
Efficient Models for Special Types of Non-Linear
Maximum Flow Problems

Marina Tvorogova
Department of Computer Science

TU Braunschweig, Germany

Email: m.tvorogova@tu-bs.de

Abstract—In this paper, we consider the maximum flow prob-
lem on networks with non-linear transfer functions. We consider
special types of transfer functions, which are particularly relevant
for applications. For concave transfer functions, we reduce the
NL-flow problem to the generalized flow problem and solve
it using a polynomial-time approximation scheme. For convex,
s-shaped and monotonically growing piecewise linear (PWL)
transfer functions (the latter can always be divided into s-shaped
fragments), we present an equivalent network representation that
allows us to build a MILP model with a better performance than
if we were using standard MILP formulations of PWL functions.
The latter requires additional variables and constraints to force
the correct (depending on the amount of flow) linear segment of
PWL functions to be taken. In our model, the correct segment
in an s-shaped fragment is chosen automatically due to the
network’s structure. For the case when transfer functions are
non-linear, we provide an error estimation for the approximated
solution.

I. INTRODUCTION

I
N THIS paper, we consider flows in networks with non-

linear losses (NL-flow problem). We have a directed graph

D = (V,A), where V is a set of vertices and A is a set

of edges. The maximum flow that we can send through edge

a ∈ A is bounded by the edge’s capacity ua ∈ R+. Each edge

a of graph D has an associated non-linear function Fa(fa)
that defines how outflow depends on inflow: we assume that

if we send fa units of flow into edge a = (v, w), then Fa(fa)
units of flow arrive at the head of edge a (that is node w).

In the classical maximum flow problem, the goal is to send

as much flow as possible from the source node(s) to the target

node(s), taking capacity and flow conservation constraints into

account. Transfer function Fa(fa) defines the outgoing flow

from edge a depending on the incoming flow fa to edge a,

a ∈ A. For the classical case, flow does not change while

going through an edge, i.e. Fa(fa) = fa. This problem is

well-studied, see e.g. Korte and Vygen [4].

The generalized flow problem (GFP) is a step closer to

the NL-flow problem. The goal of the generalized maximum

flow problem is to maximize flow at the target node. In

a generalized graph, flow changes its value while going

through edges. Outgoing flow Fa(fa) from edge a linearly

depends on the incoming flow fa to edge a, a ∈ A. Transfer

functions corresponding to this type of flow are linear, i.e.

Fa(fa) = γa · fa, where γa is the proportionality coefficient

corresponding to edge a. The GFP has already been studied

by Onaga [6] and Truemper [9]. There are fully polynomial-

time approximation schemes for GFP, see e.g. Fleischer

and Wayne [2] and Oldham [5], and polynomial algorithms

for GFP with assumptions about transfer coefficients, see

Radzik [7] and Tardos and Wayne [8].

In this paper, we introduce flows with affine-linear transfer

functions, i.e. Fa(fa) = γa · fa + ba, where ka and ba
are constants corresponding to edge a, a ∈ A. We call

optimization problems that correspond to this type of flow,

affine generalized flow problems (AGFP).

For non-linear PWL functions, there exist standard ways to

present them in mixed-integer formulations (see Vielma et al.

[10]). Our representation is more efficient than representations

applied to the general type of PWL functions. Standard ways

use extra variables to force the use of the right segment of

the PWL functions. We modify the network in such a way

that by flow maximizing, the right segment will be chosen

automatically. This allows us to get a problem formulation

of significantly reduced size. The main contribution of this

paper is that for a wide range of applications, we propose a

solution, which deals with large MILP formulations arising by

modeling problems with non-linearities. We propose efficient

formulations of the maximum flow problem for networks with

transfer functions of special types.

The remainder of this paper is organized as follows. In

Section II-C, we introduce the required definitions and terms.

We describe how to build a residual network for flows with

NL functions and provide flow decomposition theorem for

flows with NL losses. In Section III, motivated by the ap-

plications areas, we distinguish three special types of transfer

functions: concave, convex and s-shaped. In Section IV, we

design an equivalent problem representation of the original

instance for the considered types of transfer functions. We

show that the optimal solution of the maximization problem

for this problem representation and the optimal solution of

the maximization problem for the original instance are the

same. For the problem with concave transfer functions, we

propose a fully polynomial-time approximation scheme. For

convex and s-shaped transfer functions we replace edges with

NL transfer functions by network structures, where transfer

functions of the edges are affine-linear. In Section V, we

introduce MILP models for AGFP. In Section VI, we evaluate

our MILP model. In section VII we consider the case of

non PWL transfer functions and estimate the solution error,

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 409–416

978-1-4673-4471-5/$25.00 c© 2013, IEEE 409

which arises by approximating the original transfer functions

by PWL functions. Section VIII completes our paper with the

conclusions.

II. PRELIMINARIES

A. Problem Formulation

We can formulate the maximization problem for flows with

NL as follows:

Problem 1:

Given D = (V,A), ua ∀a ∈ A, Fa ∀a ∈ A.

Find an s− t−flow, that

maximizes
∑

a∈δ−(t) Fa(fa)
subject to

∑

a∈δ+(v)

fa −
∑

a∈δ−(v)

Fa(fa) ≤ 0, ∀v ∈ V \{s, t} (1)

0 ≤ fa ≤ ua, ∀a ∈ A. (2)

Equation (1) describes the flow conservation law, inequality

(2) the edge capacity constraints.

Here, we allow positive excess at nodes. This does not

contradict flow maximization at the target node.

B. Assumptions

Inspired by the applications of the NL-flow models (see Sec-

tion III for details), we make the following assumptions on the

type of transfer functions. The considered transfer functions

are loss functions (γa(fa) ≤ 1). Increasing flow fa incoming

to edge a increases the outgoing flow Fa(fa) = γa(fa) · fa.

Thus, the transfer functions are strictly monotonically growing

functions. The next natural assumption is Fa(0) = 0.

The considered networks have no flow generating-cycles.

In the context of our applications, flow-generating cycles

would refer to perpetual flow sources, which is not possible

in practice.

C. Definitions

Definition 1: The transfer multiplier γa(fa): R+ → R+ is

a quotient of the edge’s transfer function Fa(fa) and flow fa
entering the edge:

γa(fa) =
Fa(fa)

fa
, for fa 6= 0.

If fa = 0, γa(fa) may be assigned an arbitrary number. Let’s

assume for this paper that if fa = 0, then γa(fa) = 0.

γa(fa) can be interpreted as the efficiency of sending flow

fa through edge a.

Definition 2: A transfer function is called loss function

(flow decreases) if the transfer multiplier corresponding to this

function is less than or equal to one, i.e.

γa(fa) ≤ 1 ∀fa ∈ R+.

Proposition 1: The optimization problem on a graph with

multiple source nodes and multiple target nodes can always be

transferred to the optimization problem on a graph with one

source node and one target node.
Proof: The solution of the flow maximization problem

(also for flows with NL-losses) is not influenced by the

following two operations.

T is a set of the target nodes and S is a set of the source

nodes.

gi is the flow at node i. gi = 0 for gi ∈ V \{S, T }. gi < 0 for

gi ∈ S. gi > 0 for gi ∈ T .

• We can add an integrated source node s and an extra edge

a = (s, w) with γa(·) = 1, ua = gw to all nodes w ∈ S;

node w becomes a transfer node, gs =
∑

w∈S gw and gw
is assigned to zero.

• We can add an integrated target node t and an extra edge

a = (v, t) with γa(·) = 1, ua = ∞ to all nodes v ∈ T ;

node v becomes a transfer node, gt =
∑

v∈T gv and gv
is assigned to zero.

Using Proposition 1 without loss of generality, we assume

that the graph D has only one target node and only one

source node.

Definition 3: An s − t−flow is a flow from the supply

nodes s to target nodes t.

Definition 4: Let us call flow at node v the difference

between flow outgoing from node v (
∑

a∈δ+(v) fa) and

flow incoming to node v (
∑

a∈δ−(v) Fa(fa)), where

δ−(v) := {(u, v) ∈ A} is a set of edges entering node v and

δ+(v) := {(v, w) ∈ A} is a set of edges leaving node v.

Definition 5: The affine-generalized network is the

network, in which edges have transfer functions of type

Fa(fa) = fa · ka + ba.

Definition 6: A network flow distribution X : RA
+ → R+

defines for all edges a ∈ A partition coefficients xa : A →
[0, 1], which denote the ratio of the flow leaving node v and

the flow sent through edge a = (v, w), i.e.

xa =

0, if
∑

a∈δ+(v) fa = 0,

fa
∑

a∈δ+(v)
fa
, otherwise.

A feasible flow through the network f determines a flow

distribution X.

Definition 7: A flow distribution X (for the given supply)

is feasible if the corresponding flow is feasible, i.e. the flow

does not violate flow feasibility constraints (1) and (2).

Lemma 1: The flow at the source node together with the

feasible flow distribution X uniquely determine the flow at

each edge of the given graph.

410 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 1. Graph G and flow on it.

D. Decomposition theorem for NL flows

Here, we introduce the decomposition theorem for flows

with NL transfer functions. This theorem will be used in the

proof of Theorem 3.

Definition 8: We define the residual capacity for flow

function fa : V −→ R+ as

uR
a = ua − fa, a ∈ A, (3)

uR
a = Fa(fa), a ∈ A, (4)

where A is a set of backward edges.

Definition 9: The residual function for backward edges can

be found as:

FR
a (l) = f∗

a − F−1
a (Fa(f

∗
a)− l), (5)

where f∗
a is the current flow on edge a, l = fa, we use

notation l for better observability.

Definition 10: The residual function for forward edges can

be found as:

FR
a (g) = Fa(g + f∗

a)− Fa(f
∗
a), (6)

where f∗
a is the current flow on edge a, g = fa, we use

notation g for better observability.

Theorem 1: For every feasible flow f on a graph D =
(A, V), there exists a collection of k ≤ m = |A(D)|
elementary residual flows F = F(1), . . . ,F(k) such that

fa =
∑

i=1..k Fa(i) for all a ∈ A. Elementary residual flows

are residual flows on a path, on a unit-gain cycle, on a cycle-

path, on a path-cycle or on a bicycle.

We omit the prove of the theorem, but give an example of

decomposition.

Given graph G and flow on it, see Figure 1. We want

to decompose the current flow to flow F(1) (through path

1 − 2 − 3) and to flow F(2) (through path 1 − 2 − 4)

so that fa =
∑

i=1,2 F(i). Consider the graph and flow

f = (10, 30, 70) on it. Calculate the residual transfer function

and the residual capacities for backward edges using formulas

4 and 5. FR
21(f) = f12 −

√

(f12)2 − f , where f12 = 10,

FR
32(f) = 1

3 , FR
42(f) = x. uR

21(f) = 100, uR
32(f) = 90,

uR
42(f) = 70.

a is a part of the flow at the source node, that forms F(1),
b is a part of the flow at the source node, that forms F(2),
a, b ∈ [0, 1], a+ b = 1.

There are two ways to define F(1) and F(2) depending on

the order of augmentation. Let us call the flow after the first

augmentation f(1), after the second augmentation f(2).

1: We first augment a · f12 units of flow along path 1 −
2 − 3 and then b · f12 units of flow along path 1 − 2 − 4.

Augment the flow along path 4 − 2 − 1 by F24(f24) units.

F24(f24) = u1−2−4 = 70. After augmenting, f24(1) = 0,

f12(1) = 10−FR
21(F

R
42(70)) = 10− 10+

√
102 − 70 =

√
30.

F24(1) = f24 = 70, F12(1) = f12 − f12(1) = 10−
√
30.

We augment the current flow along path 3 − 2 − 1 by

F23(f23) units of flow. F23(f23) = u1−2−3 = 90. After

augmenting, f23(2) = 0, f12(2) =
√
30 − FR

21(F
R
32(90) =

√
30−

√
30 +

√√
30

2 − 1
3 · 90 = 0.

F23(2) = f23 = 30, F12(2) = f12(1)− f12(2) =
√
30.

Thus, we obtain F(1) = (10 −
√
30, 30, 0) and F(2) =

(
√
30, 0, 70).

2: We first augment a · f12 units of flow along path 1 −
2 − 3 and then b · f12 units of flow along path 1 − 2 − 4.

Augment the flow along path 3 − 2 − 1 by F23(f23) units of

flow. F23(f23) = u1−2−4 = 90. After augmenting, f23(1) =

0, f12(1) = 10−FR
21(F

R
42(70)) = 10− 10+

√

102 − 1
3 · 90 =√

70. F24(1) = f23 = 30, F12(1) = f12−f12(1) = 10−
√
70.

We augment the current flow along path 4 − 2 − 1 by

F24(f24) units of flow. F24(f24) = u1−2−4 = 70. After

augmenting, f24(2) = 0, f12(2) =
√
70 − FR

21(F
R
32(70) =

√
70−

√
70 +

√√
70

2 − 70 = 0.

F24(2) = f24 = 70, F12(2) = f12(1)−f12(2) = 10−
√
70.

Thus, we obtain F(1) = (
√
70, 0, 70) and F(2) = (10 −√

70, 30, 0).

III. SPECIAL TYPES OF TRANSFER FUNCTIONS

AND THEIR APPLICATIONS

In this section, we consider three types of PWL transfer

functions, which are especially interesting from the application

point of view. We list them together with the application

examples of the models, which use those types of transfer

functions. Further, we use the special properties of these

functions to find the solution of the maximum flow problem.

A. Convex transfer functions

In this case, the slope of the transfer function (and, thus,

the transfer efficiency) grows as the amount of flow we send

increases.

One application of convex transfer functions is modeling of

information flows with “learning” effects. The flow passing

along the graph represents information. Transfer functions

model information transmission processes with “learning“

effect, e.g. handwriting recognition, face recognition, speech

MARINA TVOROGOVA: EFFICIENT MODELS FOR SPECIAL TYPES OF NON-LINEAR MAXIMUM FLOW PROBLEMS 411

Fig. 2. Efficiency around optimal operating value and the corresponding S-
shaped transfer function.

recognition. Efficiency of the information recognition/trans-

mission process increases together with the amount of infor-

mation.

B. Concave transfer functions

For this case, the slope of the transfer function (and thus,

the transfer efficiency) shrinks as the amount of flow we send

increases.

We can use concave transfer functions, e.g., in traffic

flow modeling. It is a maximum NL-flow problem to find a

flow routing with minimal overall flow-losses (deceleration).

Edges represent road segment. Flow corresponds to the num-

ber of vehicles passing a reference point per unit of time.

Transfer functions describe the flow-deceleration effect, which

increases as flow approaches the capacity of a road segment.

C. S-shaped transfer functions

S-shaped transfer functions are used to model processes

with optimal operating value. The slope of the transfer function

grows until it reaches the optimal operating value. As we

increase the amount of flow beyond the optimal operating

value, the slope decreases.

S-shaped transfer functions are interesting for modeling

energy flows. Nodes represent different types of energy (e.g.

raw materials, electricity or heat energy), flow is energy (in

different forms), edges represent transformation of one type of

energy into another. Technical equipment that enables energy

transformations usually has an optimal operating value, at

which this equipment reaches its maximum efficiency. Thus,

transfer functions show how the efficiency of the energy

transformation first grows until the optimal operating value

and then shrinks (see Fig. 2).

IV. DESIGN OF EQUIVALENT PROBLEM REPRESENTATIONS

In this section, we modify the underlying network in such a

way that Problem 2 from subsection IV-C has the same optimal

solution for the original (Problem 1) and for the modified

network. Further, in the next section, we use this modified

network for establishing an efficient MILP formulation.

In the procedure described below, we replace a single edge

a = (v, w) by a set of p parallel edges (a1, a2, . . . ap).

Proposition 2: Edges ((v, w)1, (v, w)2, . . . (v, w)p) are par-

allel edges between nodes v and w. Flow f is a flow that

optimally solves the maximum flow problem (non-linear, gen-

eralized or classical). If flow f between nodes v and w is

Fig. 3. PWL convex and concave functions.

positive, then the capacity of the edges (v, w)i, i ∈ 1..p, with

higher efficiency is exhausted first.

A. Convex transfer functions

Let function Fa be a PWL convex function consisting of

p segments defined by breakpoints: 0 = r0a < r1a < r2a <

r3a < · · · < rpa, for all a ∈ A (see Fig. 3, left). Let us denote

the function in the interval [rka , r
k+1
a] as F k

a . F k
a is a linear

function of type F k
a = γk

a · f + b, where γk
a is the slope of

function F k
a . Since function Fa is convex, the slopes of the

segments are related as follows:

γ1 < γ2 < · · · < γp. (7)

We replace edge a by p parallel edges. The transfer function

of the k-th edge is F k
a , a ∈ [1..n]. The capacity of the k-th

edge is equal to ua.

Let us show that this replacement does not influence the

optimal solution.

Function F ∗
a is convex. Thus, the efficiency of sending flow

through edge a grows as the amount of flow through edge a

increases.

Since we maximize flow at the target node and, according

to Proposition 2, prefer higher efficiency, only one edge of p

parallel edges will be used.

Fa(fa) =

{

γi
a · f i

a + bia, if fa ∈ [ri−1
a , ria],

0, if fa = 0
(8)

If we send an amount of flow fa through edge a and

fa ∈ [rka , r
k+1
a], the k-th edge will be used, because transfer

functions F i
a, i > k or i < k provide lower efficiency for fa.

Thus, the replacement of edge a by p parallel edges in the

way described above does not influence the solution of the

maximization problem.

Now, the transfer functions of the edges are of type γf + b

and the problem can be transformed to MILP-form (see

Section V).

B. Concave transfer functions

Let function Fa be a PWL concave function consisting of p

segments defined by breakpoints: 0 = r0a < r1a < r2a < r3a <

· · · < rpa, for all a ∈ A. Let us denote the slope of a PWL

function in the interval [rka , r
k+1
a] as γk

a . Since function Fa is

concave, the slopes of the segments are related as follows:

γ1 > γ2 > · · · > γp. (9)

412 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Flow fa along edge a is the sum of flows along its segments.

fa = γ1 · f1
a + γ2 · f2

a + · · ·+ γp · fp
a =

∑

k∈{1..p}

γk
a · fk

a (10)

The capacity of the edge representing the k-th segment of

edge a is equal to rka −rk−1
a . The flow along the k-th segment

can be found as follows:

fk
a =

0, if fa ≤ rk−1
a

fa − rk−1
a , if rk−1

a ≤ fa ≤ rka
rka − rk−1

a , if fa ≥ rka

Every segment ak can be represented as an edge with trans-

fer function F k
a = fa · γk

a and assigned capacity (rka − rk−1
a).

An edge a can be replaced by p parallel edges corresponding

to the segments of Fa, for all a ∈ A. This replacement is an

equivalent replacement, because the edges with the higher γ

will be used (exhausted) first when flow is maximized.

The transfer function corresponding to the edges of the mod-

ified network are linear. Now we can transform the problem

to LP-form and use standard LP-solvers or apply algorithms

for the GFP-case.

For example, we can use the algorithm from [2], which

takes O(ǫ−2m∗(m∗+n logm∗) log n) time to compute the ǫ-

optimal flow on a network with no flow-generating cycles.

If we model energy flows, flow generating cycles refer to

perpetual energy sources, which is not possible in practice.

Flow is ǫ-optimal if SOL(F) ≥ (1 − ǫ)OPT (F), m = |A|,
n = |V | and m∗ is the amount of edges in the modified

network.

There are two ways to reduce the algorithm’s complexity:

1: The generalized shortest-path problem is a subroutine of

the GFP. On a graph with no flow-generating paths, it takes

O(m + n logm) time to find a shortest path. We search for

the shortest path on the residual graph. We can speed up this

algorithm by a special way to set a residual graph. We use the

idea described in [1] for convex cost functions. In the residual

network, we do not need to consider all 2p (p forward and

p backward) copies of edges between nodes v and w; it is

sufficient to maintain only two edges: the first is for increasing

flow through edge (v, w), the second edge is for decreasing

flow on it.

Thus, it takes only O(ǫ−2m∗(m + n logm) log n) time to

compute the ǫ-optimal flow.

2: The second way to improve the computational perfor-

mance of the algorithms is to use scaling of the transfer

functions. The polynomial-time algorithm for convex cost

(with integer costs) flow problems based on this method is

presented in [1]. In the first scaling phase, we linearize a

concave function F(v,w) by a PWL function consisting of 2

segments of length
u(v,w)

2 . In the second phase, we linearize

a concave function F(v,w) by a PWL function consisting of 4

segments of length
u(v,w)

4 , and so on until we reach a segment

length of
u(v,w)

2n ≤ ǫ. Thus, we conduct n scaling phases,

n ≥ ⌈log U
ǫ
⌉, where U = max(v,w)∈A u(v,w). After each

scaling phase, we make sure that the flow on the linearized

Fig. 4. S-shaped transfer function of edge a.

Algorithm 1 How to find inflection segment

Require: S-shaped PWL function

Ensure: Number of the inflection segment, s

lower bound of s sb:=1;

2: upper bound of s se:=p;

while sb 6= se do

4: sm:=⌊ se−sb
2 ⌋;

if γsb+sm
a > γsb+sm+1

a then

6: slope decreases, continue search on the left part

se:=sb + sm;

else

8: slope grows, continue search on the right part

sb:=sb + sm + 1;

end if

10: end while

s:=se; (sb=se, thus s=sb).

residual network is maximum. It can be shown (analogously

to the proof from [1]) that to keep the flow on the network

maximum in k-th scaling phases, it is enough to increase

or decrease the flow on every edge by
u(v,w)

2k
units. There

can be at most O(m) augmentations in each scaling phase.

The overall algorithm takes O(m⌈log U
ǫ
⌉) augmentations and

requires O(m + n logm) time to find a shortest path, thus,

runs in O(m⌈log U
ǫ
⌉(m+ n logm)) time.

C. S-shaped transfer functions

Let function Fa be an s-shaped PWL function consisting of

p segments defined by breakpoints: 0 = r0a < r1a < r2a < r3a <

· · · < rpa, for all a ∈ A. Let us denote the slope of a PWL

function in the interval [rka , r
k+1
a] as γk

a .

First, we divide the s-shaped function in two parts: a

concave part and a convex part. With the help of Algorithm 1,

which uses the fact, that γj
a 6= γj+1

a , a ∈ A, j ∈ [1..p − 1],
we can easily find the number of the inflection segment s

for edge a in O(⌈log p⌉) time. s is the number of the first

segment, where the slope of the following segment is lower

than the slope of the current segment. The inflection segment

corresponds to the highest slope.

We use Algorithm 2 to build an equivalent representation

of an s-shaped PWL transform function, see Fig 5. The new

representation fits into MILP framework. The solution of the

MARINA TVOROGOVA: EFFICIENT MODELS FOR SPECIAL TYPES OF NON-LINEAR MAXIMUM FLOW PROBLEMS 413

Fig. 5. An equivalent representation of edge a with an s-shaped transfer
function.

Algorithm 2 How to find the equivalent representation for

s-shaped PWL transfer functions

Require: Initial underlying graph G=(V,A)

Ensure: Equivalent representation of graph G

m:=| V |
2: for a = 1 → m do

apply Algorithm 1 for function Fa to find the number

of inflection segment for transfer function of edge a =
(v, w)

4: for i = 1 → s−1 do {the convex part of the function}

add edge (v, w) with

F i
a =

{

γi
a · f i

a + bia, iff i
a > 0,

0, otherwise
and ui

a = ua;

6: end for

for i = s → p do {the concave part of the function}

8: add edge (v, l) with F i
a = γi

a ·f i
a and ui

a = ria−ri−1
a ;

end for

10: add edge (l, w) with F p+1
a = fp+1

a + bs and u = ∞.

end for

flow maximization problem on the new representation (by

summing over edges ai, i ∈ [1..p]) and on the initial underling

network will be equivalent.

The transfer function of edge a can be found as

Fa(fa) =

0, if fa = 0,
γi
a · f i

a + bia, if fa ∈ [ri−1
a , ria] and i < s,

γs
a · f s

a + bsa, if fa ∈ [ri−1
a , ria] and i = s,

∑

j∈[s..i−1] γ
j
a · uj

a + γi
a · f i

a + bsa,

if fa ∈ [ri−1
a , ria] and i > s.

Capacity limitation edge. To maintain the capacity limit

on edge a, a ∈ A, we introduce a total capacity limitation on

edges ai, i ∈ [1..pa].
∑

i∈[1..p]

uai
≤ ua.

We can either integrate this constraints into the MILP

formulation for all a ∈ A or add a bottleneck edge with

capacity ua to node v so that all flow incoming to node v

must first pass through this bottleneck edge. For convex and

concave cases, the number of edges on the expanded graph

per edge on the original graph p+a becomes pa + 1. For

s-shaped transfer functions, p+a becomes pa + 2.

We can formulate the maximization problem on the modified

network as follows:

Problem 2:

Given D = (V,A), ua ∀a ∈ A, Fa ∀a ∈ A.

Find an s− t−flow, that

maximizes
∑

a∈δ−(t)

∑

i∈1..p+
a
F i
a(fa)

subject to
∑

a∈δ+(v)

∑

i∈1..p+
a

f i
a−

∑

a∈δ−(v)

∑

i∈1..p+
a

F i
a(f

i
a) ≤ 0, ∀v ∈ V \{s, t}

0 ≤ f i
a ≤ ui

a,
∑

i∈[1..pa]

ui
a ≤ ua, ∀a ∈ A, i ∈ 1..p+a .

Theorem 2: The optimal solution of the flow maximization

problem for Problem 1 with s-shaped transfer functions can be

generated from the optimal solution of the flow maximization

problem for Problem 2.

Proof: If we send an amount of flow fa through edge a

and fa ∈ [rk−1
a , rka] and k < s, then (like for the standard

convex case) the k-th edge will be used, because transfer

functions F i
a, i > k or i < k, provide lower efficiency for

fa. And if we send flow fa < rs−1
a , maximization of the flow

leads us to choose one of the edges in new representation, and

send the whole flow fa through this edge.

If we send fa ∈ [rka , r
k+1
a] and k ≥ s, then we are on the

concave part of the function. Segment s is less efficient as any

segment of the concave part. The function, which describes the

s-shaped PWL function of segment s, can be written as F s
a =

γs
a + bsa. Per definition of concavity, for i > s any following

segment is less efficient than the previous and, thus, γi
a > γi+1

a

and γi
a + bsa > γi+1

a + bsa for i > s. In the other words, if we

send flow fa ≥ rs−1
a , we first fulfill edge s, and only then, if

us < fa, the following edges. Then, fa =
∑

i=s...pa
f i
a.

Parallel edges. By allowing parallel edges, we meet some

notational difficulties, because an edge cannot be uniquely

specified by its tail and its head. We can use the following

to build the equivalent network without using parallel edges.

If there are parallel edges between node v and w, we replace

all but one of these edges by a pair of series-connected edges.

The first edge in the pair stays as original, the second one

gets a transfer function equal to one and capacity equal to

∞. For implementation, instead of ∞, we use a big number,

which guarantees no capacity limitation on this edge. Flow

at any edge of our network is less than
∑

a∈δ−(s) fa. Thus,

in order not to create capacity limitations, we can use any

number greater than
∑

a∈δ−(s) fa. Thus, we can easily replace

a graph with parallel edges by an equivalent graph without

parallel edges. A negative effect of this replacement is that

it expands the underlying network. For convex and concave

cases, the number of edges on the expanded graph per edge

on the original graph p+a becomes pa + 1 + pa − 1 = 2 · pa.

414 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

For s-shaped transfer functions, in the subgraph replacing edge

a, there are two sets of parallel edges, thus, p+a becomes

pa + 2 + pa − 2 = 2 · pa.

Graph expansion. If the PWL function of any edge a ∈ A

consists of p segments, the number of edges in the expanded

graph becomes m ·2p, where m is the amount of edges in the

initial graph (with NL PWL transfer functions). If the number

of segments in the approximation function pa is different for

every edge a, the number of edges in the modified network

becomes
∑

a∈A 2 · pa Let us denote the number of edges in

the modified network as m∗.

D. Monotonically growing transfer functions

Monotonically growing PWL transfer functions can be

divided into s-shaped fragments. For each s-shaped fragment,

we establish an equivalent network representation as described

in section IV-C. Thus, the correct segment within each s-

shaped fragment is chosen automatically due to the network‘s

structure. We need to use the extra variables only to force the

right (depending on the amount of flow) s-shaped fragment to

be taken.

V. MILP-MODEL FOR MAX-FLOW PROBLEMS

ON AGFP NETWORK

In this section, we present the formulation of the maximum

flow problem on affine-linear generalized network in MILP

form.

In the model, we have to integrate the following properties

of Fa:

Fa =

{

fa · γa + ba, if fa > 0
0, if fa = 0

To do this, we use binary variables f∗
a ∈ {0, 1}, a ∈ A. If

f∗
a = 1, then flow fa is greater then zero. If f∗

a = 0, then

flow fa is zero. The capacity of flow fa through edge a is

set to zero unless f∗
a = 1.

Given D∗ = (V,A) (D∗ is an expanded/modified graph),

ua, ka, ba, ra ∀a ∈ A.

Find an s− t−flow, that

maximizes
∑

a∈δ−(t)(fa · γa + ba · f∗
a)

subject to
∑

a∈δ+(v)

fa −
∑

a∈δ−(v)

(fa · γa + ba · f∗
a) = 0, ∀v ∈ V \{s, t}

f∗
a ∈ {0, 1}, ∀a ∈ A

0 ≤ fa ≤ ua · f∗
a , ∀a ∈ A

VI. MODEL EVALUATION

Vielma et al. [10] study different ways to model PWL func-

tions in MILP form. They consider the disaggregated convex

combinations model, the logarithmic model, the logarithmic

disaggregated model and other models. These models are

characterized by size of the formulation. Since the quantitative

measurement of constraints, continuous and binary variables in

formulations is ambivalent (e.g. some models require less con-

straints, but need more binaries), computational experiments

were conducted and presented in [10]. The performance of

the logarithmic model was considered the best. According to

[10], the crucial parameter that defines time performance is

the number of additional continuous variables. Our model,

which uses the special properties of the considered PWL

functions, does not need additional continuous variables to

choose the right edge. Remember, the right edge is the edge

that corresponds to the segment of a PWL function that would

be chosen if we sent
∑

i∈[1..pa]
f i
a through edge a. Thus, we

reduce the number of continuous variables, and thus, improve

the computational performance.

VII. ERROR ESTIMATION

Let us consider the situation in which the original transfer

functions F (·) are not PWL functions. Non-linear monotoni-

cally increasing functions can be approximated by monoton-

ically increasing PWL functions (FA(·)), and the approach

described in this paper can be applied. Obviously, the optimal

solution for the original transfer functions OPT (F) does

not have to be equivalent to the optimal solution for the

approximating transfer function OPT (FA). It is important to

be able to estimate how the approximation quality influence

dependence between OPT (F) and OPT (FA).
The approximation error from above, ǫ↑, can be defined as

follows:

ǫ↑ = max
a∈A

max
0≤fa≤ua

(

γA↑
a (fa)− γa(fa)

γa(fa)

)

=

= max
a∈A

max
0≤fa≤ua

(

γA↑
a (fa)

γa(fa)
− 1

)

,

i.e. ǫ↑ ≥ γA↑
a (fa)
γa(fa)

− 1, ∀a ∈ A, 0 ≤ fa ≤ ua.

The latter can be reformulated as follows:

(ǫ↑ + 1)γa(fa) ≥ γA↑
a (fa), ∀a ∈ A, 0 ≤ fa ≤ ua.

The approximation error from below, ǫ↓, can be defined as

follows:

ǫ↓ = max
a∈A

max
0≤fa≤ua

(

γa(fa)−
γA↓
a (fa)

γa(fa)

)

=

= max
a∈A

max
0≤fa≤ua

(

1− γA↓
a (fa)

γa(fa)

)

,

i.e. ǫ↓ ≥ 1− γA↓
a (fa)
γa(fa)

, ∀a ∈ A, 0 ≤ fa ≤ ua.

The latter can be reformulated as follows:

(1− ǫ↓)γa(fa) ≤ γA↓
a (fa), ∀a ∈ A, 0 ≤ fa ≤ ua.

Theorem 3:

OPT (γA↑)

(1 + ǫ↑)z
≤ OPT (γ) ≤ OPT (γA↓)

(1− ǫ↓)z
,

where z is the amount of edges in the longest s − t-path, at

most |A|.

MARINA TVOROGOVA: EFFICIENT MODELS FOR SPECIAL TYPES OF NON-LINEAR MAXIMUM FLOW PROBLEMS 415

Proof: We split the proof into two parts.

Part 1. We prove that OPT (γ) ≥ OPT (γA↑)
(1+ǫ↑)z .

Suppose we know the optimal solution1 f
A↑
OPT for γA↑(·).

According to the flow decomposition theorem (Theorem 1),

we can decompose f
A↑
OPT into l paths, l ≤ |A|. The amount

of flow we send through path Pi = a1, a2, . . . , aki, i ∈ [1, l]
is fi. The amount of flow that reaches the target node through

path Pi is γ
A↑
Pi

(fi)
2.

Let us take the same amount of flow at the source node

as we use to obtain OPTA↑ and send it through the network

with transfer functions γ(·) according to distribution X(fA↑
OPT)

(Def. 6). This yields flow f . Now, let us apply the same path

representation (which was obtained by flow decomposition)

in its distribution form X to flow f . Thereby, we do a valid

decomposition of flow f into l paths. The flow we send

through path Pi stays fi, flow arriving at the target node

through path Pi is γPi
(fi) = γki(γki−1 . . . γ1(fi)).

Assume that we have a limit on the rate of transfer function

growth, γ
′

a(fa), 0 ≤ fa ≤ ua, a ∈ A. Then, γk(γj(x)(1 +
ǫ↑)) ≤ γk(γj(x))(1 + ǫ↑), ǫ↑ ≥ 0, j, k ∈ A.

Then, γ
A↑
Pi

(fi) ≤ γki(γki−1(. . . γ1(fi)(1+ǫ↑))(1+ǫ↑))(1+
ǫ↑) ≤ γki(γki−1(. . . γ1(fi)))(1 + ǫ↑)ki = γPi

(fi)(1 + ǫ↑)ki.
Taking into account that OPT (γ) ≥

∑

i∈[1..l] γPi
(fi), we can

state the following:

OPT (γA↑) =
∑

i∈[1..l] γ
A↑
Pi

(fi) ≤ ∑

i∈[1..l] γPi
(fi)(1 +

ǫ↑)ki ≤ OPT (γ) · (1 + ǫ↑)z . q.e.d.

Part 2. We prove that
OPT (γA↓)
(1−ǫ↓)z ≥ OPT (γ).

This part of the proof is analogous to the first part.

First, we suppose to know the optimal solution for γ(·). Let

us take a flow decomposition for this solution and apply it to

γA↓(·). By this, no capacity constraint is broken. The

amount of flow at the target node for the second solution is

greater than for the first. The optimal solution for γA↓(·) is

the solution that provides the greatest amount of flow at the

target node for the graph with γA↓(·). Thus, we can compare

OPT (γA↓) and OPT (γ).

OPT (γ) =
∑

i∈[1..l] γPi
(fi) ≤

∑

i∈[1..l]

γ
A↓

Pi
(fi)

(1+ǫ↓)ki ≤
OPT (γA↓)
(1+ǫ↓)z

. q.e.d.

1Remember, that the solution is the amount of flow at all edges a, a ∈ A,
and OPT (·) is the amount of flow at the target node.

2Here, we do not consider transfer functions, but residual transfer functions.
We omit writing next to each transfer function that it is a residual function
to avoid overloading notations. Remember, if flow on an edge is zero, then
the residual transfer function of this edge is equal to the transfer function of
this edge, i.e. FR(0) = F .

VIII. CONCLUSIONS

Better performance of the model introduced in this paper is

based on the usage of the characteristics of special types of

PWL functions.

For the maximum flow problem on networks with concave

transfer functions, we propose a polynomial-time approxima-

tion scheme.

For the maximum flow problem on networks with mono-

tonically growing transfer functions (this case can be reduced

to convex and s-shaped transfer functions), we propose to

split the transfer functions into s-shaped segments and then,

with the help of extra variables, force only the right s-shaped

fragment to be taken. We establish such a network represen-

tation that the correct segment within each s-shaped fragment

is chosen automatically due to the network‘s structure. This

yields to MILP model with better performance than if we were

using standard MILP formulations of PWL functions, e.g. the

logarithmic model. Moreover, it is worth to mention that our

model is simple and transparent, which makes implementation

easy.

REFERENCES

[1] Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. "Network flows: Theory,
Algorithms and Applications." Prentice Hall, NJ, 1993.

[2] Fleischer, L. and Wayne, K.D. "Fast and simple approximation schemes
for generalized flow." Mathematical Programming, Vol. 91, pp. 215-238,
2002.

[3] Keha, A.B., de Farias, I.R. and Nemhauser, G.L. "A branch-and-cut
algorithm without binary variables for non-convex piecewise linear opti-
mization." Operations Research, Vol. 54, pp. 847-857, 2005.

[4] Korte, B. and Vygen, J. Combinatorial Optimization: Theory and Algo-

rithms. Algorithms and Combinatorics, 21 Springer, 2006.
[5] Oldham, J. "Combinatorial Approximation Algorithms for Generalized

Flow Problems", In Proceedings of ACM/SIAM, 1999, pp. 135-169.
[6] Onaga, K. "Dynamic programming of optimum flows in lossy commu-

nication nets." IEEE Transactions. Circuit Theory, Vol. 13, pp. 308-327,
1966.

[7] Radzik, T. "Faster algorithms for the generalized network flow problem."
Mathematics of Operations Research, Vol. 23, pp. 69-100, 1998.

[8] Tardos, E. and Wayne, K. "Simple Generalized Maximum Flow Al-
gorithms." In Integer Programming and Combinatorial Optimization,

Lecture Notes in Computer Science, Vol. 1412, pp. 310-324. Springer,
1998.

[9] Truemper, K. "On max flows with gains and pure min-cost flows." SIAM

Journal on Applied Mathematics, Vol. 32, pp. 450-456, 1977.
[10] Vielma, J.P., Ahmed, S. and Nemhauser, G. "Mixed-Integer Models

for Nonseparable Piecewise Linear Optimization." Discrete Optimization,
Vol. 5, pp. 467-488, 2008.

416 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

