found in the bug repositories.

We summarize our results in table I. One central finding

is, that practically all data races can already be reproduced

by a twofold parallel execution, although the programs may

execute the parallel regions at a higher degree of parallelism. If

the parallel regions execute in the wrong order at runtime, the

defect manifests. 76% of all defects belong to this category.

20% require three or four operations, while only 4% require

at least five operations in an unexpected order. With just one

exception, we could successfully reproduce the defects using

two threads. The column Method sum under Program Details

shows, that roughly half of the data races are caused by a

parallel execution of two different methods, whereas the other

half is caused by parallel execution of the same method. This

relates to the key finding by Shan Lu et al. [2], according

to which most data races can be reproduced with only two

methods. According to our finding, we can generalize the term

of two methods to either depict the parallel execution of two

separate methods as in task parallelism or to depict the parallel

execution of the same method as in data parallelism.

III. DATA RACE DETECTORS

We present the four data race detectors used in our study.

The selected detectors had to be freely available and were re-

quired to support Java code natively for comparability reasons.

We included three dynamic and one static tool. Further studies

should also include other prominent tools available such as

Helgrind+ [3] or Racer-X [4].

MTRAT: Multi-Thread Run-time Analysis Tool for Java

(MTRAT) is a dynamic detection tool for data races and dead-

locks developed by IBM [5]. MTRAT uses a combination of

the happens-before and lockset race detection algorithms. For

this work, we used its Eclipse plugin for Windows in order to

define which classes of an application to instrument. MTRAT

can also instrument libraries at bytecode level, except for Java

core libraries. For self-written code, MTRAT returns the line

numbers where the error occured; for errors in libraries, only

the class name is returned. MTRAT captures the execution

path and makes the data race reproducable. Unlike other race

detectors, it is unable to identify alternative control flows. For

us to work with MTRAT, we manually wrote test cases, that

induced the problematic control flow. Thus, the investigation

of complex programs such as Eclipse is not feasable due to

slowdown limitations.

ConTest is another dynamic tool developed at IBM alpha-

works [5]. ConTest inserts sleep and yield instructions heuristi-

cally into Java bytecode to create different thread interleavings.

When re-executing an application, ConTest varies the thread

1350 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

scheduling to provoke data races and deadlocks. ConTest is

available as an Eclipse plugin. It offers numerous options

to adjust the interleaving heuristics. In contrast to other race

detection tools, ConTest does not identify data races, it only

provokes different interleavings, so ConTest raises the chance

for a data race to occur. The developer finally has to identify

the race by invalid program behaviour using assertions.

Jinx is a commercial tool to find errors in multithreaded

applications [6]. It supports programs in Java, C/C++ and

.NET-languages. Jinx is a dynamic race detector and executes

a program several times, altering thread schedules. When a

race is detected, Jinx can replay the problematic schedule.

Like ConTest, Jinx relies on programs throwing exceptions as

soon as a data race occurs.

Jchord is an open source static data race detector [7].

Jchord is a command line tool which expects the Java classes

under test as input; it will also detect errors within compiled

Java libraries, such as the Java core libraries.

IV. RESULTS

Table I summarizes all 25 bugs and the data race detection

results of all 4 evaluated tools. The column Bug-ID references

the respective bug tracking system. We evaluated each of the

race detectors with the same unit tests as program input. For

ConTest and Jinx we had to extend the parallel test cases to

include exceptions and assertions. We found, that by executing

9 defects could even be found without any data race detector.

We call this extension enriched parallel unit tests. The results

are shown in column enriched PUT.

MTRAT is unaware of atomicity violations and cannot find

defects due to wrong library usage, as it does not check

the Java core libraries. To verify the library limitation, we

used an open source implementation of the Java library.

With this change MTRAT would have found all 9 library

defects. MTRAT exhibited false positives on one occasion

only. According to its heuristics, MTRAT could have found

15 data races, 13 were in fact found.

ConTest alternates thread interleavings, so its results are not

reliable. ConTest can only find data races, when they actually

occur. We therefore executed ConTest 10 times and measured

if the race was reported at least once. Another weakness is, that

ConTest reports races on the basis of hand-written exceptions

or assertions that fail, so we extended our benchmark to use

enriched PUTs. With this, ConTest could identify 9 additional

defects. A third drawback of ConTest is the lack of information

to resolve the defect: It only executes the test case. It does not

provide any information about what caused the data race or at

which code line.

As Jinx is also unreliable we used the same reproduction

logic and used our enriched PUTs as input. Jinx offers several

intensity levels to improve defect detection, that showed no

noticeable difference in our experiments. Jinx is able to detect

errors due to wrong library usage, atomicity violations and did

not produce false positives, but found only 36% of the errors.

With 9 defects, the enriched PUTs found as many errors as

Jinx, but 2 of them were only found by Jinx. The slowdown of

Jinx is within a few seconds, so it may be used as a supportive

tool.

Jchord is a static race detector. It can be applied to the

regular evaluation applications, but we used it on our test cases

for comparability reasons. Also, this extension reduced the

execution time drastically: With the regular test cases Jchord

required 4 minutes on average and in 4 cases it crashed with

out of memory exceptions. With enriched PUTs each test case

executes within a few seconds; From the remaining 21 bugs,

13 were found. Jchord is unable to find atomicity violations

and was the only tool to produce a significant number of

false positives. For 6 test cases it reported more than 10 false

positives. This severly lowers its benefit for real-life scenarios.

V. PARALLEL UNIT TESTS

Our evaluation shows the efficiency of data race detection

supported by parallel unit tests. If parallel unit tests are

available, they can be used as input for different race detectors.

Combining all 4 detectors, we could identify 92% of the bugs.

A combination of the two best race detectors MTRAT and

ConTest still found 84%. This shows that parallel unit tests

may be a veritable approach to ease data race detection. Some

race detectors like CHESS [8] are specificially designed for

parallel unit tests. However, writing sound parallel unit tests

is hard. Therefore, the exploration of automatic generation

of parallel unit tests is an active research topic [9, 10]. The

parallel test cases we wrote for this study conform to this

research: A parallel test case is a test method calling at least

two program methods in separate threads; the test method exits

as soon as the threads have returned. A parallel test method

does not alter the thread schedule or influence the program

execution in any way - this is left to the data race detector

that executes the parallel test method. Parallel unit tests do

not contain assertions or throw exceptions deliberately, the

decision whether a race is found or not is completely left to

the detector. As we showed, some race detectors break with

this definition of a parallel unit test, as they require assertions

in the test case. If a parallel test case contains assertions to

detect the presence or negative effects of data races, we call

it enriched.

Figure 1 shows a sample with a parallel test case and an

enriched version. The test case executes inc() concurrently in

two threads. After they return, the test exits. The results and

side effects of the test are not evaluated, this is left to the

execution environment, i.e. the race detector. In the second

case, the enriched test case waits for both methods and will

report an error if the value of val is not 2. This test is able

to detect malicious race behaviour, but it depends on the

concrete thread schedule and the race detector influences the

probability to provoke unintended behaviour. Using enriched

PUTs, complexity is transfered from detector design to test

development; this may be a good approach for bugs that are

hard to detect, like atomicity violations. Here, semantic infor-

mation on the programmer’s intention is required to identify

an error. Even in our small sample, we show that MTRAT

cannot find them, whereas detectors using enriched tests such

JOCHEN SCHIMMEL, KORBINIAN MOLITORISZ, WALTER F. TICHY: AN EVALUATION OF DATA RACE DETECTORS 1351

classwCIncw{

privatewintwval;w

publicwvoidwincyjw{

wwvalxx;

}

publicwintwgetValyjw{

wwreturnwval;

}

}

yajwThewsamplewclasswCInc"

classwIncrementTestww{

staticwCIncwincw=wnewwCIncyj;

publicwstaticwvoidwMainyjw{

wwThreadwt1w=wnewwThready

wwwwnewwRunnableyjw{

wwwwpublicwvoidwrunyjw{inc"incyj;}

ww}j;

wwThreadwt2w=wnewwThready

wwwwnewwRunnableyjw{

wwwwpublicwvoidwrunyjw{inc"incyj;}

ww}j;

wwt1"startyj;wt2"startyj;

}

ybjwAwparallelwtestwcasewforwCInc"

classwIncrementTestXw{

staticwCIncwincw=wnewwCIncyj;

publicwstaticwvoidwMainyjw{

wwThreadwt1w=wnewwThready

wwwwnewwRunnableyjw{

wwwwpublicwvoidwrunyjw{inc"incyj;}}j;

wwThreadwt2w=wnewwThready

wwwwnewwRunnableyjw{

wwwwpublicwvoidwrunyjw{inc"incyj;}}j;

wwt1"startyj;wt2"startyj;

wwtryw{wt1"joinyj;wt2"joinyj;w}

wwcatchwyInterruptedExceptionwejw{w}

wwifwyinc"getValyjwM=w2j

wwwwSystem"err"printlny1ErrorM1j;w

}

ycjwEnrichedwparallelwtestwcasewforwCInc"
w

Fig. 1. Code excerpt of the Bank Account Sample with its instrumented versions.

as Jinx can. Nevertheless, developing enriched, sound parallel

test cases is harder than usual parallel test cases and to our

current knowledge, no automatic generation approaches exist.

VI. RELATED WORK

Bug evaluation has been performed before: Shan Lu et al.

[2] evalute 105 synchronisation bugs from large applications

for bug patterns. In contrast to our work, no data race detectors

have been evaluated. In [11] and [12], different Java race

detectors are evaluated. However, the used defects are from

artificial sample applications, not from real bug repositories.

They indicate that static race detectors produce too much false

positives and are hard to use. In [13], programs written in

C/C++ are evaluated.

VII. CONCLUSION

In this work, we searched bug repositories of four large

Java applications for historic data races reported by users. We

then tested 4 well-known data race detectors with the program

revisions which contained the bugs for the first time. Seen

individually, each of the four data race detectors found about

50% of the bugs. Together, the detectors found 92% of these

bugs. In order to efficiently use the detectors, it is necessary

to write specific test cases for data race detection. Our re-

sults indicate that a good, test based detection infrastructure

combining different race detection approaches may help to

find most data races early. However, writing good parallel

test cases is hard and time-consuming. We therefore see our

results as a motivation to automatically generate parallel unit

tests. Different works heading in this direction have been

mentioned. For future work, we plan to extend this study

to more evaluation programs and other race detectors. As

a combination of different tools seems promising, it would

be interesting to know if a certain combination of detection

strategies leads to optimal results. Furthermore, we want to

search for data races using generated test cases from the works

presented above.

ACKNOWLEDGMENT

The authors would like to thank Yana Stoeva for her support

with this project.

REFERENCES

[1] G. Szeder, “Unit testing for multi-threaded java pro-

grams,” in Proceedings of the 7th Workshop on Parallel

and Distributed Systems, 2009.

[2] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mis-

takes: a comprehensive study on real world concurrency

bug characteristics,” ser. ASPLOS XIII, 2008.

[3] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy,

“Helgrind+: An efficient dynamic race detector,” ser.

IPDPS ’09, 2009.

[4] D. Engler and K. Ashcraft, “Racerx: effective, static

detection of race conditions and deadlocks,” SIGOPS

Oper. Syst. Rev., vol. 37, no. 5, pp. 237–252, Oct. 2003.

[5] alphaWorks: Advanced Testing for Multi-Threaded

Applications, September 2010. [Online]. Available:

http://www.alphaworks.ibm.com/tech

[6] Corensic: Jinx, November 2012. [Online]. Available:

http://wiki.corensic.com/wiki

[7] Jchord, September 2010. [Online]. Available:

http://code.google.com/p/jchord

[8] S. Q. Madanlal Musuvathi and T. Ball, “Chess: A sys-

tematic testing tool for concurrent software,” Microsoft

Research, Tech. Rep., Nov 2007.

[9] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Mari-

nov, “Ballerina: automatic generation and clustering of

efficient random unit tests for multithreaded code,” in

Proceedings of the 2012 International Conference on

Software Engineering, 2012.

[10] J. Schimmel, K. Molitorisz, A. Jannesari, and W. F.

Tichy, “Automatic generation of parallel unit tests,” in

ACM AST ’13, 2013.

[11] C. Artho, “Finding faults in multi-threaded programs,”

Masters thesis, Tech. Rep., 2001.

[12] A. K. Md Abdullah, Al Mamun, “Concurrent software

testing: A systematic review and an evaluation of static

analysis tools,” 2009.

[13] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou,

“Bugbench: Benchmarks for evaluating bug detection

tools,” in Workshop on the Evaluation of Software Defect

Detection Tools, 2005.

1352 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

