
A Hierarchical Approach
for Configuring Business Processes

Mateusz Baran, Krzysztof Kluza,
Grzegorz J. Nalepa, Antoni Ligęza

AGH University of Science and Technology

al. A. Mickiewicza 30, 30-059 Krakow, Poland

E-mail: {matb,kluza,gjn,ligeza}@agh.edu.pl

Abstract—Business Process models in the case of real life
systems are often very complex. Hierarchization allows for
managing model complexity by “hiding” process details into
sub-levels. This helps to avoid inconsistencies and fosters reuse
of similar parts of models. Configuration, in turn, gives the
opportunity to keep different models in one configurable model.
In the paper, we propose an approach for configuring Business
Processes that relies on hierarchization for more expressive
power and simplicity. Our goal is achieved by allowing arbitrary
n-to-m relationships between tasks in the merged processes.
The approach preserves similar abstraction level of subprocesses
in a hierarchy and allows a user to grasp the high-level flow of
the merged processes.

Index Terms—BPMN, Business Processes, Business Process
Hierarchization, Business Process Configuration

I. INTRODUCTION

E
NTERPRISES take advantage of using Business Pro-

cesses (BP) in their everyday practice. These processes

define the way the company works by describing control flow

between tasks. Design and development of such processes,

especially more and more complex ones, require advanced

methods and tools, e.g. [1], [2], [3].

Business Process Model and Notation (BPMN) [4] is a vi-

sual language used to model Business Processes. It is a set

of graphical elements denoting such constructs as activities,

splits and joins, events etc. (see Figure 1). These elements

can be connected using control flow and provide a visual

description of process logic [5]. Thus, a visual model is easier

to understand than textual description and helps to manage

software complexity [6].

Flow Objects Connecting Objects ArtifactsSwimlanes

Annotation text

Events

Activities

Gateways

Sequence Flow

Message Flow

Association

Pool

Lanes
(within a pool)

Data Object

Text Annotations

Group

Figure 1. BPMN core objects

Although the BPMN notation is very rich when considering

the number of elements and possible constructs, apart from the

notation rules, some style directions for modelers are often

used [7]. To deal with the actual BP complexity, analysts use

various modularization techniques. Mostly, they benefit from

their experience and modularize processes manually during the

design because these techniques are not standardized. Modu-

larization issue is important in the case of understandability

of models [8]. Thus, guidelines for analysts, such as [9],

emphasize the role of using a limited number of elements and

decomposing a process model.

In the case of large collection of processes [10], especially

modeled by different analysts, processes can be modularized

in different ways on distinct granularity level [8]. Moreover,

the processes in the collection can be similar [11], but this

similarity is lost when the models are kept separately.

Automatic hierarchization and configuration, which is the

subject of this paper, can help in preventing these problems.

Hierarchization provides different abstraction levels and, prop-

erly developed, can ensure the same way of modularization

for all the processes. Configuration gives the opportunity of

unification of processes and enables to keep different models

in one configurable model.

The rest of this paper is organized as follows: Section II

presents motivation for our research. Section III and IV

describe related works in the hierarchizaton and configuration

areas. In Section V, we present our configuration BP approach

which takes advantage of hierarchization. We evaluated the

proposed approach based on the issue tracker case study. The

paper is summarized in Section VI.

II. MOTIVATION

Modern business applications require advanced modeling

solutions to deal with the model complexity. Thus, several

challenges in Business Process modeling can be distinguished:

• the granularity modularization challenge – how to model

different processes similarly, especially in respect of

abstraction layers [12].

• the similarity capturing challenge – it is not easy to grasp

similarities in the collection of only partially similar mod-

els [13], especially if they are modularized differently.

• the collection storing challenge – how to store a large

collection of models in some optimized way [14].

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 915–921

978-1-4673-4471-5/$25.00 c© 2013, IEEE 915

In our research, we deal with these challenges using auto-

matic hierarchization that allows us to preserve similar abstrac-

tion level of subprocesses in a hierarchy. To address two other

challenges, we propose a new BP configuration technique, that

allows us to express similarities between different BP models

in a simple, but comprehensive way. Our configuration is based

on the hierarchical model prepared previously.

The aim of this paper is to present our approach for config-

uring Business Processes based on hierarchization. We present

the automatic hierarchization algorithm that takes advantage of

task taxonomy and the algorithm for configuration.

The proposed approach has several advantages. Thanks

to the use of hierarchization, the obtained model structure

incorporates similar activities, and the configuration step can

be simplified. Thus, the configurable process diagram is easy

to comprehend. Contrary to the existing configuration meth-

ods, in our approach we can bind not only one task with

another, but also groups of tasks which were considered in

hierarchization step. Such configuration technique address the

abovementioned problems by managing both process model

complexity and diversity.

III. HIERARCHIZATION ISSUES

IN BUSINESS PROCESS MODELS

La Rosa et al. [15] distinguished 3 abstract syntax modifica-

tions that are related to modularization for managing process

model complexity. These are:

1) vertical modularization – a pattern for decomposing

a model into vertical modules, i.e. subprocesses, accord-

ing to a hierarchical structure

2) horizontal modularization – a pattern for partitioning

a model into peer modules, i.e. breaking down a model

into smaller and more easily manageable parts, espe-

cially assigned to different users in order to facilitate

collaboration.

3) orthogonal modularization – a pattern for decomposing

a model along the crosscutting concerns of the modeling

domain, such as security or privacy, which are scattered

across several model elements or modules.

Our approach is consistent with the vertical and horizontal

patterns. Although we decompose a model into subprocesses,

in fact we use some additional information to decompose it,

such as task assignment or task categories, which is an exam-

ple of the second pattern instance. The last one, orthogonal

pattern, requires to extend the notation, as in [16]; thus, it is

not our case.

It is important to notice that such decomposition has several

advantages:

• increases their understandability by “hiding” process de-

tails into sub-levels [8],

• decreases redundancy, helps avoid inconsistencies and

fosters reuse by referring to a subprocess from several

places [17], [18], [13], [19],

• decreases the error possibility [20],

• increases maintainability of such processes [9].

IV. BUSINESS PROCESS CONFIGURATION

Business Process configuration is a tool for expressing sim-

ilarities between different Business Process models. There are

mechanisms for managing and comparing processes in large

repositories [21], [22], refactoring of such repositories [14] as

well as automatic extraction methods for cloned fragments in

such process model repositories [14], [17]. However, our case

differs from the existing approaches because we do not base

on any directly visible similarity, but on previously defined

taxonomy of states or roles in the processes etc. Moreover,

our hierarchization algorithm forces the generation of similar

models as a result.

There are a few methods of extraction of configurable

processes. They focus on different goals. Analyzing digest

configurable Business Process reveals high-level workflow that

might not be apparent in particular models. The structure

is partially lost in the process so this does not concern our

approach.

The method of interest in this article are models merged

into configurable model [23]. They allow the analyst to see

several processes as special cases of one configurable model.

The model emphasizes similarities preserving all the details.

Configurable Business Processes are also a good alternative

to current reference model bases such as SAP. Instead of

presenting the analyst a few example models, a more general,

configurable solution can be delivered. It makes producing

final models faster and less error-prone [24].

There is an active research field in the area of configurable

Business Processes. In [25], Rosemann et al. describe an

approach focused on hand-made diagrams for the purpose of

reference modeling. La Rosa et al. [24] extend it with roles

and objects.

Variant-rich process models were explored in PESOA

project [26], [27]. They enable process designer to specify

a few variants of a task.

Our approach is a specialized version of solution proposed

by La Rosa in [28]. Hierarchization algorithm produces models

of very specific structure and this fact is exploited in our

approach.

V. HIERARCHIZATION-BASED

BUSINESS PROCESS CONFIGURATION APPROACH

We propose an approach for configuring Business Processes

that relies on hierarchization for more expressive power and

simplicity. The first goal is achieved by allowing arbitrary n-

to-m relationships between tasks in merged processes. Tax-

onomy of tasks provides level of flexibility which many of

current state-of-the-art solutions are lacking [25], [28].

Simplicity is the effect of constructing a very specific

type of models during hierarchization. These models do not

require general configuration algorithms that often produce

complicated, hard to analyze diagrams. Sufficient configura-

tion algorithm is described in Section V-C.

General flow of data in the whole approach is depicted in

Figure 2.

916 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Figure 2. General flow of data in proposed approach

A. Case Study

To present our configuration approach, we chose 3 different

BPMN models of bug tracking systems: Django1, JIRA2 and

the model of the issue tracking approach in VersionOne3.

A bug tracking system is a software application which helps

in tracking and documenting the reported software bugs (or

other software issues in a more general case). Such systems

are often integrated with other software project management

applications, such as in VersionOne, because they are valuable

for the company.

Thus, apart from popularity, we selected such a case study

because these kinds of processes have similar users assigned to

similar kinds of tasks, the processes of different bug trackers

present the existing variability, and such an example can be

easily used to present our algorithm in a comprehensive way.

B. Automatic Hierarchization Algorithm

The hierarchization algorithm is given a BPMN model,

a set of high-level BPMN tasks and an assignment of BPMN

model’s tasks to the high-level tasks. Using this information

it constructs two-level hierarchical diagram. The lower level

contains one diagram for each high-level task. Higher level

diagram contains high level tasks (with lower-level diagram

as subprocesses). This is done in such way to maximize

simplicity and preserve semantics of original model.

Hierarchization is performed in several steps.

1) Introduction of high-level expanded subprocesses

In the first step, expanded subprocesses are introduced.

Tasks are assigned to them according to given specifica-

tion. Gateways are placed outside of all subprocesses

unless all their incoming and outgoing flows lead to

tasks of the same process. Intra-subprocess flows are

kept. Inter-subprocess flows are replaced by:

a) flow from source element to end event (in subpro-

cess),

b) OR-gateway right after subprocess (one per sub-

process),

c) flow from introduced gateway to target of initial

flow with condition ’subprocess ended in event

introduced in 1a’.

This step is depicted in Figure 3. After this step is

performed, assumption 1 of configuration algorithm

(Section V-C) is fulfilled.

1See: https://code.djangoproject.com/
2See: http://www.atlassian.com/software/jira/
3See: http://www.versionone.com/

E1

E2

Which end event?

source = S1

source = S2

S1

S2

E1

E2

Figure 3. First step of hierarchization algorithm

2) Gateway simplification

The previous step introduced new gateways. The original

diagram may contain unnecessary gateways too. Creat-

ing configurable diagram in proposed approach requires

a very specific structure of high-level model. It can be

achieved through gateway simplification.

The process of gateway simplification is depicted in

Figure 4. In a simplified model one gateway G is

placed after every subprocess S(G) (unless it has only

one outgoing flow which does not end in a gateway).

Gateway G has outgoing flows to all subprocesses and

end events reachable in original model from S(G). Con-

ditions labeling these flows are determined as follows.

Let flowN (G, T) and flowO(G, T) be the flows in

the new and old graphs respectively from gateway G

to target item T . Let CN (G, T) and CO(G, T) be

the conditions on flow flowN (G, T) and flowO(G, T)
respectively. Let P (G, T) be the set of all paths in old

graph (all gateways appear at most once) from G to P .

Let L(G) be the set of loops in gateway graph reachable

from gateway G. Then the following hold:

all((G1, G2, . . . , Gk), T) holds iff CO(Gk, T) and

for all i ∈ {1, 2, . . . , k − 1} holds CO(Gi, Gi+1)

CN (G, T) holds iff exists p ∈ P (G, T) such that all(p, T)

Presented procedure works as long as graph of gateways

is acyclic. Cycles need additional compensation for

the fact that infinite looping is possible. We propose

a solution where a new task “loop infinitely” is added

and connected by flow from all gateways that allow

looping. Condition on the new flow may be defined by

analogy to the previous case:

all((G1, G2, . . . , Gk)) holds iff CO(Gk, G1) and

for all i ∈ {1, 2, . . . , k − 1} holds CO(Gi, Gi+1)

CN (G, T) holds iff exists p ∈ L(G) such that all(p)

MATEUSZ BARAN, KRZYSZTOF KLUZA, GRZEGORZ J. NALEPA, ANTONI LIGZA: A HIERARCHICAL APPROACH FOR CONFIGURING BUSINESS PROCESSES917

Loop infinitely
Unreachable

Figure 4. Second step of hierarchization algorithm (gateway simplification)

Figure 5. The idea of third step of hierarchization

Figure 4 shows a graph of gateways before and after

simplification. Simplification assures that requirements

2 and 3 from Section V-C are fulfilled.

3) Removal of recurring flows

Last step of hierarchization is elimination of recurring

flows. By this a flow from a gateway to activity preced-

ing this gateway is meant (see Figure 5).

Before each end event in the subprocess that can result

in recurring flow a new XOR gateway is placed. It has

two output flows: one to end event and one to task or

gateway a recurring flow would lead to (see Figure 5).

The condition on the latter flow is created according to

Open issue

Make progress

Close issue

Test solution

D_1

D_3

D_2

D_4

D_5

D_6

D_7

Figure 6. High-level diagram of Django issue tracking

Figure 7. Possible flows to and from a gateway

condition on original recurring flow.

This step of hierarchization algorithm makes require-

ment 4 of configuration process fulfilled. The result of

hierarchization of Django issue tracking process can be

seen in Figure 6.

918 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

C. Process Configuration

Let us be given N BPMN models such that:

1) all of them share the same set of tasks,

2) flows outgoing from tasks or start event end in a different

task, end event or an (XOR or OR) gateway (Figure 7),

3) flows outgoing from gateways always end in tasks or

an end event,

4) no flow outgoing from a gateway leads to a task that

has a flow to this gateway.

Then the configurable model that entails all the given

models can be defined as follows:

1) configurable diagram has one start event, all the speci-

fied tasks and all the end events from N given models,

2) for all tasks and start event (let i be the current item):

a) If all diagrams have flow outgoing from i that ends

in (the same) task or the only end event then the

same flow exists in merged diagram.

b) If in at least one model the flow f ends in a gate-

way, the merged model has a configurable gateway

after i. It is a configurable type gateway if there

are diagrams with two different types of gateways

(or one without gateway).

c) If and only if any input diagram gateway after i

has a flow to an item, the configurable gateway

has a flow to this item too. The flows are labeled

with model number and condition from that model.

D. Approach Evaluation

As we tested our approach on the three issue tracking

systems, the results we got are optimistic. The obtained model

is simple and comprehensible. Figure 9 compares initial and

hierarchical versions of Django system. The three hierarchized

models, simplified by the algorithm, can be simultaneously

compared on high level and on the subprocess level. The final

high level configurable model is presented in Figure 8.

One of the drawbacks of our approach is that conditions on

control flows outgoing from gateways may become complex

after hierarchization. However, it is not an obstacle in under-

standing of high level flow in the process, which is the goal

of the approach.

VI. CONCLUSION AND FUTURE WORK

The research presented in this paper addresses three chal-

lenges in Business Process modeling, which we distinguished

in Section II. These are granularity modularization, similarity

capturing and collection storing challenges.
In the paper, we proposed automatic hierarchization al-

gorithm that takes advantage of task taxonomy and allows

us to preserve similar abstraction level of subprocesses in

a hierarchy. A Business Process configuration technique, based

on the hierarchization result is presented as well. It allows

for expressing similarities between different BP models in

a simple but comprehensive way. Thanks to this, a user can

grasp the high-level flow of the merged processes.
In comparison to other approaches, our hierarchization al-

gorithm supports arbitrary n-to-m relationships between tasks

in the merged processes.
To get a proof of concept of our approach, we narrowed our

attention to the subset of BPMN, similarly expressive to EPC.

Thanks to the use of the taxonomy shared by the three models

and the hierarchization algorithm, the configuration approach

is straightforward.
In future work, we consider to extend the approach in sev-

eral ways, e.g. to allow more BPMN elements or multi-level

diagrams [1], and to integrate it with Business Rules [29], es-

pecially in the XTT2 representation [30], [31], in order to use

control flow as inference flow [32] and to allow for automatic

verification of models [33], [34], [35]. Moreover, automatic

generation of taxonomy using some process metrics [11], [36]

is also considered, as well as automatic assignment of tasks

to subprocesses based on Natural Language Processing.

Make progress

Test solution

Close issueOpen issue

J,V

D,J

D,J,V

D,J,V

D,V

D,V

D,J,V

D

J,V

J

Figure 8. Result of the proposed algorithm (after configuration)

MATEUSZ BARAN, KRZYSZTOF KLUZA, GRZEGORZ J. NALEPA, ANTONI LIGZA: A HIERARCHICAL APPROACH FOR CONFIGURING BUSINESS PROCESSES919

R
ep

or
te

r

C
or

e
D

ev
el

op
er

Core Developer

Make Design
Decision Accept

Review patch

Merge and
resolve as fixed

[FIXED]

Resolve as
wontfix

[WONTFIX]

Postpone

R
ep

or
te

r

Reporter

Create Issue
[UNREVIEWED]

A
ny

 C
on

tri
bu

to
r

Any Contributor

Close with any
flag

[CLOSED]

Accept
[ACCEPTED] Create patch Review patch

Review

Cannot be
reviewed by
author

Unreviewed

patch has issues

patch has issues

Open issue

Create Issue
[UNREVIEWED] Review

Postpone

Close issue

Close with any
flag

[CLOSED]

Merge and
resolve as fixed

[FIXED]

Resolve as
wontfix

[WONTFIX]

Test solution

Review patch

Review patch

Make progress

Accept
[ACCEPTED]

Make Design
Decision

Create patchAccept

patch has issues

Figure 9. Comparison of initial diagram and its hierarchical version

920 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

ACKNOWLEDGMENT

The paper is supported by the AGH UST Grant.

REFERENCES

[1] K. Kluza, K. Kaczor, and G. J. Nalepa, “Enriching business processes
with rules using the Oryx BPMN editor,” in Artificial Intelligence

and Soft Computing: 11th International Conference, ICAISC 2012:

Zakopane, Poland, April 29–May 3, 2012, ser. Lecture Notes in Artificial
Intelligence, L. Rutkowski and [et al.], Eds., vol. 7268. Springer, 2012,
pp. 573–581.

[2] K. Kaczor, G. J. Nalepa, Ł. Łysik, and K. Kluza, “Visual design
of Drools rule bases using the XTT2 method,” in Semantic

Methods for Knowledge Management and Communication, ser. Studies
in Computational Intelligence, R. Katarzyniak, T.-F. Chiu, C.-F.
Hong, and N. Nguyen, Eds. Springer-Verlag, 2011, vol. 381,
pp. 57–66, DOI: 10.1007/978-3-642-23418-7. [Online]. Available:
http://www.springerlink.com/content/h544g4238716m320/

[3] M. Szpyrka, “Exclusion rule-based systems – case study,” in Interna-

tional Multiconference on Computer Science and Information Technol-

ogy, vol. 3, Wisła, Poland, October 20-22 2008, pp. 237–242.
[4] OMG, “Business Process Model and Notation (BPMN): Version 2.0

specification,” Object Management Group, Tech. Rep. formal/2011-01-
03, January 2011.

[5] T. Allweyer, BPMN 2.0. Introduction to the Standard for Business

Process Modeling. Norderstedt: BoD, 2010.
[6] G. J. Nalepa and K. Kluza, “UML representation for rule-based applica-

tion models with XTT2-based business rules,” International Journal of

Software Engineering and Knowledge Engineering (IJSEKE), vol. 22,
no. 4, pp. 485–524, 2012.

[7] B. Silver, BPMN Method and Style. Cody-Cassidy Press, 2009.
[8] H. Reijers, J. Mendling, and R. Dijkman, “Human and automatic

modularizations of process models to enhance their comprehension,”
Information Systems, vol. 36, no. 5, pp. 881–897, 2011.

[9] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst, “Seven pro-
cess modeling guidelines (7pmg),” Information & Software Technology,
vol. 52, no. 2, pp. 127–136, Feb 2010.

[10] Z. Yan, R. Dijkman, and P. Grefen, “Business process model repositories
– framework and survey,” Information and Software Technology, vol. 54,
no. 4, pp. 380–395, 2012.

[11] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, and J. Mendling,
“Similarity of business process models: Metrics and evaluation,” Infor-

mation Systems, vol. 36, no. 2, pp. 498–516, Apr 2011.
[12] D. V. Nuffel and M. D. Backer, “Multi-abstraction layered business

process modeling,” Computers in Industry, vol. 63, no. 2, pp. 131–147,
2012.

[13] F. Pittke, H. Leopold, J. Mendling, and G. Tamm, “Enabling reuse
of process models through the detection of similar process parts,”
in Business Process Management Workshops, ser. Lecture Notes in
Business Information Processing, M. Rosa and P. Soffer, Eds. Springer
Berlin Heidelberg, 2013, vol. 132, pp. 586–597.

[14] B. Weber, M. Reichert, J. Mendling, and H. A. Reijers, “Refactoring
large process model repositories,” Computers in Industry, vol. 62, no. 5,
pp. 467–486, 2011.

[15] M. La Rosa, P. Wohed, J. Mendling, A. ter Hofstede, H. Reijers, and
W. M. P. Van der Aalst, “Managing process model complexity via ab-
stract syntax modifications,” Industrial Informatics, IEEE Transactions

on, vol. 7, no. 4, pp. 614–629, 2011.
[16] C. Cappelli, J. C. Leite, T. Batista, and L. Silva, “An aspect-oriented

approach to business process modeling,” in Proceedings of the 15th

workshop on Early aspects, ser. EA ’09. New York, NY, USA: ACM,
2009, pp. 7–12.

[17] R. Uba, M. Dumas, L. García-Bañuelos, and M. Rosa, “Clone detec-
tion in repositories of business process models,” in Business Process

Management, ser. Lecture Notes in Computer Science, S. Rinderle-Ma,
F. Toumani, and K. Wolf, Eds. Springer Berlin Heidelberg, 2011, vol.
6896, pp. 248–264.

[18] M. Dumas, L. García-Bañuelos, M. L. Rosa, and R. Uba, “Fast detection
of exact clones in business process model repositories,” Information

Systems, vol. 38, no. 4, pp. 619–633, 2013.
[19] N. Zaaboub Haddar, L. Makni, and H. Ben Abdallah, “Literature review

of reuse in business process modeling,” Software & Systems Modeling,
pp. 1–15, 2012.

[20] J. Mendling, G. Neumann, and W. Aalst, “Understanding the occurrence
of errors in process models based on metrics,” in On the Move to

Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and

IS, ser. Lecture Notes in Computer Science, R. Meersman and Z. Tari,
Eds. Springer Berlin Heidelberg, 2007, vol. 4803, pp. 113–130.

[21] M. Kunze and M. Weske, “Metric trees for efficient similarity search
in large process model repositories,” in Business Process Management

Workshops, ser. Lecture Notes in Business Information Processing,
M. Muehlen and J. Su, Eds. Springer Berlin Heidelberg, 2011, vol. 66,
pp. 535–546.

[22] R. Dijkman, M. L. Rosa, and H. A. Reijers, “Managing large collec-
tions of business process models – current techniques and challenges,”
Computers in Industry, vol. 63, no. 2, pp. 91–97, 2012.

[23] W. M. van der Aalst, “Business process management: A comprehensive
survey,” ISRN Software Engineering, vol. 2013, 2013.

[24] M. L. Rosa, M. Dumas, A. H. ter Hofstede, and J. Mendling, “Config-
urable multi-perspective business process models,” Information Systems,
vol. 36, no. 2, pp. 313 – 340, 2011.

[25] M. Rosemann and W. M. P. van der Aalst, “A configurable reference
modelling language,” Inf. Syst., vol. 32, no. 1, pp. 1–23, Mar. 2007.

[26] F. Puhlmann, A. Schnieders, J. Weiland, and M. Weske, “Variability
Mechanisms for Process Models. PESOA-Report TR 17/2005, Process
Family Engineering in Service-Oriented Applications (pesoa). BMBF-
Project.”

[27] A. Schnieders and F. Puhlmann, “Variability mechanisms in e-business
process families,” in Proc. International Conference on Business Infor-

mation Systems (BIS 2006, 2006, pp. 583–601.
[28] M. L. Rosa, M. Dumas, R. Uba, and R. M. Dijkman, “Business

process model merging : An approach to business process consolidation,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 22, no. 2, 2013.

[29] G. J. Nalepa, “Proposal of business process and rules modeling with
the XTT method,” in Symbolic and numeric algorithms for scientific

computing, 2007. SYNASC Ninth international symposium. September

26–29, V. Negru and et al., Eds., IEEE Computer Society. Los Alamitos,
California ; Washington ; Tokyo: IEEE, CPS Conference Publishing
Service, september 2007, pp. 500–506.

[30] G. J. Nalepa, A. Ligęza, and K. Kaczor, “Formalization and modeling
of rules using the XTT2 method,” International Journal on Artificial

Intelligence Tools, vol. 20, no. 6, pp. 1107–1125, 2011.
[31] A. Ligęza and G. J. Nalepa, “A study of methodological issues in design

and development of rule-based systems: proposal of a new approach,”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discov-

ery, vol. 1, no. 2, pp. 117–137, 2011.
[32] G. Nalepa, S. Bobek, A. Ligęza, and K. Kaczor, “Algorithms for

rule inference in modularized rule bases,” in Rule-Based Reasoning,

Programming, and Applications, ser. Lecture Notes in Computer Sci-
ence, N. Bassiliades, G. Governatori, and A. Paschke, Eds., vol. 6826.
Springer Berlin / Heidelberg, 2011, pp. 305–312.

[33] K. Kluza, T. Maślanka, G. J. Nalepa, and A. Ligęza, “Proposal of
representing BPMN diagrams with XTT2-based business rules,” in
Intelligent Distributed Computing V. Proceedings of the 5th International

Symposium on Intelligent Distributed Computing – IDC 2011, Delft, the

Netherlands – October 2011, ser. Studies in Computational Intelligence,
F. M. Brazier, K. Nieuwenhuis, G. Pavlin, M. Warnier, and C. Badica,
Eds. Springer-Verlag, 2011, vol. 382, pp. 243–248.

[34] M. Szpyrka, G. J. Nalepa, A. Ligęza, and K. Kluza, “Proposal of formal
verification of selected BPMN models with Alvis modeling language,” in
Intelligent Distributed Computing V. Proceedings of the 5th International

Symposium on Intelligent Distributed Computing – IDC 2011, Delft, the

Netherlands – October 2011, ser. Studies in Computational Intelligence,
F. M. Brazier, K. Nieuwenhuis, G. Pavlin, M. Warnier, and C. Badica,
Eds. Springer-Verlag, 2011, vol. 382, pp. 249–255.

[35] F. Coenen et al, “Validation and verification of knowledge-based
systems: report on eurovav99,” The Knowledge Engineering Review,
vol. 15, no. 2, pp. 187–196, 2000.

[36] K. Kluza and G. J. Nalepa, “Proposal of square metrics for measuring
business process model complexity,” in Proceedings of the Federated

Conference on Computer Science and Information Systems – FedCSIS

2012, Wroclaw, Poland, 9-12 September 2012, M. Ganzha, L. A.
Maciaszek, and M. Paprzycki, Eds., 2012, pp. 919–922.

MATEUSZ BARAN, KRZYSZTOF KLUZA, GRZEGORZ J. NALEPA, ANTONI LIGZA: A HIERARCHICAL APPROACH FOR CONFIGURING BUSINESS PROCESSES921

