
Hands-On Exercises to Support Computer
Architecture Students Using EDUCache Simulator

Sasko Ristov, Blagoj Atanasovski, Marjan Gusev, and Nenad Anchev
Ss. Cyril and Methodius University,

Faculty of Information Sciences and Computer Engineering,

Rugjer Boshkovikj 16, PO Box 393,

1000 Skopje, Macedonia

Email:sashko.ristov@finki.ukim.mk, blagoj.atanasovski@gmail.com, marjan.gushev@finki.ukim.mk,

nenad ancev@hotmail.com

Abstract—EDUCache simulator [1] is developed as a learning
tool for undergraduate students enrolled the Computer Archi-
tecture and Organization course. It gives the explanations and
details of the processor and exploitation of its cache memory.
This paper shows a set of laboratory exercises and several case
studies with examples on how to use the EDUCache simulator in
the learning process. These hands-on laboratory exercises can be
also used in learning software performance engineering and to
increase the student willingness to learn more hardware based
courses in their further studying.

Index Terms—Education; HPC; CPU Cache; Multiprocessor.

I. INTRODUCTION

THE Computer Architecture and Organization course is

devoted to help the students to understand how the

computers work. This course is usually in the first study year

and the teaching material is almost always totally new for the

students. Computer architecture is acknowledged as a signifi-

cant part of the body of knowledge and an important area in

undergraduate computer science curricula [2], [3]. Learning

the course requires huge efforts by the students, especially in

case of computer science students. Instead of wanting to know

how the hardware (computer) works, they just want to use it

as a necessary tool to execute their software programs. While

developing programs by using some high-level programming

language, the students do not get a clear picture of how they

are executed by the computer. This decreases the students’

interest and deeper understanding in learning of the Computer

Architecture and Organization course. Therefore, it makes the

teaching even more difficult requiring a lot of effort from both

instructors and students [4]. Teachers must not only cover a

body of knowledge, but they must motivate students and make

the course exciting by selecting appropriate topics, such as

which processor should be learned [5].

Today’s modern multi-processors consist of multilayer

cache memory system [6] to speedup data access balancing

the gap between CPU and main memory. This complicates

the learning process even more since the students must learn

the organization inside the multi-processor, and not only the

architecture. We have developed EDUCache simulator [1] that

visually presents cache hits and misses, cache line fulfillment,

cache associativity problem [7], for both sequential and paral-

lel algorithm execution. In this paper we present several hands-

on exercises for EDUCache simulator that will improve the

teaching and alleviate the students’ learning process. Several

predefined examples for special memory patterns that cover

data locality and cache set associativity are also presented.

The rest of the paper is organized as follows. In Section II

we discuss the related work about improving the teaching and

learning of computer architecture and other hardware courses

for computer science students. Section III briefly describes

the Computer Architecture and Organization course. The

EDUCache architecture, user interface and different working

modes are described in Section IV. The newly proposed hands-

on laboratory exercises and some predefined examples are

presented in Section V. The final Section VI is devoted on

conclusion and future work.

II. RELATED WORK

This section presents the existing similar visual simulators

that cover the area of computer architecture and organization.

We also present the proposed methodologies and laboratory

exercises in order to lighten the learning and teaching of the

course.

A. Hands-on Exercises: Simulation or Real Hardware

Introducing appropriate hands-on exercises, homework as-

signments and projects besides the lectures will make the

course more interesting and will provoke the students to dive

more deeply to learn how the computer works. Liang [8]

performed a nice survey of hands-on assignments and projects.

Two approaches exist in organizing the laboratory exercises,

i.e., either with visual simulators or working on real hardware.

Using appropriate visual simulators on hands-on exercises

lightens the teaching process and can significantly improve

the students’ interest in hardware generally [9], [10]. The

simulators or web online tools share the laboratory equipment,

thus removing the obstacles of cost, time-inefficient use of

facilities, inadequate technical support and limited access to

design and laboratory resources [11].

Practical work on real hardware is also very important [12],

[13], [14]. Wang [15] and Lee [16] proposed FPGA-based

configurable processors to be used in laboratory exercises.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 751–758

978-1-4673-4471-5/$25.00 c© 2013, IEEE 751

The students can develop, implement and monitoring both

hardware and software of multi-core processor systems on real

hardware.

B. Teaching Methodologies

Several methodologies are developed to teach the hardware

courses in general for computer science students. Reinbrecht

et al. [17] present a methodology that integrates functionally

verified ASIC (Application-Specific Integrated Circuit) soft

cores into a FPGA in order to allow the students to learn the

fundamentals of hardware and its designs challenges, not only

development, but also verification and physical implications.

Ackovska and Ristov [18] improved the hands-on laboratory

exercises and introduced a new teaching methodology. They

divided the exercises in tutorials and tasks. The former are

published a week before the exercises as students can prepare

for the exercise, while the latter are given to the students dur-

ing the laboratory exercises. These changes improved students’

grades without making the course exams easier. Hatfield and

Jin [19] designed and developed many laboratory exercises

to design and implementation of an operating model of a

pipelined processor.

Da [20] elaborated the common methods of classroom

teaching and experimental teaching and some efficient meth-

ods for classroom and laboratory teaching. He [21] addressed

five problems related to computer architecture education in

multi-core era and suggested a possible solution.

C. Visual Simulators

We have found many visual simulators that cover a par-

ticular fundamental part of computer architecture and orga-

nization. Nikolic et al. [9] evaluated many simulators and

concluded that some simulators are designed for teaching,

some for data profiling, and none of them covers all topics in

computer architecture and organization. We [1] have presented

a very comprehensive overview of several visual simulators:

• EduMIPS64 [22] for instruction pipelining, hazard detec-

tion and resolution, exception handling, interrupts, and

memory hierarchies;

• Dinero IV [23] for memory hierarchy with various caches

on single core systems;

• CMP$im [24] - based on the Pin binary instrumentation

tool;

• HC-Sim [25] generates traces during runtime and simu-

lates multiple cache configurations in one run;

• Herruzo’s [26] simulator for understanding the cache look

up process and writing elements in the cache memory.

• Misev’s [27] visual simulator for ILP dynamic out-of-

order executions;

• Valgrind [28] (with its module Cachegrind) profiler for

cache behavior;

All these simulators were not primarily developed for

teaching the cache memory although most of them are visual.

They lack educational features since they are built to complete

the simulation as fast as possible rather than to present the

architecture and organization of cache memory system in a

modern multi-processor. Our EDUCache simulator [1] offers

step by step simulation allowing the students to pause the

simulation and analyze the cache hits and misses in each cache

level. Its power increases with appropriate hands-on exercises.

SimpleScalar [29] and SMPCache [30] are additional sim-

ulators selected by William Stallings as a simulation tool for

the implementation of student projects [31].

SimpleScalar is used for program performance analysis,

detailed microarchitectural modeling, and hardware-software

co-verification. It supports non-blocking caches, speculative

execution, and branch prediction.

SMPCache is a widely used simulator in more than 100

universities and research centers. It is a trace-driven simulator

for the analysis and teaching of cache memory systems on

symmetric multiprocessors, analyzing program locality; influ-

ence of the number of processors, cache coherence protocols,

schemes for bus arbitration, mapping, replacement policies,

cache size (blocks in cache), number of cache sets (for set

associative caches), number of words by block (memory block

size).

Although SMPCache is primary developed as a learning

tool for the Computer Architecture and Organization course,

it should be redeveloped since it has an option for one cache

level and symmetric processor only, while our EDUCache

simulator offers simulation of heterogeneous multiprocessor

with three cache levels. Our hands-on laboratory exercises

proposed in this paper supplements its value.

III. THE COMPUTER ARCHITECTURE AND ORGANIZATION

COURSE

This section briefly describes the Computer Architecture

and Organization Course.

The course’s main objective is to offer the students a clear

understanding of the main computer architectures, perfor-

mance of the computer parts and the whole computer system.

It also covers the topics of today’s modern multi-chip and

multicore multiprocessors, as well as the digital logic circuits.

A. Course Organization

The teaching of the course is organized in three parts:

theoretical lectures with 2 classes per week, theoretical ex-

ercises with 2 classes per week and practical exercises with 1

class per week in laboratory. Lectures and theoretical exercises

are organized in larger groups of around 100 students, while

practical exercises are carried out in computer laboratories in

groups of up to 20 students, with each student working on its

own workstation. Prerequisites for enrolling in the course are

previously completed course in Discrete Mathematics.

Theoretical lectures cover the computer abstractions and

technology, the computer language (MIPS), computer arith-

metic, the processor, memory, storage, and multichip multicore

multiprocessors [32].

Theoretical exercises are divided in two parts. The first

midterm covers the topics: computer arithmetic, codes and

performance parameters, while the second part deals with

752 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 1: Overview of design mode of EDUCache simulator - Creating L3 cache instance

digital logic. Hands-on laboratory exercises follow the topics

of theoretical exercises.

The course can be passed in two ways, i.e., through

midterms or final exam. The students must take the theoretical

lecture part and exercise part (plus logic circuits) in either way.

B. Course Obstacles

The previous section briefly describes the course organiza-

tion. We have analyzed the student results and determined that

they had more problems with the topics of theoretical lectures

compared to the exercises, and more precisely, the material

of the second midterm, i.e., the processor, memory, I/O and

parallelization. Our analysis show that although these subjects

are covered during the theoretical lectures, neither theoretical

nor practical exercises are provided for these topics, since the

exercises cover to the design of logic circuits. Even more,

IEEE Computer Society and ACM stated that more attention

should be given to the multi-core processors architecture and

organization, instead of the logic design level [33].

Therefore, we developed the EDUCache simulator that

covers these topics. In this paper, we present the hands-on

laboratory exercises that will make it even more appropriate in

the teaching process, mainly focused on multiprocessor, cache

and main memory.

IV. EDUCACHE SIMULATOR

This section briefly describes the main features, interfaces

and user interface of the EDUCache simulator. More details

about the EDUCache simulator are presented in [1].

The EDUCache simulator is a platform independent simula-

tor developed in JAVA whoose main simulation is described by

a set of Java classes, each for a different CPU cache parameter.

It allows the students to design a multi-layer cache system

with different multi-core multi-cache hierarchy and to analyze

sequential and parallel execution of user algorithm. Each chip

can have one or several homogeneous cores. Each core has

access to some cache of different cache level (generally L1 to

L3). Particular cache can be owned by one, several or all cores

of the chip. In general, L1 and L2 caches are private per core

in modern multi-processors, while L3 cache is shared among

several or all cores.
The particular cache level parameters can vary. Cache is

determined by cache memory size, cache line size, cache

associativity and replacement policy. EDUCache simulator

allows the students to configure all these cache parameters

and cache levels.

A. User Interface

The EDUCache simulator user interface is visual and

user friendly. It uses the Multiple Document Inteface (MDI)

paradigm. The EDUCache simulator works in two modes:

Design and Simulation.
1) Design Mode: The students can configure various cache

parameters and levels to create instances of cache levels and

share them among chip cores.
The students create the cache levels with unique ID (UID).

Figure 1 depicts an overview of EDUCache simulator user

interface in design mode and an example on how a student

can very easily create a particular cache level instance, select

a replacement policy, set associativity, cache line size, cache

size and select unique cache level UID.
After creating cache level instances, the students can create

a core, selecting cache instances from the list of previously

created ones (visible in the table in the right frame) for each

cache level. Figure 2 depicts a user interface to create a core

with unique Core UID, using previously created cache level

instances.
Finally, the students can save the created configuration that

represents a CPU chip. They configure the core instances,

which they prefer to include on the chip and they are prompted

where to save the configuration file.
After completing a multi-core chip with different caches in

the design mode, the students can move to the simulation mode

in order to simulate some memory accesses and analyze which

of them will generate hit or miss in particular cache level of

particular core.

SASKO RISTOV ET AL.: HANDS-ON EXERCISES TO SUPPORT COMPUTER ARCHITECTURE STUDENTS 753

Fig. 2: Overview of design mode of EDUCache simulator - Creating a CPU core

Fig. 3: Overview of Simulation mode - hit in L1 level of core C2, set #8, line #1, address 123416

2) Simulation Mode: After a configuration of the CPU chip

with multiple cores per chip and multiple cache levels per each

core, the students should load the memory addresses and run

the simulation.

Figure 3 depicts the Simulation mode. Its main window

consists of:

• Simulation Control Menu Bar - is the central control

hub for the simulation process. It contains 2 menus,

i.e., Simulation and Construction. The latter creates new

or loads the existing configuration file for a core. The

former loads a study case file, trace file, and operates the

simulations (start, pause, stop, or step by step working

mode);

• Loaded Address Trace Frame - shows the contents of the

trace file, i.e., which core should read the address and the

physical address that is loaded.

• Verbose Output Frame - shows the addresses that are read

by cores, the search in L1 cache and selecting the set in

which the address is supposed to map, the result, i.e.

cache hit or miss, the cache line number if it is hit and

the evicted line if the chosen set was full and read miss

is generated; and

• Visual Representation Frame - is the main feature of

simulation mode which gives a visual representation to

the lookup process. It represents different levels of the

cache level architecture: Core Pane, Cache Sets Pane,

Cache Lines Pane, and Cache Line Info Pane.

V. HANDS-ON EXERCISES FOR EDUCACHE SIMULATOR

This section presents how the EduCache simulator can be

used as a tool in the laboratory exercises to introduce the

students with the basic concepts of processor and its cache

memory.

754 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

A. General Terms

All hands-on laboratory exercises follow the same concept.

Each hands-on exercise starts with an explanation of the goal

and objectives. Next, a brief coverage of the required topics is

presented. This will remind the student of the topics that need

to be learned or revised in order to be able to prepare for the

exercise and complete it. The exercises should be given to the

students a week before the exercise [18].

The objectives are step by step guides on what the student

is supposed to do, e.g., configure the simulator, create a

certain architecture, execute a simulation or analyze the results

from an executed simulation. The guidelines are posed as

simple instructions or as learning objectives. Questions are

placed between the guidelines alerting the students which areas

require more attention. In the end, the students must answer

all questions, create the configuration file of the simulator and

the simulation result file.

B. The Hands-on Exercises

This section presents the hands-on laboratory exercises for

the EDUCache simulator. We present several exercises, some

of which can be gathered or divided according to the available

time for the hands-on laboratory exercises.

1) Exercise 1: Intro to EDUCache Environment: The first

laboratory exercise is designed to introduce the EDUCache

simulator to the students. The exercise goes over the different

types of files that the simulator uses. The basic commands

require the students to go through a simulation and to analyze

the results. Learning objectives include: EDUCache design and

simulating modes, loading a cache configuration file, and basic

cache memory elements. The exercise concludes with running

a simulation on a loaded trace file, creating a new trace file

and running the simulation again, finishing with an analysis

of the statistics that the simulator presents after the simulation

is finished.

Although this exercise does not require a lot of students’

effort, it should be graded. Otherwise, the students may not

pay enough attention on learning the elementary controls of

the simulator, which will cause them to have trouble with later

exercises.

2) Exercise 2: Different Cache Parameters: The second

laboratory exercise aims to present the basic parameters of

cache memory to the students. That is, the size, associativity

and the principles of multiple cache levels. The learning

objective of this exercise is for the students to understand how

these parameters impact on specific program execution. The

principles of time and data locality are covered. The simu-

lator is used to create multiple configurations with different

parameters regarding to the cache size. Simulation is realized

on a single memory trace. The students must observe into the

results of the simulation and compare to find how the different

sizes effect the program execution.

The final part of the exercise is to determine the smallest

size for a cache level that gives the same performance as an

infinite cache size. The grading should include optional ques-

tions for extra credit to inspire the students to show interest in

TABLE I: Example 1 that generates cache misses

Parameter L1 L2 L3

Size 32B 64B 128B
Associativity 2 2 4
Replacement FIFO FIFO FIFO
Cache line 8B 8B 8B

TABLE II: Results of the simulation of the Example 1

Parameter L1 L2 L3

Total reads 50 50 50
Cache hits 0 0 0

Cache misses 50 50 50

the exercises since this exercise contains a significant number

of tasks (and objectives) that the students must complete.

3) Exercise 3: Overview of Cache Set Associativity and

Replacement Policies: The third laboratory exercise goes over

the concepts of cache set associativity and replacement policies

as one of the more complex cache memory parameters. The

exercise shows the impact of these parameters on a specific

program execution. The students must create configurations

and use them to execute and analyze multiple simulations.

A set of address traces is given and the students’ task is

to observe and conclude the optimal replacement policy for

each address trace. The exercise also offers the possibility

to create experimental configurations which do not usually

appear in real systems, such as certain cache levels with certain

replacement policy. Another set of objectives takes a look at

the influence of the set associativity.

C. The Demo Examples

In this section we present several demo examples for

characteristic memory access patterns in order to lighten the

learning and understanding of the processor and its cache

memory architecture and organization.

1) Example 1: Cache Miss due to ”Loosely” Data: This

example demonstrates the continuous cache misses for the

loosely data. Table I presents the example of cache parameters.

The trace file forces the access of the elements with 8B offset

since we want to force a cache miss for each memory read

(each read accesses the element of different cache line). Total

50 reads are realized and the results of the simulation are

presented in Table II.

2) Example 2: Each Second Access is Cache Hit due

to Data Locality: This example accesses pairs of elements

such that each pair is placed in the unique cache line. The

cache parameters are presented in Table III. Total 10 reads

are realized. The results of the simulation are presented in

Table IV. That is, we forced 5 pairs of miss and hit in L1

cache.

3) Example 3: Always Cache Hit due to Data Locality:

This example demonstrates how the set associative cache

memory generates cache hits for ”tightly” data (data locality)

of a single cache line. The cache parameters are the same

SASKO RISTOV ET AL.: HANDS-ON EXERCISES TO SUPPORT COMPUTER ARCHITECTURE STUDENTS 755

Fig. 4: Simulation of Example 3

TABLE III: Example 2 that generates cache hits for the second

access

Parameter L1 L2 L3

Size 128B 192B 256B
Associativity 4 4 8
Replacement LRU LRU LRU
Cache line 32B 32B 32B

TABLE IV: Results of the simulation of the Example 2

Parameter L1 L2 L3

Total reads 10 5 5
Cache hits 5 0 0

Cache misses 5 5 5

as the Example 2 presented in Table III. Since we want to

generate a cache hit for each memory access, all addresses

in the memory trace are in the range of a single cache line.

Total 42 reads are realized. The results of the simulation are

presented in Table V. That is, 1 cache miss is generated by

the first access, and 41 cache hits by all others.

Figure 4 depicts a hit occurring on L1 cache always in the

same cache line, as the rightmost pane shows the other cache

TABLE V: Results of the simulation of the Example 3

Parameter L1 L2 L3

Total reads 42 1 1
Cache hits 41 0 0

Cache misses 1 1 1

TABLE VI: Configuration for Example 4

Parameter L1 L2 L3

Size 16B 32B 64B
Associativity 2 2 4
Replacement FIFO FIFO FIFO
Cache line 8B 8B 8B

lines are empty because all the required elements have been

loaded into a single cache line Line #3.

4) Example 4: Cache Associativity Problem: This example

demonstrates how the set associative cache memory can gen-

erate continuous cache misses if the data access are always in

the same cache set, i.e., cache associativity problem [7]. The

cache parameters are presented in Table VI. Total of 15 reads

are realized, but only 3 different addresses are accessed. The

results of the simulation are presented in Table VII.

This example results in constant L1 cache misses because

of constant eviction of cache lines in the same set. Because

we want to generate a cache miss by looking up the same

cache set (in our case CacheSet#0) for each memory read, all

addresses in the memory trace must satisfy Block address =

X ·Number of cache sets.

For our configuration, the cache line is 4 bytes, which yields

that if the address in main memory is N bytes long, the block

address will be the first N − 2 bits [6].

Figure 5 depicts a step in the simulation of this exercise.

Reading the element stored in address 0 generates a cache

miss on the Level 1 cache, because the previous read replaced

it from the cache set.

756 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 5: Simulation of Example 4

TABLE VII: Results of the simulation of the Example 4

Parameter L1 L2 L3

Total reads 15 15 3
Cache hits 0 12 0

Cache misses 15 3 3

Reading the element will generate cache hit in the

Level 2. The rightmost panel shows the loaded addresses in

CacheLine#0 in CacheSet#0.

VI. CONCLUSION AND FUTURE WORK

EDUCache visual simulator offers the students a tool to

design their own CPU core with multi level cache memories.

It simulates cache misses and hits in particular cache set and

memory location for sequential and parallel execution of an

algorithm. The students can interactively learn about the cache

hierarchy, architecture and organization of private cache level

per core or shared cache level among all or a group of cores,

the cache capacity and associativity problem, cache line, cache

replacement policy, data locality etc.

This paper presents several hands-on laboratory exercises

to support the students for the Computer Architecture and

Organization course, i.e., using the EDUCache simulator they

will better understand the architecture and organization of the

modern processor and its cache memory. Several predefined

examples are also presented to lighten the learning process

and increase the students’ willingness for the Computer Ar-

chitecture and Organization course. This will help the students

to develop their algorithms to achieve maximum performance

using the same hardware resources.

We will introduce the EDUCache simulator and the hands-

on exercises to this semester in courses Computer Architecture

and Organization and Parallel and Distributed Processing, and

survey the students about the impact to their willingness

for learning the processor and its cache memory. Additional

analysis will be realized after finishing the course this year

to determine the results of the exams for the topics that cover

the EDUCache simulator and the proposed hands-on exercises

and examples.

REFERENCES

[1] B. Atanasovski, S. Ristov, M. Gusev, and N. Anchev, “EDUCache sim-
ulator for teaching computer architecture and organization,” in Global

Engineering Education Conference (EDUCON), 2013 IEEE, March
2013, pp. 1015–1022.

[2] R. Shackelford, A. McGettrick, R. Sloan, H. Topi, G. Davies, R. Kamali,
J. Cross, J. Impagliazzo, R. LeBlanc, and B. Lunt, “Computing curricula
2005: The overview report,” SIGCSE Bull., vol. 38, no. 1, pp. 456–457,
Mar. 2006.

[3] M. Stojcev, I. Milentijevic, D. Kehagias, R. Drechsler, and M. Gusev,
“Computer architecture core of knowledge for computer science studies,”
Cyprus Computer Society J., vol. 5, no. 4, pp. 39–42, 2003.

[4] M. Stolikj, S. Ristov, and N. Ackovska, “Challenging students software
skills to learn hardware based courses,” in Information Technology Inter-

faces (ITI), Proceedings of the ITI 2011 33rd International Conference

on, june 2011, pp. 339 –344.

[5] A. Clements, “Arms for the poor: Selecting a processor for teaching
computer architecture,” in Frontiers in Education Conference (FIE),

2010 IEEE, 2010, pp. T3E–1–T3E–6.

[6] J. L. Hennessy and D. A. Patterson, “Computer Architecture, Fifth
Edition: A Quantitative Approach,” MA, USA, 2012.

[7] M. Gusev and S. Ristov, “Performance gains and drawbacks using set
associative cache,” Journal of Next Generation Information Technology

(JNIT), vol. 3, no. 3, pp. 87–98, 31 Aug 2012.

[8] X. Liang, “A survey of hands-on assignments and projects in un-
dergraduate computer architecture courses,” in Advances in Computer

and Information Sciences and Engineering, T. Sobh, Ed. Springer
Netherlands, 2008, pp. 566–570.

SASKO RISTOV ET AL.: HANDS-ON EXERCISES TO SUPPORT COMPUTER ARCHITECTURE STUDENTS 757

[9] B. Nikolic, Z. Radivojevic, J. Djordjevic, and V. Milutinovic, “A
survey and evaluation of simulators suitable for teaching courses in
computer architecture and organization,” Education, IEEE Transactions

on, vol. 52, no. 4, pp. 449 –458, nov. 2009.
[10] S. Ristov, M. Stolikj, and N. Ackovska, “Awakening curiosity - hardware

education for computer science students,” in MIPRO, 2011 Proceedings

of the 34th International Convention, IEEE Conference Publications,
2011, pp. 1275 –1280.

[11] D. Pop, D. G. Zutin, M. E. Auer, K. Henke, and H.-D. Wuttke, “An
online lab to support a master program in remote engineering,” in
Proceedings of the 2011 Frontiers in Education Conference, ser. FIE
’11. USA: IEEE Computer Society, 2011, pp. GOLC2–1–1–GOLC2–
6.

[12] I. Kastelan, D. Majstorovic, M. Nikolic, J. Eremic, and M. Katona,
“Laboratory exercises for embedded engineering learning platform,” in
MIPRO, 2012 Proc. of the 35th Int. Conv., 2012, pp. 1113–1117.

[13] J. Qian, R. Wang, S. Shi, Y. Zhu, and Z. Xie, “Simplifying and
integrating experiments of hardware curriculums,” in Computer Science

and Information Technology (ICCSIT), 2010 3rd IEEE International

Conference on, vol. 9, 2010, pp. 610–614.
[14] D. Kehagias and M. Grivas, “Software-oriented approaches for teaching

computer architecture to computer science students,” Journal of Com-

munication and Computer, vol. 6, no. 12, pp. 1–9, Dec. 2009.
[15] X. Wang, “Multi-core system education through a hands-on project on

fpgas,” in Frontiers in Education Conference (FIE), 2011, 2011, pp.
F2G–1–F2G–6.

[16] J. H. Lee, S. E. Lee, H.-C. Yu, and T. Suh, “Pipelined cpu design with
fpga in teaching computer architecture,” Education, IEEE Transactions

on, vol. 55, no. 3, pp. 341–348, 2012.
[17] C. Reinbrecht, J. Da Silva, and E. Fabris, “Applying in education an

FPGA-based methodology to prototype ASIC soft cores and test ICs,”
in Programmable Logic (SPL), 2012 VIII Southern Conference on, 2012,
pp. 1–5.

[18] N. Ackovska and S. Ristov, “Hands-on improvements for efficient teach-
ing computer science students about hardware,” in Global Engineering

Education Conference (EDUCON), 2013 IEEE, March 2013, pp. 295–
302.

[19] B. Hatfield and L. Jin, “Improving learning effectiveness with hands-on
design labs and course projects for the operating model of a pipelined
processor,” in Frontiers in Education Conference (FIE), 2010 IEEE,
2010, pp. F1E–1–F1E–6.

[20] L. Da, “Computer hardware curriculums, curriculum contents and teach-

ing methods,” in Computer Science Education, 2009. ICCSE ’09. 4th

International Conference on, 2009, pp. 1506–1511.
[21] L. He, “Computer architecture education in multicore era: Is the time

to change,” in Computer Science and Information Technology (ICCSIT),

2010 3rd IEEE International Conference on, vol. 9, 2010, pp. 724–728.
[22] D. Patti, A. Spadaccini, M. Palesi, F. Fazzino, and V. Catania, “Support-

ing undergraduate computer architecture students using a visual mips64
cpu simulator,” Education, IEEE Transactions on, vol. 55, no. 3, pp.
406 –411, aug. 2012.

[23] J. Edler and M. D. Hill, “Dinero iv trace-driven uniprocessor
cache simulator,” 2012. [Online]. Available: http://pages.cs.wisc.edu/
∼markhill/DineroIV/

[24] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “Cmpsim: A pin-based
on-the-fly multi-core cache simulator,” in The Fourth Annual Workshop

MoBS, co-located with ISCA ’08, 2008.
[25] Y.-T. Chen, J. Cong, and G. Reinman, “Hc-sim: a fast and exact l1 cache

simulator with scratchpad memory co-simulation support,” in Proc. of

the 7-th IEEE/ACM/IFIP Int. conf. on HW/SW codesign and system

synthesis (CODES+ISSS ’11). USA: ACM, 2011, pp. 295–304.
[26] E. Herruzo, J. Benavides, R. Quislant, E. Zapata, and O. Plata, “Simu-

lating a reconfigurable cache system for teaching purposes,” in Micro-

electronic Systems Education (MSE ’07). IEEE International Conference

on, 2007, pp. 37 –38.
[27] A. Misev and M. Gusev, “Visual simulator for ILP dynamic OOO

processor,” in WCAE ’04, Proceedings of the workshop on Computer

architecture education: in conduction with the 31st International Sym-

posium on Computer Architecture, E. F. Gehringer, Ed. ACM, USA,
2004, pp. 87 –92.

[28] Valgrind, “System for debugging and profiling linux programs,”
[retrieved: May, 2013]. [Online]. Available: http://valgrind.org/

[29] SimpleScalar LLC, “Simplescalar tool set,” [retrieved: May, 2013].
[Online]. Available: http://www.simplescalar.com/

[30] University of Extremadura, “Smpcache - simulator for cache memory
systems on symmetric multiprocessors,” [retrieved: May, 2013].
[Online]. Available: http://arco.unex.es/smpcache/

[31] W. Stallings, Computer Organization and Architecture: Designing for

Performance, 6th ed. Prentice Hall, 2003.
[32] D. A. Patterson and J. L. Hennessy, “Computer organization and design,

forth edition: The hardware/software interface,” MA, USA, 2009.
[33] ACM/IEEE-CS Joint Interim Review Task Force, “Computer science

curriculum 2008: An interim revision of cs 2001, report from
the interim review task force,” 2008. [Online]. Available: http:
//www.acm.org/education/curricula/ComputerScience2008.pdf

758 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

