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Abstract—Expander graphs are highly connected sparse finite
graphs. The property of being an expander seems significant
in many of these mathematical, computational and physical
contexts. Even more, expanders are surprizingly applicably
applicable in other computational aspects: in the theory of error
corecting codes and the theory of pseudorandomness, which
are used in probabilistic algorithms. In this article we present
a method to obtain a new examples of families of expanders
graphs and some examples of Ramanujan graphs which are the
best expanders. We describe properties of obtained graphs in
comparison to previously known results. Numerical computations
of eigenvalues presented in this paper have been computed with
MATLAB.

I. INTRODUCTION

T
HERE are many different algorithms in everyday life

where graphs are used. The development of information

technology has allowed various representations of graphs in

the memory of a computer. Graph based algorithms are used,

in particular, in cryptography, coding theory, car navigation

systems, sociology, mobile robotics and even in computer

games. Graphs used for different purposes often must have

some special properties.

One of the most interesting features of the new graphs is

their expansion property. Expander graphs are highly con-

nected sparse finite graphs. This property seems to be very

significant. From a practical viewpoint, these graphs resolve an

extremal problem in communication network theory. Second,

they fuse diverse branches of pure mathematics: number

theory, representation theory and algebraic geometry.

Expander graphs are used to efficient error reduction in

probabilistic algorithms. A randomized algorithm uses a

source of pseudorandom bits. During execution, it takes ran-

dom choices depending on those random data. However, to

collect a reasonable collection of random bits is not an easy

task. Algorithms that use the random input to reduce the

expected running time or memory usage have a chance of

producing an incorrect result. Using expander walks allows to

achieve the same error probability, with much fewer random

bits. The exact form of the exponential decay in error using

expander walks and its dependence on the spectral gap was

found by Gillman [6].

Constructions of the best expander graphs with a given

regularity and order is not easy and in many cases, it is an

open problem. In this article we present a method to obtain

a new examples of families of expanders graphs and some

examples of Ramanujan graphs which are the best expanders.

We describe properties of obtained graphs in comparison to

previously known results.

Throughout this paper, only undirected simple graphs with-

out loops or multiple edges are considered. A distance between

vertices v1 and v2 in the graph is the length of minimal path

from v1 to v2. A graph is connected if for arbitrary pair of

vertices v1, v2 there is a path from v1 to v2. The length g of the

shortest cycle in a graph is called a girth, [3]. Bipartite graph is

a graph whose vertices set V can be divided into two disjoint

subsets V1 and V2 such that every edge connects a vertex in

V1 to one in V2. We refer to bipartite graph Γ(V1 ∪ V2, E)
as biregular one if the number of neighbors for vertices from

each partition sets are constants s and t (bidegrees). We call

a graph regular in the case s = t.

By the theorem of Alon and Boppana, large enough mem-

bers of an infinite family of d-regular graphs with constant

d satisfy the inequality λ ≥ 2
√
d− 1 − o(1), where λ is the

second largest eigenvalue in absolute value. Ramanujan graphs

are d-regular graphs for which the inequality λ ≤ 2
√
d− 1

holds.

We say that a family of regular graphs of bounded degree q
of increasing order n has an expansion constant c, c > 0 if for

each subset A of the vertex set X , |X| = n with |A| ≤ n/2
the inequality |∂A| ≥ c|A| holds. The expansion constant of

the family of q-regular graphs can be estimated via upper limit

q − λn, n → ∞, where λn is the second largest eigenvalue

of family representative of order n. It is clear that a family of

Ramanujan graphs of bounded degree q has the best expansion

constant.

The first explicit expander graph family was constructed by

Gregory Margulis in the 1970’s via studies of Cayley graphs

of large girth [13].

A family of graphs Gn is a family of graphs of increasing

girth if g(Gn) goes to infinity with the growth of n.

The family of graphs of large girth is an infinite family of
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simple regular graphs Γi of degree ki and order vi such that

g(Γi) ≥ γlogki
vi, (1)

where c is an independent of i constant (see [1], [2]).

A sparse graph has a small number of edges in comparison

to the number of vertices. A simple relationship describing the

density of the graph Γ(V,E) is

D =
2|E|

|V |(|V | − 1)
, (2)

where |E| is the number of edges of graph Γ and |V | is the

number of vertices. The maximal density is D = 1 when a

graph is complete and the minimal density is 0 (Coleman &

Moré 1983).

One of the very important classes of small world bipartite

graphs with additional geometric properties important in this

context, is a class of regular generalized m-gon, i.e. regular

tactical configurations of diameter m and girth 2m. For each

parameter m, a regular generalized m-gon has degree q + 1
and order 2(1 + q + ...+ qm−1), [15].

According to the famous Feit-Higman theorem the regular

thick (i.e. degree ≥ 3) generalized m-gons exist only for m =
3, 4 and 6, [5]. Thus Generalized Pentagon does not exist,

in particular. We have the following properties of generalized

polygons:

• the incidence graph of a projective plane PG(2, q) has

|V | = ν(q + 1, 6) = 2(1 + q + q2) and g = 6,

• the incidence graph of a generalized quadrangle GQ(q, q)
has |V | = ν(q + 1, 8) = 2(1 + q + q2 + q3) and g = 8,

• the incidence graph of a generalized hexagon GH(q, q)
has |V | = ν(q + 1, 10) = 2(1 + q + q2 + q3 + q4 + q5)
and g = 12.

II. CONSTRUCTION OF THE FAMILIES

Described below families of graphs D(n,Fq) and W (n,Fq)
can be used to obtain the new construction of expander graphs

or even Ramanujan graphs.

Let Fq , where q is prime power, be a finite field. CD(n, q)
(connected components of D(n,Fq)) and W (n,Fq) are con-

nected, regular, bipartite families of graphs.

Traditionally in graph theory one subset of vertices in

bipartite graphs is denoted by V1 = P and called a set of

points and another one V2 = L is called a set of lines. Let P
and L be two copies of Cartesian power Fq

n, where n ≥ 2
is an integer. Brackets and parenthesis will allow the reader

to distinguish points and lines. In this note we concentrate on

finite bipartite graphs on the vertex set P ∪L, where P and L
are two copies of Fq

n. If z ∈ F
n
q , then (z) ∈ P and [z] ∈ L.

First, we introduce the bipartite graph D(Fq), [9], with

the following points and lines, which are infinite dimensional

vectors over Fq written in the following way

(p) =

(p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, ..., pi,i, p

′
i,i, pi,i+1, pi+1,1...),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, ..., li,i, l

′
i,i, li,i+1, li+1,1...].

The point (p) is incident with the line [l], which is written

by the formula: (p)I[l], if the following relations between their

coordinates hold:







l1,1 − p1,1 = l1,0p0,1
l1,2 − p1,2 = l1,1p0,1
l2,1 − p2,1 = l0,1p1,1
li,i − pi,i = l0,1pi−1,i

l′i,i − p′i,i = li,i−1p0,1
li,i+1 − pi,i+1 = li,ip0,1
li+1,i − pi+1,i = l0,1p

′
i,i

(3)

where i ≥ 2. The set of vertices of the graph D(Fq) of this

infinite structure is V = P ∪L and the set of edges consisting

of all pairs {(p), [l]} for which (p)I[l].
For each positive integer n > 2 we obtain a finite incidence

structure (Pn, Ln, In)D as follows. Firstly, Pn and Ln are

obtained from P and L, respectively, by projecting each

vector onto its n initial coordinates with respect to the natural

order. The incidence In is then defined by imposing the first

n− 1 incidence equations and ignoring all others. The graph

corresponding to the finite incidence structure (Pn, Ln, In)
is denoted by D(n,Fq). D(n,Fq) becomes disconnected for

n ≥ 6. Graphs D(n,Fq) are edge transitive. It means that

their connected components are isomorphic. A connected

component of D(n,Fq) is denoted by CD(n,Fq). Notice

that all connected components of infinite graph D(Fq) are

q-regular trees.

The family of graphs D(n,Fq) is a family of q-regular,

bipartite graphs of large girth (1). Graphs D(n,Fq), n ≥ 2 of

fixed degree q form a family of expanders with the second

largest eigenvalue bounded from above by 2
√
q, [9]. So,

family D(n,Fq) consist of "almost Ramanujan graphs". A

graph D(n,Fq) has practical application in the construction of

error correcting codes. Firstly LDPC codes based on graphs

CD(n,Fq) were described in [7]. They are still in practical

use.

Let us consider an alternative way of presentation of q-

regular infinite graph via equations over finite field Fq We

consider an infinite graph W (Fq) with the points and lines:

(p) = (p0,1, p1,1, p1,2, p1,3, p1,4, ..., p1,i, ...),

[l] = [l1,0, l1,1, l1,2, l1,3, l1,4, ..., l1,i, ...].

W (Fq) is a graph of infinite incidence structure (P,L, I)W
such that a point (p) is incident with the line [l] ((p)I[l]), if

the following relations between their coordinates hold:

l1,i − p1,i = l1,i−1p0,1 (4)

Like in the case of D(Fq) for each positive integer n > 2 we

obtain an finite incidence structure (Pn, Ln, In)W where Pn

and Ln are obtained from P and L, respectively, by projecting

each vector onto its n initial coordinates with respect to the

natural order. The incidence In is then defined by imposing

the first n − 1 incidence equations and ignoring all others.
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The graph corresponding to the finite incidence structure

(Pn, Ln, In) is denoted by W (n,Fq).
The family W (n,Fq) is a family of q-regular, bipartite

graphs with g = 8, given by a nonlinear system of equations.

By theorem 4.2 in [14] Wenger graph W (n,Fq) graph is

an edge transitive one.

In fact, W (n,Fq) form a family of small world graphs.

There is a conjecture that CD(n,Fq) is another family of

small world graphs.

Firstly, let us consider an ordinary n + 1-gon as a

bipartite graph with vertex set V = {(1), (2), . . . , (n+ 1)} ∪
{[1, 2], [2, 3], . . . , [n, n + 1], [n + 1, 1]}. We can write the

incidence relation I in n+ 1-gon as follows:

(A)I[a, b] ⇐⇒ A = a ∨A = b.

A line is incident with point if this point belong to this line.

Graphs G(n+1,Γ(n,Fq)) correspond to incidence structure

with the point set P , the line set L and symmetric incidence

relation IG. Γ is a q-regular bipartite family of graphs defined

by systems of equations. Then the number of vertices in graph

G is |V | = 2(1 + q + q2 + . . . + qn). The graph is bipartite

V = P ∪ L and a set V consists of:

2 elements of type t0–((1), ∅) and [[1, 2], ∅],
2q elements of type t1–((2), ∗) and [[1, 2], ∗],
2q2 elements of type t2–((n+ 1), ∗, ∗) and [[2, 3], ∗, ∗],
...

2qn elements of type tn–((⌈n+3

2
⌉) , ∗, . . . , ∗

︸ ︷︷ ︸

n

) and

[[⌊n+3

2
⌋, ⌊n+5

2
⌋] , ∗, . . . , ∗
︸ ︷︷ ︸

n

].

Each ∗ represents an arbitrary element from Fq . Brackets and

parenthesis will allow the reader to distinguish points (·) and

lines [·]. The set of edges consisting of all pairs {(p), [l]} for

which (p)IG[l].
The incidence relation IG in graphs G(n + 1,Γ(n,Fq)) is

described as follows. A point of type t0– ((1), ∅) is connected

by an edge with a line of type t0– [[1, 2], ∅] and lines of type

t1. A line of type t0– [[1, 2], ∅] is connected by an edge with

a point of type t0– ((1), ∅) and points of type t1. For n ≥
x, y ≥ 1, the point (p) = ((A), α1, α2, . . . , αx) of type tx
is incident (p)IG[l] with the line [l] = [[a, b], β1β2, . . . , βy of

type ty if A = a ∨A = b and the following hold:







α1 = β1, α2 = β2, . . . , αx = βy−1, for x+ 1 = y
α1 = β1, α2 = β2, . . . , αx−1 = βy, for x = y + 1
(α1, α2, . . . , αn)I[β1, β2, . . . , βn] in Γ, for x = y = n

(5)

If we rewrite incidence relation for a graph D(n,Fq) with the

notation for points as lines as for graph W (n,Fq):

(p) = (p0,1, p1,1, p1,2, p1,3, p1,4, ..., p1,i, ...),

[l] = [l1,0, l1,1, l1,2, l1,3, l1,4, ..., l1,i, ...],

(p2,1 = p1,3, p2,2 = p1,4, p′2,2 = p1,5 and l2,1 = l1,3, l2,2 =
l1,4, l′2,2 = l1,5) then the first 5 equations describing incidence

relations for graph D(n,Fq) can be written as follows:






l1,1 − p1,1 = l1,0p0,1
l1,2 − p1,2 = l1,1p0,1
l1,3 − p1,3 = l0,1p1,1
l1,4 − p1,4 = l0,1p1,2
l1,5 − p1,5 = l1,3p0,1

(6)

and tables II, III,IV, V describe incidence relations IG for

"small" representatives of the family.

TABLE I
REGULARITY AND ORDER FOR SOME REPRESENTATIVES OF THE FAMILY

Construction Regularity |V|

G(3, D(2,Fq)) q + 1 2(1 + q + q2)
∼= G(3,W (2,Fq))

G(4, D(3,Fq)) q + 1 2(1 + q + q2 + q3)
∼= G(4,W (3,Fq))

G(5, D(4,Fq)) q + 1 2(1 + q + q2 + q3 + q4)

G(5,W (4,Fq)) q + 1 2(1 + q + q2 + q3 + q4)

G(6,W (5,Fq)) q + 1 2(1 + q + q2 + q3 + q4 + q5)

G(6, D(5,Fq)) q + 1 2(1 + q + q2 + q3 + q4 + q5)

III. COMPARISON WITH PREVIOUSLY KNOWN RESULTS

The graphs G(n + 1,Γ(n,Fq)) have a structure which is

some aspects similar to generalized polygons. They are q + 1
regular graphs and have the same number of vertices for

fixed n + 1 = 3, 4, 6 as generalized polygons. According

to the famous Feit-Higman theorem regular thick polygons

exist only for n + 1 = 3, 4, 6 (see [5]). For n + 1 = 2 the

described construction yields classical projective plane which

is a generalized 3-gon and has the second eigenvalue λ1 =
√
q.

To show that the constructed graphs for n+ 1 = 4, 6 are not

isomorphic to generalized quadrangles and hexagons we prove

the following theorem.

Theorem 1. Family of graphs G(n+1, D(n,Fq)) and G(n+
1,W (n,Fq)) are families of graphs of girth 6.

Proof. Graphs G(n + 1, D(n,Fq)) and G(n + 1,W (n,Fq))
are bipartite so there is no cycle C3 and C5. Because of

the structure of this families there are two possibilities of

appearence C4:

1) There is a cycle C4 consisting of two points of type tn
and two lines of type tn. But it means that D(n,Fq) or

W (n,Fq) have cycles of length 4. and we know from

[14], [9] that g(D(n,Fq)) ≥ 6 and g(W (n,Fq)) ≥ 6.

2) There exists two vertices v1 and v2 of type tn in the

same branch which are separated by a path of length 2

([l1]I(p2)I[l2]), where p2 is of type tn−1 and have a

common neighbor of type tn.

Suppose that the graph has C4. v1 and v2 are from the

same branch so they have equal coordinates except the

last one. Assume without loss of generality that these

are lines and denote them as follows:

[l1] = [[⌊n+3

2
⌋, ⌊n+5

2
⌋], ∗1, ∗2, . . . , ∗n−1, Y1],
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TABLE II
INCIDENCE RELATIONS FOR GRAPH G(3,W (2,Fq)) ∼= G(3, D(2,Fq))

((1), ∅) ((2), p0,1) ((3), p0,1, p1,1)

[[1, 2], ∅] + + −
[[3, 1], l1,0] + − + : p0,1 = l1,0

[[2, 3], l1,0, l1,1] − + : p0,1 = l1,0 + : l1,1 − p1,1 = l1,0p1,0

the first incydence equation for used graph

TABLE III
INCIDENCE RELATIONS FOR GRAPH G(4,W (3,Fq)) ∼= G(4, D(3,Fq))

((1), ∅) ((2), p0,1) ((4), p0,1, p1,1) ((3), p0,1, p1,1, p1,2)

[[1, 2], ∅] + + − −
[[4, 1], l1,0] + − + : p0,1 = l1,0 −
[[2, 3], l1,0, l1,1] − + : p0,1 = l1,0 − + : p0,1 = l1,0

p1,1 = l1,1

[[3, 4], l1,0, l1,1, l1,2] − − + : p0,1 = l1,0, + : l1,1 − p1,1 = l1,0p0,1,

p1,1 = l1,1 l1,2 − p1,2 = l1,1p0,1

TABLE IV
INCIDENCE RELATIONS FOR GRAPH G(5,W (4,Fq)) AND G(5, D(4,Fq))

((1), ∅) ((2), p0,1) ((5), p0,1, p1,1) ((3), p0,1, p1,1, p1,2) ((4), p0,1, p1,1, p1,2, p1,3)

[[1, 2], ∅] + + − − −
[[1, 5], l1,0] + − + : p0,1 = l1,0 − −
[[2, 3], l1,0, l1,1] − + : p0,1 = l1,0 − + : p0,1 = l1,0 −

p1,1 = l1,1

[[4, 5], l1,0, l1,1, l1,2] + : p0,1 = l1,0, + : p0,1 = l1,0,

− − p1,1 = l1,1 − p1,1 = l1,1

p1,2 = l1,2

[[3, 4], l1,0, l1,1, l1,2, l1,3] + : p0,1 = l1,0, + : l1,1 − p1,1 = l1,0p0,1,

− − − p1,1 = l1,1 l1,2 − p1,2 = l1,1p0,1

− p1,2 = l1,2 l1,3 − p1,3 = l1,2p0,1

TABLE V
INCIDENCE RELATIONS FOR GRAPH G(6,W (5,Fq)) AND G(6, D(5,Fq))

((1), ∅) ((2), p0,1) ((6), p0,1, p1,1) ((3), p0,1, p1,1, p1,2) ((5), p0,1, . . . , p1,3) ((4), p0,1, . . . , p1,4)

[[1, 2], ∅] + + − − − −
[[1, 6], l1,0] + − + : p0,1 = l1,0 − − −
[[2, 3], l1,0, l1,1] − + : p0,1 = l1,0 − + : p0,1 = l1,0 − −

p1,1 = l1,1

[[5, 6], l1,0, l1,1, l1,2] + : p0,1 = l1,0, + : p0,1 = l1,0,

− − p1,1 = l1,1 − p1,1 = l1,1 −
p1,2 = l1,2

[[3, 4], l1,0, . . . , l1,3] + : p0,1 = l1,0, + : p0,1 = l1,0,

− − − p1,1 = l1,1 − p1,1 = l1,1

p1,2 = l1,2 p1,2 = l1,2

p1,3 = l1,3

[[4, 5], l1,0, . . . , l1,4] + : p0,1 = l1,0, + : l1,1 − p1,1 = l1,0p0,1,

− − − − p1,1 = l1,1 l1,2 − p1,2 = l1,1p0,1

p1,2 = l1,2 l1,3 − p1,3 = l1,2p0,1

p1,3 = l1,3 l1,4 − p1,4 = l1,3p0,1
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[l2] = [[⌊n+3

2
⌋, ⌊n+5

2
⌋], ∗1, ∗2, . . . , ∗n−1, Y2].

Denote their neighbor of type tn as:

(p1) = ((⌈n+3

2
⌉), α1, α2, . . . , αn)

and their neighbor (p2) of type tn−1 from the same

branch as:

(p2) = ((⌊n+3

2
⌋), ∗1, ∗2, . . . , ∗n−1). If in the graph

G(n+1,W (n,Fq)): (p1)I[l1] and (p1)I[l2] accordingly

to (4) the following relations hold:

∗2 − α2 = ∗1α1 ∗2 − α2 = ∗1α1

∗3 − α3 = ∗2α1 ∗3 − α3 = ∗2α1

∗4 − α4 = ∗3α1 ∗4 − α4 = ∗3α1

...
...

∗n−1 − αn−1 = ∗n−2α1 ∗n−1 − αn−1 = ∗n−2α1

Y1 − αn = ∗n−1α1 Y2 − αn = ∗n−1α1

From the above equality one can see that Y1 and Y2 are

uniquely determined by the remaining coordinates and

Y1 = Y2. So we got a contradiction.

Analogous procedure can be performed for the graph G(n +
1, D(n,Fq)). Any graph G(n + 1, D(n,Fq)) and G(n +
1,W (n,Fq)) without vertices of type tn is a tree and does

not have any cycle.

For an arbitrary n ≥ 2 in G(n + 1, D(n,Fq)) and

G(n+ 1,W (n,Fq)) there is a cycle of length 6:

[[⌊n+3

2
⌋, ⌊n+5

2
⌋], 0, 0, . . . , 0

︸ ︷︷ ︸

n

]I((⌊n+3

2
⌋), 0, 0, . . . , 0

︸ ︷︷ ︸

n−1

) I

[[⌊n+3

2
⌋, ⌊n+5

2
⌋], 0, 0, . . . , 0

︸ ︷︷ ︸

n−1

, 1]I((⌈n+3

2
⌉), 0, 0, . . . , 0

︸ ︷︷ ︸

n−1

, 1) I

[[⌈n+3

2
⌉, ⌈n+5

2
⌉], 0, 0, . . . , 0

︸ ︷︷ ︸

n−1

]I((⌈n+3

2
⌉), 0, 0, . . . , 0

︸ ︷︷ ︸

n

) I

[[⌊n+3

2
⌋, ⌊n+5

2
⌋], 0, 0, . . . , 0

︸ ︷︷ ︸

n

].

The above theorem leads to the following conclusion.

Corollary 2. For n ≥ 3 graphs G(n+1, D(n,Fq)) and G(n+
1,W (n,Fq)) are not isomorphic to generalized polygons.

IV. EXPANDING AND OTHER PROPERTIES

The families G(n+ 1,Γ(n,Fq)) consist of bipartite graphs

with |V | = 2(1 + q+ q2 + . . .+ qn) vertices and (q+ 1)(1 +
q + q2 + . . . + qn) edges. G(n + 1, D(n,Fq)) and G(n +
1,W (n,Fq)) are q + 1-regular sparse graphs and the density

according to (2) is

q + 1

2(q + . . .+ qn) + 1
.

Fig. 1. shows the graph G(3,Γ(2,F2)) with 14 vertices V =
{((1), ∅), ((2), 0), ((2), 1), ((3), 0, 0), ((3), 0, 1), ((3), 1, 0),
((3), 1, 1)} ∪ {[[1, 2], ∅], [[1, 3], 0], [[1, 3], 1], [[2, 3], 0, 0],
[[2, 3], 0, 1], [[2, 3], 1, 0], [[2, 3], 1, 1]} and density 3

13
. The red

vertices correspond to points and the blue vertices correspond

to lines.

Each of the representatives of the presented family is q+1-

regular graph so the first eigenvalue of the adjacency matrix,

corresponding to this graph, is λ0 = q + 1. Let us denote

the second eigenvalue by λ1 = maxλi 6=q+1 |λi|. On the basis

of numerical calculations included in tables (VI), (VII), (IX),

(X), (XI) we state the following conclusions:

• For q = 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23 the constructed

graphs G(4, D(3,Fq))=G(4,W (3,Fq)) are Ramanujan

graphs. The spectral gap increases with the value of q.

Basing on on this observation we have included Conjec-

ture 1.

• For q = 2, 3, 4, 5, 7, 11 the constructed graphs

G(5, D(4,Fq)) and G(5,W (4,Fq)) are Ramanujan

graphs. The spectral gap |λ0 − λ1| = |q + 1 − 2
√
q| in-

creases with the value of q and basing on this observation

we have included Conjecture 2.

• For q = 2, 3, 4, 5, 7 the constructed graphs

G(6, D(5,Fq)) and G(6,W (5,Fq)) are expander graphs.

The spectral gap for graph G(6,W (5,Fq)) increases

with the value of q and for graph G(6, D(5,Fp))
increases with the value of p. This observation allows us

to formulate Conjecture 3.

Fig. 1. G(3,Γ(2,F2)) with |V | = 2(1 + 2 + 22) = 14.

TABLE VI
EXPANDING PROPERTIES OF G(4, D(3,Fq))=G(4,W (3,Fq))

Number field regularity q + 1 second 2
√
q |V |

first eigenvalue eigenvalue

F2 3 2.2882 2.8284 30
F3 4 2.8025 3.4641 80
F4 5 3.2361 4 170
F5 6 3.6180 4.4721 312
F7 8 4.2809 5.2915 800
F11 12 5.3664 6.6332 2928
F13 14 5.8339 7.2111 4760
F17 18 6.6713 8.2462 10440
F19 20 7.0528 8.7178 14480
F23 24 7.7598 9.5917 25440

We can use a finite ring Zs and modulo operation

instead of Fq . The incidence relation for graph G(n +
1,Γ(n,Zs)) can be described the same as for graph G(n +
1, D(n,Fq)). When we choose s = 2r then the graphs

G(4, D(3,Z2r))=G(4,W (3,Z2r)) have interesting constant

value of spectral gap: |λ0 − λ1| = 1, for 2 ≤ r ≤ 13. The
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results of such calculations (Tab. VII) allow us to formulate

Conjecture 4. When we choose s = 3r, where r = 3, 5, 7, 9,

then the graphs G(4, D(3,Z3r))=G(4,W (3,Z3r)) have an

interesting value of the second largest eigenvalue

λ1 = 2

√

3r
⌊r

2

⌋

+
3r

2

and the spectral gap increases with the value of q (Tab. VIII).

Basing on on this observation we can not say whether for

arbitrarily large s above formula is true. If yes, there is a

question about r: if it should be a prime power (6= 2l) or an

odd number? To answer this question we must calculate λ1 for

r = 15 but this case can not be investigated with MATLAB in

computer with 8GB RAM. The adjacency matrix in this case

has 186392× 186392 elements.

TABLE VII
EXPANDING PROPERTIES OF G(4, D(3,Z2r))=G(4,W (3,Z2r))

Finite ring regularity q + 1 second 2
√
q |V |

first eigenvalue eigenvalue

Z4 5 4 4 170
Z6 7 6 4.899 518
Z8 9 8 5.6569 1170
Z10 11 10 6.3246 2222
Z12 13 12 6.9282 3770
Z14 15 14 7.4833 5910
Z16 17 16 8 8738
Z18 19 18 8.4853 12350
Z20 21 20 8.9443 16842
Z22 23 22 9.3808 22310
Z24 25 24 9.798 28850
Z26 27 26 10.198 36558

TABLE VIII
EXPANDING PROPERTIES OF G(4, D(3,Z3r))=G(4,W (3,Z3r))

Finite ring regularity q + 1 second 2
√
q |V |

first eigenvalue eigenvalue

Z9 10 7.3485 6 1640
Z15 16 12.2474 7.746 7232
Z21 22 17.1464 9.1652 19448
Z27 28 22.0454 10.3923 40880

TABLE IX
EXPANDING PROPERTIES OF G(5, D(4,Fq)) AND G(5,W (4,Fq))

Number field regularity q + 1 second 2
√
q |V |

first eigenvalue eigenvalue

F2 3 2.7855 2.8284 62
F3 4 3.4641 3.4641 242
F4 5 4 4 682
F5 6 4.4721 4.4721 1562
F7 8 5.2915 5.2915 5602
F11 12 6.6332 6.6332 32210

Conjecture 1. The graphs G(4, D(3,Fq)) and

G(4,W (3,Fq)) for arbitrary large q are q + 1-regular

Ramanujan graphs and λ1 ≤ 2
√
q.

Conjecture 2. The graphs G(5, D(4,Fq)) and

G(5,W (4,Fq)) for arbitrary large q are q + 1-regular

Ramanujan graphs and λ1 = 2
√
q.

TABLE X
EXPANDING PROPERTIES OF G(6,W (5,Fq))

Number field regularity q + 1 second 2
√
q |V |

first eigenvalue eigenvalue

F2 3 2.8688 2.8284 126
F3 4 3.8979 3.4641 728
F4 5 4.4721 4 2730
F5 6 5.0321 4.4721 7812
F7 8 5.9541 5.2915 39216

TABLE XI
EXPANDING PROPERTIES OF G(6, D(5,Fq))

Number field regularity q + 1 second 2
√
q |V |

first eigenvalue eigenvalue

F2 3 2.9032 2.8284 126
F3 4 3.3557 3.4641 728
F4 5 4.8284 4 2730
F5 6 4.6852 4.4721 7812
F7 8 5.9228 5.2915 39216

Conjecture 3. The graphs G(6, D(5,Fp)) and

G(6,W (5,Fq)) for arbitrary large q (primr power) and

p (prime number) are expanders.

Conjecture 4. The graphs G(4, D(3,Z2r)) and

G(4,W (3,Z2r)) for arbitrary large r are 2r + 1-regular

expander graphs with constant spectral gap |2r+1−λ1| = 1.

The graphs G(n + 1,Γ(n,Fq)) for arbitrary n, q and any

bipartite graph Γ are connected even if Γ is disconnected. What

more we have conjecture that the family G(n + 1,Γ(n,Fq))
is q+ 1-connected, namely highly connected. A graph is said

to be k-connected when there does not exist a set of k − 1
vertices whose removal disconnects the graph.

The connectivity of graphs is important property used in

many practical and theoretical aspects.
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Peredači Informacii, 1973, pp. 71–80.
[14] V. Futorny, V. Ustimenko, “On small world semiplanes with generalised

Schubert cells,” Acta Appl Math, 2007, pp. 47–61.
[15] R. Weiss, “Distance transitive graphs and generalised polygons,” Arch.

Math, vol. 45, 1985, pp.186–192.

MONIKA POLAK, VASYL USTIMENKO: EXAMPLES OF RAMANUJAN AND EXPANDER GRAPHS FOR PRACTICAL APPLICATIONS 505


