
Teaching Programming through Problem Solving:
The Role of the Programming Language

Nikolaos S. Papaspyrou
Email: nickie@softlab.ntua.gr

Stathis Zachos
Email: zachos@cs.ntua.gr

School of Electrical and Computer Engineering

National Technical University of Athens

Polytechnioupoli, 15780 Zografou, Athens, Greece

Abstract—In this short paper, we advocate the importance of
problem solving for teaching “Introduction to Programming”,
instead of merely teaching the syntax and semantics of a
programming language. We focus on the role of the programming
language used for an introductory course. For this purpose we
propose CAL, a C-like algorithmic language, which is essentially
a well-defined and behaved subset of C with a small number of
modest, “educational” extensions. We present the design rationale
for CAL, its main features, syntax and illustrative examples.

I. INTRODUCTION

IN THIS short paper, we present our experiences with teach-

ing programming through problem solving in the School of

Electrical and Computer Engineering of the National Technical

University of Athens. We focus on the role of the programming

language for this purpose and describe the approach that we

have taken. Let us begin with two observations:

1) In some students’ minds, algorithmic programming is

strangely enough an intellectual process that is not

connected to everyday problem solving.

2) Students often have no sense of what is good and what

is bad in programming, even after taking a number of

courses on the design of algorithms and complexity.

We believe that these are both due to the way we teach

students how to program. Starting from secondary school,

students often begin by learning a Pascal-like programming

language. They learn to use variables, assignments, control-

flow statements, arrays. They do not learn, however, because

we do not teach them early enough, what these should be

used for! Young children realize early that they need to solve

problems; they are hungry and they want their parents to feed

them, they want to play with that shiny car in the toy shop’s

window, etc. Later on, they learn to speak and use the language

to communicate their needs. Children learn to speak after they

know what they want to say! Why do we teach programming

languages to students before they know what to use them for?

The main goal of our proposal is a quick introduction to

programming for absolute beginners. Such an introduction

would be useful for teenagers in high-school, who may not

continue to be programming specialists but who want to

support their literacy in mathematics by hands-on attractive

algorithmically solvable problems. It would also be useful to

first-year university students who have (somehow) escaped a

proper exposure to programming in high school (and this is

the majority of our students). Thus, this goal translates to:

• a quick educational introduction to self-evident program-

ming concepts and tools, without cryptic, hardware-

dependent and special purpose structures; but also

• fluency in a programming language which can be easily

extended and/or modified to a language that is currently

useful in practice, without a total rethinking of the basic

algorithmic techniques.

Our historic prototype for a self-evident educational program-

ming language is of course Pascal [10], whereas programming

languages that are currently useful in practice are of course C

[7], [5], C++ [9] and Java [2].

II. THE ROLE OF THE LANGUAGE

Since the 1950s, scores of different programming languages

have been designed and implemented and many more are yet

to come. Those with a relative experience in the field will agree

that there is no such thing as “the best programming language”

and this is what we need to explain to our students early

on. Some languages are better than others for some specific

purpose and indeed: (a) some specific languages are almost

exclusively used for some specific purposes, and (b) for some

specific purposes people use almost exclusively some specific

languages.

For example, C [7], [5] is a very good language for systems

programming. It is a low-level language, offering programmers

the opportunity to directly interact with the hardware, but not

the best language for numerical and scientific computing today.

We believe that C is an inappropriate language for teaching

“Introduction to Programming”. Some of its characteristics are

so low-level that tend to focus on the hardware, instead of

on the algorithms. When you start learning how to program,

you don’t need twelve different types for integer numbers

(including characters and Boolean values) and three more for

real (floating-point) numbers. You don’t need a for statement

so powerful that you can use it to implement a binary search

algorithm in just one line. You don’t need to struggle to un-

derstand the meaning of x = x++; (most people, including

some who teach C, think that it does something although

opinions vary when it comes to what exactly this is; the truth is

that this statement is illegal, or causes “undefined behaviour”

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1533–1536

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1533

as the ANSI C standard puts it, because the value of variable

x changes twice between two successive sequence points).

Pascal [10], [6] is arguably one of the best programming

languages for teaching purposes. It is a concise, general

purpose language which supports a systematic, structured

and algorithmic approach to problem solving. Programs in

Pascal are usually easy to read and understand with a clear

structure that favours stepwise refinement. The language helps

programmers to avoid programming mistakes and to be able

to verify the correctness of their programs. On the other hand,

Pascal is very little used today by software practitioners.

Java and other object-oriented languages are also poor

candidates for teaching “Introduction to Programming”. If the

focus is on problem solving and algorithmic thinking, such

languages add an unbearable level of noise. Using Java, the

only logical approach is to teach programming in a purely

object-oriented fashion and this necessarily takes the focus

away from problem solving, although OOP might be a good

choice for a second (e.g., data structures) course.

There is a trend towards Python, in the last few years.

Python is a relatively good candidate; its syntax is concise

and enforces proper indentation, it supports imperative and

object-oriented programming equally well, and it is widely

used in the software industry. The drawbacks for Python are:

(a) it is dynamically typed and requires very few declarations;

this is bad if you want the students to detect programming

errors early and to learn to program in a disciplined way;

(b) it is so high-level that students do not develop an intuition

about how data are represented and how operations are im-

plemented; this is bad if you want the students to understand

the connection between the programming language and the

underlying hardware; and (c) its data structures are so high-

level that algorithmic complexity issues are obscured by the

way data structures are implemented; e.g., in Python there are

no arrays, but there are lists and dictionaries; however, in a

data structure course, all three would need to be covered and

with three different implementations, requiring O(1), O(n)
and O(n log n) time for accessing an element, respectively.

The second drawback (b) is also true for functional lan-

guages, like Scheme, ML or Haskell, which are also very good

from an educational point of view and are indeed used for

teaching “Introduction to Programming” in several Computer

Science departments [8], [3], [1], [4].

All this said, we decided to design a new educational

programming language for an introductory course in which

emphasis is on problem solving. However, this educational

language will naturally evolve before the students’ eyes to

a full-scale programming language, useful later on. In the

next sections we describe CAL, a C-like algorithmic language,

starting from the design choices that we had to make, proceed-

ing with the syntax, the main characteristics of the language

and concluding with a few examples.1

1An implementation of CAL, based on GCC and using macros, is available
from https://github.com/softlab-ntua/pazcal.

III. THE DESIGN OF CAL

Disregarding some drawbacks, C is an adequate choice

for teaching “Introduction to Programming”, with emphasis

on problem solving and algorithmic thinking. Its core is a

quite simple algorithmic language, easy to explain and use.

Moreover, it is a useful language to know, heavily used

in practice, either directly or indirectly, through a line of

descendants that share a large part of its syntax and semantics

(C++, Java, C#, etc.). A list of drawbacks:

• Its syntax and semantics is often cryptic and obfuscated;

e.g., allowing side-effects anywhere inside expressions.

• The use of “declarators” (as in int*(f[3])(int);)

is counter-intuitive and hard to explain.

• Non trivial library functions (e.g., printf and scanf)

are required for beginners to write programs that input

and output data. The corresponding header files must be

#included. Pointers are required for scanf.

• Before the simplest program is written, students must

see int main() and return 0; unless of course we

want to teach them to be sloppy from the first lecture...

• The type system allows programmers to deliberately

misuse data and to neglect declaring function prototypes.

Both are bad from an educational point of view.

We therefore base CAL on an appropriate “educational

subset” of C, which we extend with a number of macros,

library functions and one extra feature (call by reference)

to suit the needs of our introductory course. The result is

a language reminiscent of Pascal but with C notation. All

extensions are written with uppercase letters (e.g., WRITE),

so that students immediately know if something that they have

learnt exists in C or is one of our educational extensions. The

main characteristics of CAL, whose complete syntax is defined

in figure 1, are the following:

• A program is organized as a set of modules, each consist-

ing of constant and type definitions, variable definitions,

routine declarations, routine definitions and (optionally)

the body of the main program, which must only be

present in one module. The visibility of module defini-

tions is controlled with PRIVATE and extern.

• There are functions and procedures, defined with FUNC

and PROC respectively; the misleading type void is not

used. The main program begins with the special keyword

PROGRAM.

• The type system is simplified. There are types for

Boolean values (bool, as in C99, with constants true

and false), integers (int), characters (char) and real

numbers (REAL). There are also enumerations, structures

and unions, but these must be defined and given a name

before they can be used. Arrays and pointers complete

the picture of types. However, the syntax for declarators

is very simplified in comparison with C; type synonyms

(typedef) can be used for defining, e.g., double point-

ers, arrays or pointers, pointers to arrays, etc.

• Operators NOT, AND, OR and MOD are synonyms of C’s

(not so intuitive) standard operators !, &&, || and %.

1534 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

〈module〉 ::= (〈const def〉 | 〈type def〉)∗ (〈declaration〉)∗ (〈definition〉)∗ [〈program〉]

〈declaration〉 ::= [“PRIVATE” | “extern”] (〈var def〉 | 〈routine decl〉)

〈definition〉 ::= [“PRIVATE” | “extern”] 〈routine def〉

〈const def〉 ::= “const” 〈type〉 〈declarator〉 “=” 〈initializer〉 (“,” 〈declarator〉 “=” 〈initializer〉)∗ “;”

〈type def〉 ::= “typedef” 〈type〉 〈declarator〉 (“,” 〈declarator〉)∗ “;” | 〈enum def〉 | 〈struct def〉 | 〈union def〉

〈enum def〉 ::= “enum” 〈id〉 “{” 〈id〉 (“,” 〈id〉)∗ “}” “;”

〈struct def〉 ::= “struct” 〈id〉 “{” (〈type〉 〈declarator〉 (“,” 〈declarator〉)∗ “;”)∗ “}” “;”

〈union def〉 ::= “union” 〈id〉 “{” (〈type〉 〈declarator〉 (“,” 〈declarator〉)∗ “;”)∗ “}” “;”

〈var def〉 ::= 〈type〉 〈declarator〉 [“=” 〈initializer〉] (“,” 〈declarator〉 [“=” 〈initializer〉])∗ “;”

〈routine decl〉 ::= 〈routine header〉 “;”

〈routine def〉 ::= 〈routine header〉 〈block〉

〈routine header〉 ::= (“PROC” | “FUNC” 〈type〉) 〈id〉 “(” [〈type〉 〈formal〉 (“,” 〈type〉 〈formal〉)∗] “)”

〈formal〉 ::= 〈id〉 [“[” “]”] (“[” 〈expr〉 “]”)∗ | “*” 〈id〉 | “&” 〈id〉

〈type〉 ::= “int” | “bool” | “char” | “REAL” | “enum” 〈id〉 | “struct” 〈id〉 | “union” 〈id〉 | 〈id〉

〈declarator〉 ::= 〈id〉 (“[” 〈expr〉 “]”)∗ | “*” 〈id〉

〈initializer〉 ::= 〈expr〉 | “{” 〈initializer〉 (“,” 〈initializer〉)∗ “}”

〈program〉 ::= “PROGRAM” 〈id〉 “(” “)” 〈block〉

〈block〉 ::= “{” (〈local def〉 | 〈stmt〉)∗ “}”

〈local def〉 ::= 〈const def〉 | 〈var def〉

〈stmt〉 ::= “;” | 〈l value〉 〈assign〉 〈expr〉 “;” | 〈l value〉 (“++” | “--”) “;” | 〈write〉 “(” [〈format〉 (“,” 〈format〉)∗] “)” “;”

| “FOR” “(” 〈id〉 “,” 〈range〉 “)” 〈stmt〉 | “while” “(” 〈expr〉 “)” 〈stmt〉 | “do” 〈stmt〉 “while” “(” 〈expr〉 “)” “;”

| “if” “(” 〈expr〉 “)” 〈stmt〉 [“else” 〈stmt〉] | “break” “;” | “continue” “;” | “return” [〈expr〉] “;”

| 〈block〉 | 〈call〉 “;” | “switch” “(” 〈expr〉 “)” “{” ((“case” 〈expr〉 “:”)+ 〈clause〉)∗ [“default” “:” 〈clause〉] “}”

〈assign〉 ::= “=” | “+=” | “-=” | “*=” | “/=” | “%=”

〈range〉 ::= 〈expr〉 (“TO” | “DOWNTO”) 〈expr〉 [“STEP” 〈expr〉]

〈clause〉 ::= (〈stmt〉)∗ (“break” “;” | “NEXT” “;”)

〈write〉 ::= “WRITE” | “WRITELN” | “WRITESP” | “WRITESPLN”

〈format〉 ::= 〈expr〉 | “FORM” “(” 〈expr〉 “,” 〈expr〉 [“,” 〈expr〉] “)”

〈expr〉 ::= 〈int-const〉 | 〈float-const〉 | 〈char-const〉 | 〈string-literal〉 | “true” | “false” | “(” 〈expr〉 “)” | 〈l value〉 | 〈call〉
| 〈unop〉 〈expr〉 | 〈expr〉 〈binop〉 〈expr〉 | “(” 〈type〉 “)” 〈expr〉 | “NULL” | “NEW” “(” 〈type〉 [“,” 〈expr〉] “)”

〈l value〉 ::= 〈id〉 | 〈expr〉 “[” 〈expr〉 “]” | “*” 〈expr〉 | 〈expr〉 “.” 〈id〉 | 〈expr〉 “->” 〈id〉

〈unop〉 ::= “+” | “-” | “NOT” | “!”

〈binop〉 ::= “+” | “-” | “*” | “/” | “%” | “MOD” | “==” | “!=” | “<” | “>” | “<=” | “>=” | “&&” | “AND” | “||” | “OR”

〈call〉 ::= 〈id〉 “(” [〈expr〉 (“,” 〈expr〉)∗] “)”

Fig. 1. A context-free grammar defining the syntax of CAL in EBNF. Operator precedence and associativity are the same as in C.

• Assignment (simple or composite) is a statement. (Alas,

for compatibility purposes we have to give up the as-

signment operator := and accept the commonly used =,

which we would prefer not to confuse with the equality

operator known from mathematics.) There is just one

type of increment and decrement operators (postfix, e.g.,

x++), used again as statements. Therefore, expression

evaluation cannot contain direct side-effects. Also, we

omit bitwise operators and conditional expressions (?:).

• We omit the for statement, which is too general for our

purposes, and replace it with a FOR statement following

the style of Pascal, mentioning the control variable and

a (precomputed) range of values that the control variable

will take. Using FOR, the maximum number of iterations

is always finite and known before the loop starts execut-

ing; break and continue can be used to exit the loop

and proceed with the next iteration.

• The switch statement is sanitized; case labels cannot

appear everywhere. Furthermore, clauses are required to

end either with a break, or with the new keyword NEXT

in order to explicitly proceed to the next clause.

• Four kinds of WRITE statements are used for the output

of data, allowing any number of arguments of any type,

with a number of formatting options that are useful for

an introductory course. Library functions READ_INT,

READ_REAL and getchar are used to input data.

• The use of pointers has also been sanitized. The connec-

tion between pointers and arrays is still present, but it

only allows the use of a pointer as an array; no pointer

arithmetic is allowed and there is no “address of” operator

(&). Pointers are used for dynamic memory allocation;

NEW and DELETE help students for this purpose (in the

spirit of C++, instead of malloc and free in C).

• Call by reference is allowed, using the same notation that

NIKOLAOS S. PAPASPYROU, STATHIS ZACHOS: TEACHING PROGRAMMING THROUGH PROBLEM SOLVING 1535

C++ uses for references.

IV. INTRODUCTION TO PROGRAMMING USING CAL

Our course is based on the simplicity philosophy of the

great teachers of the 1960s: Dijkstra, Hoare, and Wirth. We

only give some highlights for lack of space.

• As early as in the second week, students are able to write

simple programs that input, process and output data.

PROGRAM area_of_circle ()

{ WRITE("Give the radius: ");

REAL r = READ_REAL();

REAL a = 3.1415926 * r * r;

WRITELN("The area is: ", a);

}

• Control flow and combinatorial calculations.

PROGRAM primes ()

{ int p;

WRITELN(2);
FOR (p, 3 TO 1000 STEP 2)

{ int t = 3;

while (p MOD t != 0) t += 2;

if (p == t) WRITELN(p);

}

}

• Structured programming: modules, functions and proce-

dures, parameter passing, stepwise refinement.

• Recursion. Euclid’s algorithm for the greatest common

divisor is one of the examples that we use:

FUNC int gcd (int i, int j)

{ if (i==0 OR j==0) return i+j;

else if (i > j) return gcd(i MOD j, j);

else return gcd(i, j MOD i);

}

• Call by reference: e.g., in swap, useful for sorting.

PROC swap (int &x, int &y)

{ int t = x; x = y; y = t; }

• Arrays: merge sort and quick sort, which are also exam-

ples of recursion.

PROC merge (int a[], int fst, int mid, int lst);

PROC mergesort (int a[], int first, int last)

{ if (first >= last) return;
int mid = (first + last) / 2;

mergesort(a, first, mid);

mergesort(a, mid+1, last);

merge(a, first, mid, last);

}

• Dynamic data structures, such as linked lists and trees,

e.g., in-situ reversal of a simply linked list.

struct node { int data; struct node *next; };

typedef struct node *list;

PROC reverse (list &l)

{ list q = NULL;

while (l != NULL)

{ list p = l;

l = p->next; p->next = q; q = p;

}

l = q;

}

When grading, we reward the design of efficient algorithms

for solving problems such as the following:

MAXSUM: Read a sequence of n integer numbers (positive,

zero, or negative) and output the largest value of the sum of

(arbitrarily many) consecutive numbers in the sequence.

We expect students who correctly solve this problem to

come up with one of three general types of solutions, or

variations thereof. The first, is the obvious O(n3) algorithm:

for all possible starts (i) and ends (j) of subsequences,

calculate the sum and find the largest. The second is the

slightly less obvious O(n2) algorithm that, for every given

start (i) avoids recomputing the sum of a subsequence from

scratch but reuses the sums of smaller subsequences. Finally,

the third is a linear algorithm — O(n) time and requiring

O(1) memory — which works in a greedy fashion.

PROGRAM maxsum_On ()

{ int n = READ_INT();

int i, sofar = 0, best = 0;

FOR (i, 0 TO n-1)

{ int x = READ_INT();

sofar += x;

if (sofar < 0) sofar = 0;

else if (sofar > best) best = sofar;

}

WRITELN(best);

}

V. CONCLUDING REMARKS

We have presented CAL, a C-like algorithmic language

that we advocate for teaching “Introduction to Programming”

focusing on problem solving. We discussed the design of CAL,

which is essentially a controlled subset of C with some appro-

priate extensions. We would like to see CAL, or appropriate

subsets of it, as a vehicle to teach computer programming to

high-school students, making a bridge between mathematics

and computer science in secondary education.

REFERENCES

[1] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi, How to

Design Programs: An Introduction to Computing and Programming.
MIT Press, 2001.

[2] J. Gosling, B. Joy, G. L. S. Jr., G. Bracha, and A. Buckley, The Java

Language Specification, java se 7 ed. Addison-Wesley, 2013.
[3] P. Hudak, The Haskell School of Expression: Learning Functional

Programming through Multimedia. Cambridge University Press, 2000.
[4] G. Hutton, Programming in Haskell. Cambridge University Press, 2007.
[5] ISO/IEC 9899:2011 Standard, Information technology – Programming

languages – C, International Organization for Standardization, 2011.
[6] K. Jensen and N. Wirth, Pascal user manual and report — ISO Pascal

standard, 4th Edition. Springer, 1991.
[7] B. W. Kernighan and D. M. Ritchie, The C Programming Language,

2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1988.
[8] L. C. Paulson, ML for the Working Programmer, 2nd ed. Cambridge

University Press, 1996.
[9] B. Stroustrup, The C++ Programming Language, 3rd ed. Addison-

Wesley, 1997.
[10] N. Wirth, “The programming language Pascal,” Acta Informatica, vol. 1,

pp. 35–63, 1971.

1536 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

