
Towards deductive-based support for software
development processes

Radosław Klimek
AGH University of Science and Technology

al. A. Mickiewicza 30, 30-059 Krakow, Poland

rklimek@agh.edu.pl

Abstract—The work relates two initial disciplines of the
Rational Unified Process (RUP), i.e. Business Modeling and
Requirements Engineering, to support them in an integrated
way through deductive-based formal verification using temporal
logic. On the other hand, Cyber-Physical Systems (CPS), which
should be an effective orchestration of computations and physical
processes, need careful development and formal verification to
ensure they influence software reliability, trustworthiness and
cost in a positive way. A method for building both business models
and requirements models, including their logical specifications,
is proposed and presented step by step. Applying the presented
concepts bridges the gap between the benefits of deductive
reasoning for correctness analysis and the difficulties in obtaining
complete logical specifications.

I. INTRODUCTION

C
YBER-Physical Systems (CPS) are understood as in-

tegrations of computation with physical processes [1]

and often refer to embedded systems. A CPS is designed

as a network of interacting elements with physical input

and output and focus on both technology and mathematical

abstractions. CPS need to improve the development processes,

in order to raise the level of abstraction, and to formally

verify designs. On the other hand, the Rational Unified Process

(RUP) provides a disciplined approach to assignment of tasks

and responsibilities within software processes. Most iterations

within RUP phases result in an executable deliverable. RUP

consists of perspectives, disciplines, etc. [2]. The work focuses

on the first two disciplines which are Business Modeling (BM)

and Requirements Engineering (RE). BM involves higher level

managing people. RE involves higher level software engineers.

BM facilitates discovering RE. On the other hand, considering

BM and RE together can result in a synergic effect. Formal

methods enable the precise formulation of important artifacts,

eliminating ambiguity during the software development pro-

cess [3]. Deductive inference enables the analysis of infinite

computation sequences and is an essential part of everyday life

and scientific work. On the other hand, the important question

for deductive approach is the lack of automatic methods for

obtaining logical specifications understood as (large) sets of

temporal logic formulas. Thus, the automation of this process

seems justified and particularly important.

The motivation for the work is the lack of tools for

deductive-based formal verification of RUP-like processes.

Another motivation is the lack of tools for automatic extraction

of logical specifications from software models. The contribu-

tion of the work is a method for automatic generation of logical

specifications considered as sets of temporal logic formulas.

Relatively simple yet illustrative examples of the approach are

provided.

Work by Morimoto [4] contains a survey of formal verifi-

cation methods for business processes. It discusses automata,

model checking, communicating sequential processes, Petri

nets, Markov networks, and all these issues are discussed

in the context of business process management and web

services. Work by Brambilla et al. [5] contains some aspects

of workflows and temporal logic, but formulas are mostly

created manually and formal verification is not discussed

widely. In work by Kazhamiakin [6], a method based on

formal verification of requirements using temporal logic and

model checking approach is proposed, and a case study is

discussed.

II. BASIC ASSUMPTIONS

The idea of workflow patterns is crucial for this work.

They constitute a kind of primitives to enable development

of software models and modeling logical specifications. A set

of temporal logic formulas is linked to every pattern. The basic

issues related to temporal logics and their syntax and semantics

are discussed in many works, e.g. [7]. The considerations in

this work are limited to the linear-time temporal logic LTL,

and attention is focused on the propositional linear time logic

PLTL. The elementary set pat() of formulas over atomic

formulas ai, where i > 0, which is also denoted pat(ai), is a

set of temporal logic formulas f1, ..., fm such that all formulas

are syntactically correct. The example of an elementary set

is pat(a, b, c) = {a ⇒ ♦b, b ⇒ ♦c,�¬(a ∧ b ∧ c)} which

is a three-element set of formulas created over three atomic

formulas. The logical expression WL is a structure similar

to the well-known regular expressions and allows to express

the complex and nested workflow model in a literal notation.

For example, Seq(Split(a, b, c), Cond(d, e, f)) shows the se-

quence of a parallel split followed by conditional execution

of some tasks, and the meaning of all patterns is intuitive and

not formally defined.

Every pattern has a predefined and countable set of linear

temporal logic formulas. Thus, all acceptable patterns consti-

tute a set of predefined design patterns Π. The example of

such a set for business models is shown in Fig. 1. Software

workflows should be modeled using predefined patterns only.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1377–1380

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1377



Most elements of this predefined set, i.e. comments, two

temporal logic operators, classical logic operators, are not in

doubt. The slash allows to place more than one formula in a

single line. The entry, or shortly en, and exit, or shortly ex,

expressions are collections of atomic formulas which describe,

informally speaking, the potential logical entry points end

logical exit points for a particular pattern. The entry and

exit formulas represent a pattern as a whole. f1, f2 etc. are

atomic formulas for a pattern. They constitute a kind of formal

arguments for a pattern.

The logical specification L consists of all formulas derived

from the logical expression WL using the algorithm A, i.e.

L(WL) = {fi : i ≥ 0 ∧ fi ∈ A(WL, P )} (1)

where fi is a PLTL formula. The generation algorithm A has

two inputs. The first one is a logical expression WL which is

a kind of a variable, i.e. it varies when a model (workflow)

is subjected to any modification by software engineers. The

second one is the predefined set P for business models or

for activity models which is a kind of constant, i.e. it is once

defined and then widely used. The output of the algorithm

is a logical specification understood as a set given by a

formula 1. However, generation of logical specifications is not

a simple summation of formula collections from predefined

design patterns. The algorithm (A) is as follows:

1) at the beginning, the logical specification is empty, i.e.

L = ∅;

2) the most nested pattern or patterns are processed first;

then, less nested patterns are processed one by one, i.e.

patterns that are located more towards the outside;

3) if the currently analyzed pattern consists of atomic

formulas only, the logical specification is extended, by

summing sets, by formulas linked to the currently being

analyzed pattern pat(), i.e. L = L ∪ pat();
4) if any argument is a pattern itself, then the logical

disjunction of its entry and exit formulas is substituted

in the place of the pattern as an argument.

III. BUSINESS MODELING

Business modeling BM allows to understand the structure

and behavior of the organization in which a system is to

be deployed. It also ensures stakeholders to have a common

understanding of the target organization. Business Process

Modeling Notation BPMN is a standard graphical notation pro-

vided by the Business Process Management Initiative (BPMI)

for the modeling of business processes. BPMN is becoming

the dominant modeling notation, bridging the gap between

business process design and process implementation. The main

goal of BPMN is to provide a notation that is understandable

by all business users, from business analysts to technical

developers, and finally, to business people who will manage

and monitor those processes [8]. An important parts of BPMN

are 21 patterns which are introduced by van der Aalst et

al. [9]. Gradually building in complexity, process patterns were

broken down into six categories: Basic Control Flow Patterns,

Advanced Branching, Structural, Multiple Instances, State

Based, and Cancellation. For example, the basic control flow

patterns are divided into five particular patterns: Sequence,

Parallel Split, Synchronization, Exclusive Choice, and Simple

Merge, the meaning of which is defined in terms of temporal

logic formulas in Fig. 1.

/* ver. 27.04.2013

/* Basic Control Patterns

Sequence(f1,f2):

entry=f1 / exit=f2

f1 => <>f2 / ~f1 => ~<>f2 / []~(f1 & f2)

ParallelSplit(f1,f2,f3):

en=f1 / ex=f2,f3

f1 => <>f2 & <>f3 / ~f1 => ~<>f2 & ~<>f3

[]~(f1&(f2|f3))

Synchronization(f1,f2,f3):

en=f1,f2 / ex=f3

f1 & f2 => <>f3 / ~f1 | ~f2 => ~<>f3

[]~((f1|f2)&f3)

ExclusiveChoice(f1,f2,f3):

en=f1 / ex=f2,f3

f1 => (<>f2 & ~<>f3)|(~<>f2 & <>f3)

~f1 => ~<>f2 & ~<>f3

[]~(f2 & f3) / []~(f1&(f2|f3))

SimpleMerge(f1,f2,f3):

en=f1 / ex=f2,f3

f1|f2 => <>f3 / ~f1 & ~f2 => ~<>f3

[]~(f1&f2) / []~((f1|f2)&f3)

/* ..... [other] Business Patterns

Fig. 1. A predefined set of patterns P for BPMN models

Let Π1 = {Sequence, ParallelSplit, Synchronization,

ExclusiveChoice, SimpleMerge, ...} be a predefined set of

patterns for business models, with aliases Seq, Split, Synch,

Choice, and Merge, respectively. The meaning of patterns

is formally defined in Fig. 1. Although the above set contains

only some patterns to present the main ideas of the work, other

workflow patterns together with their temporal logic formulas

could be defined in future research.

The business model for flight dispatch is considered below.

The BPMN model is shown in Fig. 2. When the decision to

realize the flight is taken, then some processes are carried out

concurrently. Some of them relate to the preparation of the

aircraft and the crew, while others – to passenger handling

and loading of baggage. Taking off must be preceded by

a permission to start with all of its internal actions. Every

business process should be decomposed into a business use

case and a series of activities. The logical expression WL is

Seq(Split(Initiate, Split(PreF lightPreparation,

AircraftPreparation, PassengerHandling),
F lightCoordination), Synch(Synch(
CrewPreparation,BaggageLoading,

AircraftTaxiing), P ermissionStart, TakingOff))

or after the substitution of propositions (business processes)

as capital letters of the Latin alphabet: A – Initiate, B –

PreFlightPreparation, C – AircraftPreparation, D – Passenger-

Handling, E – FlightCoordination, F – CrewPreparation, G

– BaggageLoading, H – AircraftTaxiing, I – PermissionStart,

and J – TakingOff. A logical specification L for the above

logical expression is built in such a way that patterns are

processes in the following order: most nested Split, most

1378 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013



Initiate

AircraftPreparation CrewPreparation

PassengerHandling BaggageLoading

PermissionStart

TakingOff

AircraftTaxiing

FlightCoordination

PreFlightPreparation

Fig. 2. A business model for a flight dispatch

nested Synch, outer Split, outer Synch, and Seq. The

resulting logical specification contains formulas

L = {B ⇒ ♦C ∧ ♦D,¬B ⇒ ¬♦C ∧ ¬♦D,

�¬(B ∧ (C ∨D)), F ∧G ⇒ ♦H,¬F ∨ ¬G ⇒ ¬♦H,

�¬((F ∨G) ∧H), A ⇒ ♦(B ∨ C ∨D) ∧ ♦E,

¬A ⇒ ¬♦(B ∨ C ∨D) ∧ ¬♦E,

�¬(A ∧ ((B ∨ C ∨D) ∨ E)), (F ∨G ∨H) ∧ I ⇒ ♦J,

¬(F ∨G ∨H) ∨ ¬I ⇒ ¬♦J,

�¬(((F ∨G ∨H) ∨ I) ∧ J),

(A ∨ C ∨D ∨ E) ⇒ ♦(F ∨G ∨ I ∨ J),

¬(A ∨ C ∨D ∨ E) ⇒

¬♦(F ∨G ∨ I ∨ J),

�¬((A ∨ C ∨D ∨ E) ∧ (F ∨G ∨ I ∨ J))} (2)

Formal verification is the act of proving the correctness of a

system. Liveness and safety are a taxonomy of system proper-

ties. Liveness means that the computational process achieves

its goals (something good eventually happens). Safety means

that the computational process avoids undesirable situations

(nothing bad ever happens). The liveness property for the

model can be

A ⇒ ♦J (3)

which means that if the initiation is executed then sometime

in the future the aircraft take off, or formally Initiate ⇒
♦TakeOff . When considering the property, the entire for-

mula to be analyzed using, for example, the semantic tableaux

method is

C(L) ⇒ (A ⇒ ♦J) (4)

where C(L) is a logical conjunction of all formu-

las that belong to the logical specification L, c.f. for-

mula 2. In a similar way, safety formulas are consid-

ered, e.g. �¬(¬PermissionStart ∧ TakingOff) or even

formula �¬(PermissionStart ∧ ¬CrewPreaparation.c ∧

¬BaggageLoading.c) the meaning of which seems under-

standable, and the .c suffix means the logical condition as-

sociated with an activity. However, the presentation of a full

inference tree for these cases exceeds the size of the work. In

the case of the semantic tableaux method for logical reasoning,

when the falsification of the semantic tree is received, the

open branches are obtained and provide information about the

source of the error. This is another advantage of the method.

IV. REQUIREMENTS MODELING

Once the business model is built, a requirements model

is developed. The transition between the models is done in

such a way that a single business process is mapped to a

single business use case [2]. A business use case is always

actor-centric. A business use case scenario is a description

that illustrates the behavior from the actors’s point of view.

Every scenario allows to identify and extract atomic activities.

Afterwards, the activity diagram enables the modeling of

workflows for atomic activities using predefined workflow

patterns. It supports choice, concurrency and iteration. The

activity diagram shows how an activity depends on oth-

ers. Nesting of activities is permitted. The following design

patterns for activities are introduced [10], [11]: sequence,

concurrent fork/join, branching and loop-while for iteration.

Thus, the predefined set of patterns for activity workflows is

Π2 = {Sequence, Concurrency,Branching, LoopWhile},

and aliases are: Seq, Concur, Branch, and Loop, respec-

tively.
The business use case “PassengerHandling” is discussed

below. This is one of the processes received from a business

model shown in Fig. 2. The use case scenario is in Fig. 3. The

use case scenario is in Fig. 4. When the passenger holding

a valid ticket arrives at the airport, the airport check-in, i.e.

counter or self, must be made to confirm the passenger’s pres-

ence, and then a boarding pass is issued. When the passenger

has hold baggage, then it must be registered. (In Europe) when

the passenger is outside the non-Schengen countries, then

border and custom controls need to be performed. The last step

before boarding is the security control. Not to introduce the

simple branching (if-then) as another pattern for the activity

RADOSLAW KLIMEK: TOWARDS DEDUCTIVE-BASED SUPPORT FOR SOFTWARE 1379



PassengerHandling

Passenger

Use Case: PassengerHandling 

Preconditions: Passenger has a valid ticket 

without check-in 

Scenario: 

1. Passenger’s ͞Check-in͟or͞“elfCheck-in͟ 

2. If necessary then ͞HoldBaggage͟ 

3. If non-Schengen then ͞BorderControl͟ 
and ͞CustomControl͟ 

4. Passenger’s ͞“ecurityControl͟ 

5. Passenger’s ͞Boarding͟ 

Postconditions: Passenger completed all 

formalities related to the flight 
 

Fig. 3. A business use case (top) and its scenario (bottom)

Check-in SelfCheck-in

HoldBaggage Null1

BorderControl

CustomsControl

Null2

SecurityControl

Boarding

/ Counter

/ Baggage

/ non-Schengen

Fig. 4. An activity diagram for the scenario from the Fig. 3

diagram, the empty activity (“Null”) is introduced instead

a full branching (if-then-else). The Null activity does not

consume time, i.e. after reaching the activity it is always

immediately completed.

After the substitution of propositions (atomic activities) as

small letters of the Latin alphabet: a – Counter, b – CheckIn,

c – SelfCheckIn, d – Baggage, e – HoldBaggage, n1 – Null1,

f – nonSchengen, g – BorderControl, h – CustomControl,

n2 – Null2, i – SecurityControl, and j – Boarding, then the

expression WL is

Seq(Seq(Branch(a, b, c), Branch(d, e, n1)),
Seq(Branch(f, Seg(g, h), n2), Seq(i, j)))

A logical specification L for the above logical expression is

build in the same way as it is shown in the previous section.

An example of the liveness property for the model can be

e ⇒ ♦j (5)

which means that if the hold baggage for a passenger is

registered then sometime in the future the passenger is

boarding, or more formally HoldBaggage ⇒ ♦Boarding.

V. CONCLUSION

A method for a deductive-based support developing soft-

ware models for the first two RUP disciplines is proposed.

Also, a method for automatic generation of logical specifica-

tions is defined.

Future works might result in development of CASE soft-

ware which supports deduction-based formal verification of

software development processes for CPS systems. Consider-

ing Concurrent Communicating Lists [12] is encouraging for

strengthen and join these directions of research.

ACKNOWLEDGMENT

This work was supported by the AGH UST internal grant

no. 11.11.120.859.

REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in Proceedings

of the 11th IEEE Symposium on Object Oriented Real-Time Distributed

Computing, ser. ISORC 2008. IEEE Computer Society, 2008, pp.
363–369. [Online]. Available: http://dx.doi.org/10.1109/ISORC.2008.25

[2] P. Kruchten, The Rational Unified Process: An Introduction, ser. The
Addison-Wesley Object Technology Series. Addison Wesley, 2004.

[3] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal
methods: Practice and experience,” ACM Computing Survey, vol. 41,
no. 4, pp. 19:1–19:36, 2009.

[4] S. Morimoto, “A survey of formal verification for business process
modeling,” in Proceedings of the 8th International Conference Com-

putational Science (ICCS 2008), June 23–25, 2008, Kraków, Poland,

Part II, ser. Lecture Notes in Computer Science, M. Bubak, G. D. van
Albada, J. Dongarra, and P. M. A. Sloot, Eds., vol. 5102. Springer–
Verlag, 2008, pp. 514–522.

[5] M. Brambilla, A. Deutsch, L. Sui, and V. Vianu, “The role of visual tools
in a web application design and verification framework: A visual nota-
tion for ltl formulae,” in Proceeding of the 5th International Conference

on Web Engineering (ICWE 2005), July 27-29, 2005, Sydney, Australia,
ser. Lecture Notes in Computer Science, D. Lowe and M. Gaedke, Eds.,
vol. 3579. Springer–Verlag, 2005, pp. 557–568.

[6] R. Kazhamiakin, M. Pistore, and M. Roveri, “Formal verification of
requirements using spin: A case study on web services,” in Proceedings

of 2nd International Conference on Software Engineering and Formal

Methods (SEFM 2004), 28–30 September 2004, Beijing, China, 2004,
pp. 406–415.

[7] E. Emerson, Handbook of Theoretical Computer Science. Elsevier, MIT
Press, 1990, vol. B, ch. Temporal and Modal Logic, pp. 995–1072.

[8] OMG, “Business process modeling notation specification, version 1.2,”
January 2009, OMG Document dtc/2009-01-03, Tech. Rep., 2009.

[9] W. M. van der Aalst, A. ter Hofstede, B. Kiepusewski, and A. Barros,
“Workflow patterns,” Distributed and Parallel Databases, vol. 4(1), pp.
5–51, 2003.

[10] R. Klimek, “Proposal to improve the requirements process through
formal verification using deductive approach,” in Proceedings of 7th

International Conference on Evaluation of Novel Approaches to Soft-

ware Engineering (ENASE 2012), 29–30 June, 2012, Wrocław, Poland,
J. Filipe and L. Maciaszek, Eds. SciTePress, 2012, pp. 105–114.

[11] ——, “From extraction of logical specifications to deduction-based
formal verification of requirements models,” in Proceedings of 11th

International Conference on Software Engineering and Formal Methods

(SEFM 2013), 25–27 September 2013, Madrid, Spain, ser. Lecture Notes
in Computer Science, R. Hierons, M. Merayo, and M. Bravetti, Eds.,
vol. 8137. Springer Verlag, 2013, pp. 61–75.

[12] K. Kułakowski and T. Szmuc, “Modeling robot behavior with ccl,” in
Simulation, Modeling, and Programming for Autonomous Robots, ser.
Lecture Notes in Computer Science, I. Noda, N. Ando, D. Brugali,
and J. Kuffner, Eds. Springer, 2012, vol. 7628, pp. 40–51. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-34327-8_7

1380 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013


