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Abstract—The aim of the paper is to analyze the potential
of the mixed precision iterative refinement technique for the
WZ factorization. We design and implement a mixed precision
iterative refinement algorithm for the WZ factorization with the
use of the single (a.k.a. float), double and long double precision.
For random dense square matrices with the dominant diagonal
we report the performance and the speedup of the solvers using
different machines and we investigate the accuracy of obtained
solutions. Additionally, the results (performance, speedup and
accuracy) for our mixed precision implementation based on the
WZ factorization were compared to the similar ones based on
the LU factorization.

I. INTRODUCTION

S
OLUTION of linear systems of equations of the form:

Ax = b, where A ∈ R
n×n, b ∈ R

n, (1)

is an important and common problem in engineering and

scientific computations. One of the direct methods of solving

a dense linear system (1) is to factorize the matrix A into

some simpler matrices — and then solving simpler linear

systems. The most known factorization is the LU factorization.

In this work we study another form of the factorization,

namely the WZ factorization. In [5], [6], [7] we showed

that there are matrices for which applying the incomplete

WZ preconditioning gives better results than the incomplete

LU factorization and we also showed the use of the WZ

factorization for Markovian models.

One of quite known techniques to accelerate computations

is the mixed precision iterative refinement. The iterative re-

finement is a well-known concept and it was analyzed by

[11], [13], [12]. The mixed precision iterative refinement

technique is used for the high performance computing [2], for

example, for the solution of dense linear systems [3] — the

LU factorization was considered among others, for accelerated

block-asynchronous iteration methods [1].

The idea of such a refinement is that we perform the

most time-consuming computations with the use of the low

precision and then we improve the accuracy of the solu-

tion with the use of the high precision — by the iterative

This work was partially supported within the project N N516 479640 of the
Ministry of Science and Higher Education of the Polish Republic (MNiSW)
“Modele dynamiki transmisji, sterowania zatłoczeniem i jakością usług w
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refinement. The mixed precision method uses properties of

modern computer architectures where the single precision

computations are about twice faster than the double precision

ones — and the same can be observed for the memory access

for both precisions.

Here we will modify the WZ solver to use the mixed preci-

sion approach. The aim of the paper is to analyze the potential

of the mixed precision iterative refinement technique for the

WZ factorization. We design and implement a mixed precision

iterative refinement algorithm for the WZ factorization and

compare its performance, speedup and accuracy with the pure

implementation of the WZ factorization with the use of the

float, double and long double precisions. We also compare it

to an analogous LU solvers (pure ones and with the mixed

precision).

The content of the paper is following. In Section II we

describe the idea of the WZ factorization [8], [14] and the

way the matrix A is factorized to a product of matrices W

and Z — such a factorization exists for every nonsingular

matrix (with pivoting) what was shown in [8].

Section III provides some mathematical background by

outlining the idea of the iterative refinement algorithm.

In Section IV we describe the mixed precision iterative

refinement technique for the WZ factorization. We present

the algorithm for matrices which can be factorized without

pivoting, for example, strictly diagonally dominant ones (as it

was proved in [8]) and we give details about the implemen-

tation of the mixed precision iterative refinement for the WZ

factorization.

In Section V we present the results of our experiments. We

analyze the performance of our algorithm and its speedup. We

study the influence of the size of the matrix on the achieved

numerical accuracy.

Section VI is a summary of our experiments.

II. WZ FACTORIZATION

Here we describe shortly the WZ factorization usage to

solve (1). The WZ factorization is described in [8], [10].

Assume that the A is a square nonsingular matrix. We are to

find matrices W and Z that fulfill WZ = A and the matrices

W and Z consist of the following columns wi and rows zTi
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respectively:

wi = (0, . . . , 0, 1
︸ ︷︷ ︸

i

, wi+1,i, . . . , wn−i,i, 0, . . . , 0)
T

for i = 1, . . . ,m,

wi = (0, . . . , 0, 1
︸ ︷︷ ︸

i

, 0, . . . , 0)T

for i = p, q,

wi = (0, . . . , 0
︸ ︷︷ ︸

n−i+1

, wn−i+2,i, . . . , wi−1,i, 1, 0, . . . , 0)
T

for i = q + 1, . . . , n,

zTi = (0, . . . , 0
︸ ︷︷ ︸

i−1

, zii, . . . , zi,n−i+1, 0, . . . , 0)

for i = 1, . . . , p,

zTi = (0, . . . , 0
︸ ︷︷ ︸

i−1

, zi,n−i+1, . . . , zii, 0, . . . , 0)

for i = p+ 1, . . . , n,

where
m = ⌊(n− 1)/2⌋,
p = ⌊(n+ 1)/2⌋,
q = ⌈(n+ 1)/2⌉.

(see also Figure 1).

After the factorization we can solve two linear systems:

Wy = b,

Zx = y

(where c is an auxiliary intermediate vector) instead of one

(1).

III. REFINEMENT

Let xcr be the exact solution of the system (1):

Axcr = b (2)

and xcm be the machine-computed solution, thus with some

rounding error — which we denote by e (all xcr, xcm, e are

vectors of the size n).

Then, we can write:

xcm = xcr − e (3)

Let

r = b−Axcm (4)

be a residual vector for the not exact solution xcm. Using (3)

for xcm in (4) we get:

r = b−A(xcr − e)

and then (from (2)):

r = Ae. (5)

Now, we can compute the error vector e from a linear

system (5) and find a new, better solution of (1):

x′
cm = xcm + e.

However, the vector e as a solution of (5) is also prone to

rounding errors, so the new x′
cm is also not exact — although

better — and it can be further improved iteratively with the

same process. This routine is known as the iterative refinement.

Algorithm 1 describes steps of such an iterative refinement

for the solution of the linear system (1), with the use of the

WZ factorization. The computational complexity is also given

for every step. The stop condition is given by the infinity norm

of the residual vector:

||r||∞ = max
1≤i≤n

|ri|,

and the refinement stops when there is no further improvement

(that is why we return x, not x′).

Algorithm 1 The iterative refinement technique for the WZ

factorization
Require: A, b

Ensure: x← A−1b

1: WZ← A {O(n3)}
2: Solve the equation Wy = b {O(n2)}
3: Solve the equation Zx = y {O(n2)}
4: r← Ax− b {O(n2)}
5: ε← ||r||∞ {O(n)}
6: loop

7: Solve the equation Wy = r {O(n2)}
8: Solve the equation Zp = y {O(n2)}
9: x′ ← x+ p {O(n)}

10: r← Ax′ − b {O(n2)}
11: ε′ ← ||r||∞ {O(n)}
12: if ε′ ≥ ε : return x {O(1)}
13: x←→ x′ {O(1), only references swapped}

14: ε← ε′ {O(1)}
15: end loop

IV. MIXED PRECISION

The next algorithm, Algorithm 2, describes the use of the

mixed precision technique with the iterative refinement of the

solution. Every step is also labeled with its precision.

The only operations performed with the use of the double

(or long double) precision are:

• matrix-vector operations with the complexity O(n2) —

Steps 7 and 15 (computing the residual vector);

• vector operations with the complexity O(n) — Steps 8,

16 (computing the norm) and 14 (applying the correc-

tion);

• scalar operations with the complexity O(1) — Steps 17

and 19;

• conversions — almost all with the complexity O(n) —

the only exception (O(n2)) is Step 1, but it is done only

once, before the loop.
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Fig. 1. Structures of the matrices W (left) and Z (right)

Algorithm 2 The mixed precision iterative refinement tech-

nique for the WZ factorization

Require: Ad, bd

Ensure: xd ← Ad
−1bd

1: As ← Ad {conversion}

2: bs ← bd {conversion}

3: WsZs ← As {O(n3), single}

4: Solve the equation Wsys = bs {O(n2), single}

5: Solve the equation Zsxs = ys {O(n2), single}

6: xd ← xs {conversion}

7: rd ← Adxd − bd {O(n2), (long) double}

8: ε← ||rd||∞ {O(n), (long) double}

9: loop

10: rs ← rd {conversion}

11: Solve the equation Wsys = rs {O(n2), single}

12: Solve the equation Zsps = ys {O(n2), single}

13: pd ← ps {conversion}

14: x′
d ← xd + pd {O(n), (long) double}

15: rd ← Adx
′
d − bd {O(n2), (long) double}

16: ε′ ← ||rd||∞ {O(n), (long) double}

17: if ε′ ≥ ε : return xd {O(1), (long) double}

18: xd ←→ x′
d {O(1), only references swapped}

19: ε← ε′ {O(1), (long) double}

20: end loop

All the other computations are single precision ones.

We denote the matrices and vectors stored in the (long)

double precision with the d subscript and the matrices and

vectors stored in the single precision with the s subscript. So,

the input data are the matrix Ad and the vector bd ((long)

double precision). The output vector xd is also stored in the

(long) double precision.

The coefficient matrix Ad is converted to the single preci-

sion for the WZ factorization and denoted as As. Some vectors

in the algorithm are also converted between single and (long)

double precision (that is why we have: bd and bs; xd and xs;

rd and rs; pd and ps).

The method used in Algorithm 2 can give a significant

improvement for the solution of a linear system, because the

cost of every iteration is very small comparing to the cost of

the factorization.

The disadvantage of this approach is a lot larger memory

requirement — a great deal of data are to be duplicated in

both precisions. It consumes up to 50% more memory than it

is used in usual double precision solution.

V. NUMERICAL EXPERIMENTS

In the experiment, we analyze how the use of the mixed pre-

cision iterative refinement techniques for the WZ factorization

influences the performance, the speedup and the accuracy of

the WZ solver for the linear equation system. In this section we

test the performance, the speedup and the accuracy on three

devices of different architectures. Additionally, we compare

properties of the WZ solver with the LU solver. For both kinds

of factorization we consider five implementations:

• a traditional single precision implementation;

• a traditional double precision implementation;

• a traditional long double precision implementation;

• a mixed precision implementation with double precision

refinement (denoted as mix(double));

• a mixed precision implementation with long double pre-

cision refinement (denoted as mix(long double)).

The former three are made according to Algorithm 1 and

the latter two are made according to Algorithm 2. All the

implementations were sequential (single-threaded).

All the computations were carried out for dense random

matrices with a dominant diagonal. The sizes of the matrices

were from 500 up to 9000.

A. Environment

The architectures used for tests are shown in Table I. All the

machines worked under the Debian GNU/Linux 6.0 operating

system and the programs were compiled with the use of the

GCC compiler (ver. 4.7.2, compiler command: g++ -O3).
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Fig. 2. The performance of the LU (left) and WZ (right) solver on the AMD architecture
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Fig. 3. The performance of the LU (left) and WZ (right) solver on the Intel Core architecture
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Fig. 4. The performance of the LU (left) and WZ (right) solver on the Intel Xeon architecture
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B. Performance

Figures 2, 3, 4 show the performance of the single-core

implementations of the LU and WZ solvers on the given archi-

tectures. The performance is based on the number of floating-

point operations in the LU solver

(
2

3
n3 +

1

2
n2 −

7

6
n

)

.

We see that:

• the architecture has almost no impact on the performance

— however, not mixed implementations on AMD are

somewhat slower;

• the size of the matrix has no impact on the performance,

either;

• the WZ solver performs better than the LU solver;

• the long double implementation is always the slowest,

the others perform quite similarly — even (what is very

important) the mix(long double) implementation.

C. Speedup

Figures 5, 6, 7 show the speedup of the same implementa-

tions. We labeled our speedups by S(F)-P where:

• F ∈ {LU,WZ} is the kind of the factorization used;

• P ∈ {double, long double} is the precision of the result.

Thus, S(F)-P denotes the speedup achieved by the mix(P)

implementation over the P implementation — while both are

conducted with the use of the F factorization.

We see that:

• the architecture has some impact on the speedup: the best

is for the AMD architecture — because that architecture

gives somewhat slower performance for double and long

double implementations;

• for very small problem sizes, the cost of even a few

iterative refinement iterations is high compared to the cost

of the factorization and thus, the mix(double) implemen-

tations are less efficient than the double ones;

• the LU solvers have higher speedups than the WZ solvers

for all architectures — because the original LU solver

performs slightly worse than the WZ one;

• if the problem size is big enough, the mix(double)

implementation can provide a speedup of up to 1.3 and

the mix(long double) — even up to 7.

D. Accuracy

Figures 8, 9, 10 show the accuracy of the implementations.

We define the measure of the accuracy as

accu = − log10 ||Ax− b||∞.

We see that:

TABLE I
HARDWARE PROPERTIES OF THE TEST MACHINES

AMD
CPU AMD FX-8120 3.1 GHz
Host memory 16 GB

Intel Core
CPU Intel Core I7 2670QM 2.2 GHz
Host memory 8 GB

Intel XEON
CPU Intel Xeon X5650 2.67GHz
Host memory 48 GB
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Fig. 5. The speedup of the LU and WZ solvers on the AMD
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Fig. 6. The speedup of the LU and WZ solvers on the Intel Core
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Fig. 7. The speedup of the LU and WZ solvers on the Intel Xeon

BEATA BYLINA, JAROSŁAW BYLINA: MIXED PRECISION ITERATIVE REFINEMENT TECHNIQUES 429



 0

 5

 10

 15

 20

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

a
c
c
u

size of the matrix

AMD, LU factorization

LU-single
LU-double

LU-long double
LU-mix(double)

LU-mix(long double)

 0

 5

 10

 15

 20

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

a
c
c
u

size of the matrix

AMD, WZ factorization

WZ-single
WZ-double

WZ-long double
WZ-mix(double)

WZ-mix(long double)

Fig. 8. The accuracy of the LU (left) and WZ (right) solver on the AMD architecture
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Fig. 9. The accuracy of the LU (left) and WZ (right) solver on the Intel Core architecture

 0

 5

 10

 15

 20

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

a
c
c
u

size of the matrix

Intel Xeon, LU factorization

LU-single
LU-double

LU-long double
LU-mix(double)

LU-mix(long double)

 0

 5

 10

 15

 20

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

a
c
c
u

size of the matrix

Intel Xeon, WZ factorization

WZ-single
WZ-double

WZ-long double
WZ-mix(double)

WZ-mix(long double)

Fig. 10. The accuracy of the LU (left) and WZ (right) solver on the Intel Xeon architecture
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• the architecture has no impact on the accuracy;

• the size of the matrix and the type of the factorization

has almost no impact on the accuracy, either;

• the worst accuracy we get is (of course) for the single

implementation; the best (about 10−15) — for the long

double one;

• the mixed precision significantly improves the accuracy.

The number of iterations needed for our mixed precision

method to outdo the accuracy of the (long) double precision

solver is not too high and is about 5–6 iterations, somewhat

less on the AMD architecture (about 3–4 iterations).

VI. CONCLUSION

In this article we described an iterative refinement algorithm

for the WZ solver with the use of the mixed precision

technique and investigated properties of this new algorithm.

We compared the mixed precision iterative refinement for

the WZ factorization with a similar algorithm for the LU

factorization.

Both the types of algorithms gave similar accuracy. How-

ever, the performance was better for the WZ solvers but the

higher speedup was achieved for the LU solver.

These experiments show that the mixed precision iterative

refinement method can run faster than the (long) double pre-

cision solver — delivering the same (or even better) accuracy

as the (long) double precision one for both the factorizations.

Moreover, the experiments also show that the mixed precision

iterative refinement method for the long double precision

solver is much faster than the traditional one (up to 7 times)

— with the same or better accuracy.

The results do not depend significantly on the size of the

matrix.

The approach presented here causes a significant acceler-

ation of solving the linear systems with the use of direct

methods and we think that the similar problems on different

architectures (as GPU, for example) could be also improved.
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