
Performance Antipatterns of One To Many
Association in Hibernate

Patrycja Węgrzynowicz
Institute of Informatics
University of Warsaw

Banacha 2, 02-097 Warsaw, Poland
Email: patrycja@mimuw.edu.pl

Abstract—Hibernate is the most popular ORM framework
for Java. It is a straightforward and easy-to-use implementa-
tion of Java Persistence API. However, its simplicity of usage
often becomes mischievous to developers and leads to serious
performance issues in Hibernate-based applications. This paper
presents five performance antipatterns related to the usage of one-
to-many associations in Hibernate. These antipatterns focus on
the problems of the owning side of collections, the Java types and
annotations used in mappings, as well as processing of collections.
Each antipattern consists of the description of a problem along
with a sample code, negative performance consequences, and the
recommended solution. Performance is analyzed in terms of the
number and complexity of issued database statement. The code
samples illustrate how the antipatterns decrease performance and
how to implement the mappings to speed up the execution times.

I. INTRODUCTION

H
IBERNATE [1] is a remarkably popular implementation
of Java Persistence API, i.e., the official standard of

object-relational mapping in Java. However, many developers,
especially of enterprise systems, complain on the correctness
and the performance of Hibernate-based applications. It turns
out that even relatively simple Hibernate applications impose
a significant overhead on communication with a database,
producing too many and/or inefficient SQL statements.

In this paper, we analyze the subject of the most com-
mon mapping, namely one-to-many associations of entities.
Because of its wide usage as well as popularity of Hibernate,
it seemed that the implementation of this association should
have been well optimized. Our research revealed that even
simple applications of one-to-many associations can result in
(1) unexpected SQL statements being executed, (2) too many
SQL statement being executed, and/or (3) too many objects
being loaded into memory. Therefore, naïve mapping of one-
to-many associations can introduce a significant performance
overhead in a Hibernate-based application.

The main contribution of this paper consists of five perfor-
mance antipatterns (i.e., bad practices with a significant impact
on performance) related to the usage of one-to-many associa-
tions in Hibernate. Each antipattern consists of the description
of a problem, performance consequences, the recommended
solution, and a sample code.

II. RELATED WORK

Antipatterns are conceptually similar to design patterns as
they describe recurring problems and provide solutions to
them. A performance antipattern describes a bad practice that
has a significant impact on performance. The articles [2]
and [3] provide a good explanation of performance antipat-
terns along with the definition of 14 performance antipat-
terns. These papers have formed a good basis for further
research on performance antipatterns, mainly in the field of
automated detection and fixing of performance problems. The
paper [4] introduces a framework for automated detection and
assessment of performance antipatterns in component based
systems. The authors of [5] focus on detection of performance
antipatterns in architectural models. The article [6] explains
the method to remove performance antipatterns from software
by analyzing UML models. The paper [7] describes modelling
and analysis of software performance antipatterns along with
their constraints and solvability using different models.

As mentioned above there has been work done in the field
of performance antipatterns, defining solid means in terms
of their definitions, detection, and fixing. These efforts focus
on generic and domain-independent antipatterns, mostly in
the application layer. However, they do not touch the data
layer. Numerous performance problems have their source in an
inefficient way of retrieving or storing large amount of data
in a database. Therefore, this area is important to correctly
identify the source of performance issues in software. It is
especially true nowadays, when the amount of data processed
continually increases and the use of automated frameworks for
object-relational mapping becomes more and more common.

There is a number of popular ORM libraries, like Hiber-
nate [1], EclipseLink [8], Open JPA [9], and Data Nucleus [10]
to name a few. Even though they implement the same spec-
ification — Java Persistence API, they differ in mapping
policies, generate different schemata and SQL statements that
have different performance characteristics. The article [11]
analyzes the influence of optimizations on the performance of
Hibernate. In another paper [12], the same authors compare the
performance of an object-relational mapping tool (Hibernate)
vs. an object-oriented database (db4o) using OO7 benchmark.
Another comparative study of the performance of object-
relational mapping tools for .NET platform can be found

Proceedings of the 2013 Federated Conference on
Computer Science and Information Systems pp. 1463–1469

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1463

in [13]. However, these comparative studies focus mainly on
queries, which usually are as efficient as SQL queries since
they are direct translation to SQL. Some authors (e.g., [14])
identify the need to improve the efficiency of ORM tools by
utilizing the features provided by the database engines.

Even though there has been work done on comparing
performance of ORM tools, we still lack a systematic approach
to identification of their strengths and weaknesses in terms
of impedance mismatch [15]. In this paper, we aim at the
identification of common performance problems for one-to-
many associations in Hibernate. We also define five new
antipatterns and provide recommendations how to fix them.

III. ANTIPATTERN: INADEQUATE COLLECTION TYPE ON

OWNING SIDE

A. Description

In JPA, @OneToMany annotation used on the owning side
(i.e., the side used to manage persistency of elements) is
one of the most common implementations of a one-to-many
association between persistent entities. Such an approach is
commonly used in enterprise development mainly due its sim-
plicity and little coding overhead. However, it can introduce
a serious performance overhead in Hibernate when combined
with an inadequate Java collection type.

Table I presents three types of semantics available in Hiber-
nate, dependent on the combination of a Java collection type
and JPA annotations. Each of these semantics has a different
performance characteristic. Table II shows the numbers of
statements issued while persisting a collection of a given
semantics after an addition or removal of a single element.

The bag semantics has the worst performance when it comes
to the number of operations since it always re-creates the entire
collection. Hibernate issues a delete statement to remove all
associations of the old collection from the association table.
Then, it issues N inserts to add all associations representing
the new collection to the association table. Hibernate does
not analyze how many elements have been changed in the
collection.

In the list semantics, an addition or removal of a single
element from a collection of N elements results in a single
insert or delete respectively and M updates. The updates are
needed to correct the indices of M elements. In case of
addition, Hibernate needs to correct the indices of the elements
before the one being added. In case of removal, Hibernate
needs to correct the indices of the elements after the one being
removed.

The set semantics seems to be the most efficient. For a
single operation on a collection, it requires only a single
database operation. However, it is worthwhile remembering
that the Java set semantics requires a uniqueness check on the
elements of a set. It implies that, in case of any additions of
new elements to a persistent set, all elements of the set must
be loaded into the main memory.

The antipattern relates to the usage of an inefficient collec-
tion semantics for a given usage pattern of a collection:

• For usage patterns of collections where in a single trans-
action the collection is usually left unmodified or only a
few elements are added or removed, the usage of the bag
semantics (i.e., java.util.Collection or java.util.List with-
out the index or order annotations) is notably inefficient.

• For usage patterns of collections where in a single trans-
action most of the elements of the collection are removed,
the usage of the set or list semantics (i.e., java.util.Set

or java.util.List with the index or order annotation) is
inefficient.

TABLE I
THREE SEMANTICS FOR COLLECTIONS WITH @ONETOMANY

ANNOTATION IN HIBERNATE.

Semantics Java Type Annotation

Bag semantics java.util.Collection @OneToMany
java.util.List

List semantics java.util.List @OneToMany ∧

(@IndexColumn ∨

@OrderColumn)
Set semantics java.util.Set @OneToMany

TABLE II
THE NUMBERS OF DML STATEMENTS ISSUED WHILE PERSISTING A

COLLECTION OF N ELEMENTS WITH A GIVEN SEMANTICS (DEFAULT

TABLE MAPPING WITH AN ASSOCIATION TABLE; NO CASCADE OPTION).

Semantics One Element Added One Element Removed

Bag semantic 1 delete, N inserts 1 delete, N inserts
List semantic 1 insert, M updates 1 insert, M updates
Set semantic 1 insert 1 delete

B. Consequences

The performance consequences of the usage of an inade-
quate collection type on the owning side of a one-to-many
association include an increased workload on the database
engine because:

• For the bag semantics, Hibernate re-creates an entire
collection, performing one delete to clear the collection
and as many inserts as there are elements in the collec-
tion. For the common usage pattern of collections, where
only a few elements are added or removed, such a re-
creation results in suboptimal performance due to the
operations on data which actually have not been changed.
The bigger the collection is, the performance overhead is
more significant.

• For the list or set semantics, Hibernate performs single
delete or insert per each removal or addition respectively.
For the usage pattern of collections, where most elements
of a collection are removed, such a strategy results in
suboptimal performance due to many deletes instead of
one delete to clear the collection in one operation.

1464 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

C. Solution

The solution to this antipattern is to analyze the usage profile
of collections in an application and adjust the type of Java
collections accordingly:

• If a collection is constant or is the subject to minimal
changes or is relatively small, the recommended collec-
tion type is java.util.Set with the set semantics.

• If a collection is heavily modified, the recommended
collection type is java.util.Collection or java.util.List with
the bag semantics.

D. Sample Code

Listing 1 presents an example of the antipattern related to
an inadequate collection type on the owning side. The sample
code has two persistent entities (Forest and Tree), which
are connected by an unidirectional association (Forest has
a collection of Tree objects). The classes meet all require-
ments imposed by JPA and Hibernate on persistent entities
(e.g., no-arg constructor). We use a minimal set of additional
annotation and configuration parameters, instead relying on
default values.

To test the persistency mechanism implemented in Hiber-
nate, we execute two transactions. To ensure the same runtime
environment (e.g., clear caches), each transaction is executed
with a new EntityManager instance. The first transaction
creates a Forest instance and 10000 Tree instances planted
in the newly created Forest, whereas the second transaction
finds the previously created Forest instance, creates a new
Tree instance and plants it in the found Forest. It turns
out that Hibernate for such a piece of code as in the second
transaction re-creates the entire collection (i.e., executes one
delete and 10 001 inserts). This behavior of Hibernate is not
performance-wise since in our example one insert would be
enough to synchronize the state of the object in the main
memory with the state of the records in the database. For large
collections with only a few changes it imposes a significant
performance overhead.

IV. ANTIPATTERN: ONETOMANY AS OWNING SIDE

A. Description

The antipattern relates to the usage of the collection side
(i.e., @OneToMany) as the owning side of an association for
large collections, especially the ones which expect only a few
changes in a single transaction.

According to Section III, for such a use case we should use
java.util.Set to minimize the performance overhead. However,
even usage of java.util.Set does not guarantee the optimal
performance.

First, due to the Java set semantics the entire collection
needs to be loaded into the main memory in order to en-
force a uniqueness check in case of addition of elements to
the collection. It results in an additional database query (or
queries due to batch loading) issued and additional processing
dedicated to the transformation of each returned row into an
object. These additional queries and processing happen even

Listing 1. The example of an inadequate collection type on the owning side.

@Enti ty
p u b l i c c l a s s F o r e s t {

@Id @GeneratedValue
p r i v a t e Long i d ;
@OneToMany
C o l l e c t i o n <Tree > t r e e s =

new HashSet <Tree > () ;
. . .
p u b l i c v o id p l a n t T r e e (Tree t r e e) {

t r e e s . add (t r e e) ;
}

}
@Enti ty
p u b l i c c l a s s Tree {

@Id @GeneratedValue
p r i v a t e Long i d ;
p r i v a t e S t r i n g name ;
. . .

}
/ / T r a n s a c t i o n 1
/ / c r e a t e s and p e r s i s t s a f o r e s t . . .
/ / . . . w i th 10 .000 t r e e s
. . .
/ / T r a n s a c t i o n 2
Tree t r e e = new Tree (" oak ") ;
em . p e r s i s t (t r e e) ;
F o r e s t f o r e s t = em . f i n d (F o r e s t . c l a s s , i d) ;
f o r e s t . p l a n t T r e e (t r e e) ;

if the application logic does not access the elements of the
collection in question.

Second, there might be an overhead connected with trans-
actions and locking, when the entity containing the collection
in question uses optimistic locking with versioning. In such
cases, Hibernate locks not only the entity but also the collec-
tion, which lowers the capability of an application to serve
concurrent requests.

B. Consequences

The performance consequences of the @OneToMany as the
owning side antipattern are as follows:

• There is an increased workload on the database engine.
Hibernate issues an additional database query (or a num-
ber of queries in case of batch loading) to retrieve the
elements of a collection.

• There is an increased workload on the application server
(CPU). Hibernate needs to convert each returned row into
an object, even if the application logic does not access
those objects.

• The memory footprint is significant, especially for large
collections. It can result in slower performance due to
insufficient memory available, leading to more frequent
garbage collections or even page swaps.

PATRYCJA WĘGRZYNOWICZ: PERFORMANCE ANTIPATTERNS OF ONE TO MANY ASSOCIATION IN HIBERNATE 1465

• There may be a decreased throughput. Due to transaction
and locking issues, the capability of an application to
serve concurrent requests may be significantly lowered.

C. Solution

The solution to this antipattern is to manage a collection
from the @ManyToOne side instead of @OneToMany side,
i.e., to make @ManyToOne the owning side of the association.
In case we are not able to change the owning side of an
association, we should at least exclude such a collection from
locking by using a Hibernate-specific annotation: @Optimisti-

cLock(excluded=true).

D. Sample Code

Listing 2 presents an example of @OneToMany as the
owning side antipattern. It mimics Listing 1, introducing only
a few changes: (1) the Java type of a collection has been
changed to java.util.Set and (2) version fields have been added
in Forest and Tree classes. The key piece of code is located
in the second transaction, which adds a single Tree to the
previously created Forest with 10 000 trees. It turns out
that in the second transaction, the entire forest is loaded into
memory. Moreover, we are not able to plant trees in parallel
because Hibernate locks the entire Forest instance along
with all its Tree associations.

V. ANTIPATTERN: INADEQUATE COLLECTION TYPE ON

INVERSE SIDE

A. Description

This antipattern relates to the usage of java.util.Set on
the inverse side (also known as the mapped collection) of a
bidirectional one-to-many association in Hibernate.

In case of bidirectional associations, it is recommended to
synchronize the state of the objects (i.e., the mapped collection
and the element entities with @ManyToOne pointers) in mem-
ory. The common implementation to ensure the consistence
of the objects relies on an automated update of the mapped
collection by the setter method in an element entity responsible
for setting the @ManyToOne pointer (see Section V-D).

Therefore, when the type of the mapped collection is
java.util.Set, it means that the entire collections needs to be
loaded into the main memory in response to each addition of
new elements, even though the application does not access
neither the collection nor its elements. It happens due to
the Java set semantics mentioned earlier, which requires a
uniqueness check on the elements of a set.

B. Consequences

The performance consequences of the usage of java.util.Set

on the inverse side of a bidirectional one-to-many association
with in-memory state synchronization are as follows:

• There is an increased workload on the database engine.
Hibernate issues an additional database query (or a num-
ber of queries in case of batch loading) to retrieve the
elements of a collection.

Listing 2. The example of @OneToMany as the owning side.

@Enti ty
p u b l i c c l a s s F o r e s t {

@Id @GeneratedValue
p r i v a t e Long i d ;
@Version
p r i v a t e I n t e g e r v e r s i o n ;
@OneToMany
Set <Tree > t r e e s = new HashSet <Tree > () ;
. . .
p u b l i c v o id p l a n t T r e e (Tree t r e e) {

t r e e s . add (t r e e) ;
}

}
@Enti ty
p u b l i c c l a s s Tree {

@Id @GeneratedValue
p r i v a t e Long i d ;
@Version
p r i v a t e I n t e g e r v e r s i o n ;
p r i v a t e S t r i n g name ;
. . .

}
/ / T r a n s a c t i o n 1
/ / c r e a t e s and p e r s i s t s a f o r e s t . . .
/ / . . . w i th 10 .000 t r e e s
. . .
/ / T r a n s a c t i o n 2
Tree t r e e = new Tree (" oak ") ;
em . p e r s i s t (t r e e) ;
F o r e s t f o r e s t = em . f i n d (F o r e s t . c l a s s , i d) ;
f o r e s t . p l a n t T r e e (t r e e) ;

• There is an increased workload on the application server
(CPU). Hibernate needs to convert each returned row into
an object, even if the application logic does not access
those objects.

• For large collections, there is a significant memory foot-
print. It can slow down performance of an application due
to insufficient memory available, more frequent garbage
collections, or even page swaps.

C. Solution

The recommended Java types to be used on the inverse
side of a one o many association are java.util.Collection or
java.util.List. These types do not force loading the elements
into memory until the elements are accessed by client code.

D. Sample Code

Listing 2 presents an example of java.util.Set used on the
@OneToMany inverse side with in-memory state synchroniza-
tion. The example continues the previously described Forest
and Tree classes presented in Sections III and IV. Here,
Tree is the owning side of an association, while Forest

1466 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Listing 3. The example of an inadequate collection type on the inverse side.

@Enti ty
p u b l i c c l a s s F o r e s t {

@Id @GeneratedValue
p r i v a t e Long i d ;
@OneToMany (mappedBy = " f o r e s t ")
Set <Tree > t r e e s = new HashSet <Tree > () ;
. . .
p u b l i c v o id p l a n t T r e e (Tree t r e e) {

t r e e s . add (t r e e) ;
}

}
@Enti ty
p u b l i c c l a s s Tree {

@Id @GeneratedValue
p r i v a t e Long i d ;
p r i v a t e S t r i n g name ;
@ManyToOne
F o r e s t f o r e s t ;
. . .
p u b l i c v o id s e t F o r e s t (F o r e s t f o r e s t) {

t h i s . f o r e s t = f o r e s t ;
t h i s . f o r e s t . p l a n t T r e e (t h i s) ;

}
}
/ / T r a n s a c t i o n 1
/ / c r e a t e s and p e r s i s t s a f o r e s t . . .
/ / . . . w i th 10 .000 t r e e s
. . .
/ / T r a n s a c t i o n 2
Tree t r e e = new Tree (" oak ") ;
F o r e s t f o r e s t = em . f i n d (F o r e s t . c l a s s , i d) ;
t r e e . s e t F o r e s t (f o r e s t) ;
em . p e r s i s t (t r e e) ;

is the inverse side. Therefore, to save changes in a database,
we need to set a right Forest reference in a Tree instance.
While setting the Forest instance in a Tree, the collection
of Trees is automatically updated to include the new tree
(the invocation of plantTree). Such a pattern is widely
used and recommended to ensure up-to-date states of objects.
However, it results in a significant performance overhead,
when combined with java.util.Set on the inverse side. In the
second transaction, which only adds a new tree and does not
access other trees in the forest, Hibernate has to load the entire
collection into the main memory.

VI. ANTIPATTERN: LOST COLLECTION PROXY ON

OWNING SIDE

A. Description

The antipattern relates to the assignment of a new collection
object to a persistent field, representing the owning side of a
one-to-many association. Thus, a collection proxy returned by
Hibernate is lost.

In such a case, Hibernate is not able to track what has been
changed in a collection and its policy is to re-create the entire
collection regardless of the actual modifications. Therefore,
even if the elements of the collection have not been changed,
Hibernate issues a delete to remove the associations from the
association table and then performs as many inserts as there
are elements in the collection.

B. Consequences

The performance consequences of a lost proxy on the
owning side are as follows:

• There is an increased workload on the database engine.
There are unnecessary database operations performed.
Hibernate re-creates an entire collection, performing one
delete to clear the collection and as many inserts as there
are elements in the collection. Such a re-creation results
in suboptimal performance due to the operations on data
which actually have not been changed.

C. Solution

The recommended solution to the antipattern is to operate
on collection objects returned by Hibernate as in most cases
it is a much more efficient approach. However, it might be
performance-wise to re-create the entire collection in cases
where most elements of the collection have been removed.
On the other hand, it is one of the places where Hibernate
could apply a smarter policy, especially as it has all required
data available.

D. Sample Code

Listing 4 presents an example of a lost (according to
Hibernate) collection proxy on the owning side. The example
consists of two persistent entities: Hydra and Head. Hydra
is a mythical creature that re-grows three heads in place of
one head cut off. In order to model this feature, we need to
provide strict encapsulation of heads. Therefore, getHeads
returns an unmodifiable wrapper over the mutable collection
of heads. In the first transaction, we create and persist a
Hydra instance with three Heads. In the second transaction,
we simply read the previously stored instance. It turns out
that for this piece of code Hibernate executes two selects,
one delete and three inserts, even though the code is purely
read-only. The problem lies in the way Hibernate checks
whether or not a property is dirty during the commit of a
transaction. In order to check the dirtiness of a collection,
Hibernate compares the references on the actual collection
and the proxy originally loaded. Unfortunately, in our example
Hibernate uses getHeads method to access the collection
(due to property access mapping). The method returns an
unmodifiable wrapper over the original proxy returned by
Hibernate. Obviously, it returns a different Java object that
the original one loaded by Hibernate. Thus, Hibernate decides
that the collection has been changed and re-creates the entire
collection.

Listing 5 presents a more straightforward example of a lost
collection proxy on the owning side. Again we implement two

PATRYCJA WĘGRZYNOWICZ: PERFORMANCE ANTIPATTERNS OF ONE TO MANY ASSOCIATION IN HIBERNATE 1467

Listing 4. The example 1 of a lost collection proxy on the owning side.

@Enti ty
p u b l i c c l a s s Hydra {

p r i v a t e Long i d ;
p r i v a t e L i s t <Head> heads =

new A r r a y L i s t <Head > () ;
. . .

@Id @GeneratedValue
p u b l i c Long g e t I d () { . . . }
p r o t e c t e d vo id s e t I d () { . . . }
@OneToMany (c a s c a d e =CascadeType . ALL)
p u b l i c L i s t <Head> ge tHeads () {

r e t u r n C o l l e c t i o n s .
u n m o d i f i a b l e L i s t (heads) ;

}
p r o t e c t e d vo id

s e t H e a d s (L i s t <Head> heads)
{ . . . }

}

/ / T r a n s a c t i o n 1
/ / c r e a t e s and p e r s i s t s t h e hydra . . .
/ / . . . w i th 3 heads
. . .
/ / T r a n s a c t i o n 2
Hydra found = em . f i n d (Hydra . c l a s s , i d) ;

persistent classes: Hydra and Head. However, we do not
introduce strict encapsulation. Instead we implement simple
getters and setters for all fields. In the second transaction, we
create a new collection containing the current heads of our
Hydra instance. In terms of our business model, nothing has
changed — the heads are the same heads as originally loaded.
However, Hibernate observes a different collection reference
and applies the policy of re-creation of the entire collection.

VII. ANTIPATTERN: ONE-BY-ONE PROCESSING OF

COLLECTION

A. Description

The antipattern refers to a sequential processing of a persis-
tent collection, i.e., a piece of code iterates over the collection
and for each element in a collection, it may perform a database
operation.

Best practices of database programming highlight the need
to operate on the sets of records instead of single records.
While SQL provides the means to such a paradigm switch
in programming, Java is an object-oriented language without
support to relational algebra. Therefore, it is a common
approach in the Java world to iterate over persistent collections
and process their elements one-by-one. Such an approach often
leads to a significant performance overhead, considering the
number of database round-trips and the volume of data passed
between a database and an application.

Listing 5. The example 2 of a lost collection proxy on the owning side.

@Enti ty
p u b l i c c l a s s Hydra {

@Id @GeneratedValue
p r i v a t e Long i d ;
@OneToMany (c a s c a d e =CascadeType . ALL)
p r i v a t e L i s t <Head> heads =

new A r r a y L i s t <Head > () ;
. . .
p u b l i c Long g e t I d () { . . . }
p r o t e c t e d vo id s e t I d () { . . . }
p u b l i c L i s t <Head> ge tHeads () {

r e t u r n heads ;
}
p u b l i c v o id s e t H e a d s (L i s t <Head> heads) {

t h i s . heads = heads ;
}

}

/ / T r a n s a c t i o n 1
/ / c r e a t e s and p e r s i s t s t h e hydra . . .
/ / . . . w i th 3 heads
. . .
/ / T r a n s a c t i o n 2
Hydra found = em . f i n d (Hydra . c l a s s , i d) ;
L i s t <Head> c u r r e n t H e a d s =

new A r r a y L i s t <Head >(found . ge tHeads ()) ;
found . s e t H e a d s (c u r r e n t H e a d s) ;

B. Consequences

The performance consequences of one-by-one processing of
a persistent collection are as follows:

• A high number of database operations is executed. It is
proportional to the size of the collection.

• RDBMS engine is used ineffectively.
• Network latency can sum up to a significant performance

overhead.

C. Solution

The solution to this antipattern is to utilize the capabilities
of a relational database by the usage of bulk statements and
aggregate functions. Frequently it requires a different object
model.

D. Sample Code

Listing 6 presents an example of a one-by-one processing
of a collection. The example continues the previous examples
consisting of Forest and Tree. Here, in the second transac-
tion we want to delete the entire Forest. A simple remove
causes a constraint violation exception since there are trees
associated with the forest to be removed. Therefore, we need
to unbind the trees first. Unfortunately, in Hibernate there is
no other way to do this than setting the Forest reference
in each Tree instance to null. In our example it results in

1468 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Listing 6. The example of a one by one processing of a collection.

@Enti ty
p u b l i c c l a s s F o r e s t {

@Id @GeneratedValue
p r i v a t e Long i d ;
@OneToMany (mappedBy = " f o r e s t ")
Set <Tree > t r e e s = new HashSet <Tree > () ;
. . .
p u b l i c v o id p l a n t T r e e (Tree t r e e) {

t r e e s . add (t r e e) ;
}

}
@Enti ty
p u b l i c c l a s s Tree {

@Id @GeneratedValue
p r i v a t e Long i d ;
p r i v a t e S t r i n g name ;
@ManyToOne
F o r e s t f o r e s t ;
. . .

}
/ / T r a n s a c t i o n 1
/ / c r e a t e s and p e r s i s t s a f o r e s t . . .
/ / . . . w i th 10 .000 t r e e s
. . .
/ / T r a n s a c t i o n 2
Tree t r e e = new Tree (" oak ") ;
F o r e s t f o r e s t = em . f i n d (F o r e s t . c l a s s , i d) ;
f o r (Tree t r e e : f o r e s t . g e t T r e e s ()) {

t r e e . s e t F o r e s t (n u l l) ;
}
em . remove (f o r e s t) ;

10 000 updates. To fix this inefficiency in Hibernate, we need
to change the object model and introduce an explicit class
representing the association.

VIII. CONCLUSION

In this paper, we presented five performance antipatterns
related to one-to-many associations in Hibernate. Each an-
tipattern consists of the description of a problem, performance
consequences and the recommended solution, as well as a
sample code to better illustrate the problem. The identified
antipatterns introduce a significant performance overhead in
terms of the number of SQL statements executed as well as the
number of objects loaded into the main memory. These are two
critical factors that have serious impact on the performance of
applications. The number of SQL statements executed directly
increases the load on the database engine. Usually it also
introduces an additional performance overhead due to the
network latency which is important in modern multi-tiered
applications, where applications and databases are located in
different servers/tiers. High memory consumption has indirect

impact on the performance as it usually leads to more frequent
garbage collection or even page swaps.

The presented antipatterns show that the usage of Hibernate
is not as simple as it looks at first glance. Even plain use cases
can significantly decrease the performance of an application.
The antipatterns explain how to use Hibernate efficiently and
what policies should be improved in Hibernate in order to
shorten the execution time.

REFERENCES

[1] Hibernate. [Online]. Available: http://www.hibernate.org
[2] C. U. Smith and L. G. Williams, “Software performance antipatterns;

common performance problems and their solutions,” in Int. CMG

Conference, 2001, pp. 797–806.
[3] ——, “New software performance antipatterns: More ways to shoot

yourself in the foot,” in Int. CMG Conference. Computer Measurement
Group, 2002, pp. 667–674.

[4] T. Parsons and J. Murphy, “A framework for automatically detecting and
assessing performance antipatterns in component based systems using
run-time analysis,” in The 9th International Workshop on Component

Oriented Programming, part of ECOOP, 2004.
[5] C. Trubiani and A. Koziolek, “Detection and solution of software

performance antipatterns in palladio architectural models,” in
Proceedings of the 2nd ACM/SPEC International Conference

on Performance engineering, ser. ICPE ’11. New York,
NY, USA: ACM, 2011, pp. 19–30. [Online]. Available:
http://doi.acm.org/10.1145/1958746.1958755

[6] V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, and C. Trubiani,
“Digging into uml models to remove performance antipatterns,” in
Proceedings of the 2010 ICSE Workshop on Quantitative Stochastic

Models in the Verification and Design of Software Systems, ser.
QUOVADIS ’10. New York, NY, USA: ACM, 2010, pp. 9–16.
[Online]. Available: http://doi.acm.org/10.1145/1808877.1808880

[7] V. Cortellessa, A. Di Marco, and C. Trubiani, “Software performance
antipatterns: modeling and analysis,” in Proceedings of the 12th

international conference on Formal Methods for the Design of

Computer, Communication, and Software Systems: formal methods for

model-driven engineering, ser. SFM’12. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 290–335. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-30982-3_9

[8] Eclipselink. [Online]. Available: http://www.eclipse.org/eclipselink/
[9] Openjpa. [Online]. Available: http://openjpa.apache.org/

[10] Datanucleus. [Online]. Available: http://www.datanucleus.org/
[11] P. van Zyl, D. G. Kourie, L. Coetzee, and A. Boake, “The influence of

optimisations on the performance of an object relational mapping tool,”
in Proceedings of the 2009 Annual Research Conference of the South

African Institute of Computer Scientists and Information Technologists,
ser. SAICSIT ’09. New York, NY, USA: ACM, 2009, pp. 150–159.
[Online]. Available: http://doi.acm.org/10.1145/1632149.1632169

[12] P. van Zyl, D. G. Kourie, and A. Boake, “Comparing the performance
of object databases and orm tools,” in Proceedings of the 2006 annual

research conference of the South African institute of computer scientists

and information technologists on IT research in developing countries,
ser. SAICSIT ’06. Republic of South Africa: South African Institute
for Computer Scientists and Information Technologists, 2006, pp. 1–11.
[Online]. Available: http://dx.doi.org/10.1145/1216262.1216263

[13] S. Cvetković and D. Janković, “A comparative study of the features
and performance of orm tools in a .net environment,” in Proceedings

of the Third international conference on Objects and databases, ser.
ICOODB’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 147–158.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1926241.1926257

[14] A. Szumowska, M. Burza$#324;ska, P. Wi$#347;niewski, and
K. Stencel, “Efficient implementation of recursive queries in major
object relational mapping systems,” in Proceedings of the Third

international conference on Future Generation Information Technology,
ser. FGIT’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 78–89.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-27142-7_10

[15] P. Wiśniewski, M. Burzańska, and K. Stencel, “The impedance mismatch
in light of the unified state model,” Fundam. Inform., vol. 120, no. 3-4,
pp. 359–374, 2012.

PATRYCJA WĘGRZYNOWICZ: PERFORMANCE ANTIPATTERNS OF ONE TO MANY ASSOCIATION IN HIBERNATE 1469

