
Compilation to Quantum Circuits for a Language
with Quantum Data and Control

Yannis Rouselakis∗† Nikolaos S. Papaspyrou∗ Yiannis Tsiouris∗ Eneia N. Todoran‡

∗School of Electrical and Computer Engineering

National Technical University of Athens

Polytechnioupoli, 15780 Zografou, Athens, Greece

Email: {nickie, gtsiour}.softlab.ntua.gr

†Department of Computer Science

University of Texas at Austin

2317 Speedway, Stop D9500, Austin, TX 78712, USA

Email: jrous@cs.utexas.edu

‡Computer Science Department

Technical University of Cluj-Napoca

Baritiu Street 28, 400027, Cluj-Napoca, Romania

Email: Eneia.Todoran@cs.utcluj.ro

Abstract—In this paper we further investigate nQML, a
functional quantum programming language that follows the
“quantum data and control” paradigm. We define a semantics
for nQML, which translates programs to quantum circuits in
the category FQC of finite quantum computations, following the
approach of Altenkirch and Grattage’s QML. This semantics,
which coincides with the denotational semantics for nQML

over density matrices and unitary transformations, serves as a
compiler from nQML programs to quantum circuits. We also
provide an implementation of this compiler, written in Haskell,
as well as an interpreter for quantum circuits.

I. INTRODUCTION

Q
UANTUM computing processes data that is stored in

the form of quantum bits (qubits) and, for doing so,

it employs quantum mechanical phenomena such as the su-

perposition and entanglement of quantum states. Roughly

speaking, a qubit may contain the digit “0”, the digit “1”,

or any superposition of these two. Although research towards

the manufacturing of quantum computers has not yet led to

mature results, quantum circuits seem to be today a commonly

accepted model for quantum hardware. Such circuits consist of

appropriate formations of quantum gates, acting upon qubits

in the same way that classical logic gates act upon bits in

ordinary computers.

Most quantum programming languages that have been

proposed so far are based on the principle “quantum data,

classical control”, that is, on the idea that the execution of

a quantum program follows a specific control-flow, exactly

as the execution of a program in a classical computer. Such

languages allow programmers to use quantum data, in addition

to classical, and through their manipulation to implement

quantum algorithms. On a different track, we see languages

following the “quantum data and control” paradigm. Such

languages use quantum control flow; in other words, they allow

the execution flow of a program to be in a superposition of

various different states in exactly the same way as the quantum

data that the program manipulates.

nQML [15], [14] is a high-level functional language based

on the concept of “quantum data and control.” It was defined

by Lampis et al., inspired by Altenkirch and Grattage’s QML

[1], [8], [9], and its main design goal was to give programmers

sufficient expressive power to implement quantum algorithms

easily, while preventing them from breaking the rules of

quantum computation. nQML includes constructs which allow

any unitary transformation to be expressed as a program in

nQML quite naturally, more or less using the same notation

that is used by the designers of quantum algorithms. It also

permits quantum measurements to be carried out at any point

during the execution of a program.

As explained in the paper defining nQML [14], the relative

ease of use of the language comes at the cost of putting aside

a number of important practical issues, such as the existence

of imperfect quantum hardware, the need for quantum error

correction and the fact that every quantum program will

eventually have to be implemented as a quantum circuit using

only a finite set of quantum gates and, therefore, some of

the unitary transformations that nQML allows will have to

be approximated. Similar problems were a source of concern

for the founders of the classical programming model many

decades ago. Fortunately they have been resolved and their

solutions have been abstracted in such a way that people who

use modern high-level programming languages need not know

anything about them. The same can and must be done for

quantum programming languages and, therefore, such issues

should be tackled not by the designer and users of a quantum

programming language, but by the architect of a quantum

computer, the designer of its operating system and, to a lesser

extent, the designer of the compiler.

In order to demonstrate the feasibility of using nQML as

a quantum programming language and to draw attention to

the assumptions that are necessary and to the problems that

remain to be resolved, in this paper we define a compiler

for nQML, targeting quantum circuits in the category FQC

of finite quantum computations [1], [8]. We also provide an

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1537–1544

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1537

implementation of the compiler in Haskell, as well as an

interpreter for quantum circuits in FQC. The combination of

these two can be used for the execution of quantum programs

and for a direct comparison with the original definition of the

language, using denotational semantics over density matrices

and unitary transformations [14].

The rest of the paper is structured as follows. In section

II we give the syntax of the language nQML and explain its

constructs. Section III contains a description of the quantum

circuits that we will use as the target language for our nQML

compiler, which is in turn defined in section IV. Section V

contains a number of examples in nQML, corresponding to

well known quantum algorithms, and the quantum circuits in

which they are compiled. We conclude with an exposition of

related work, followed by some remarks and directions for

future work.

Due to space limitations, in this paper we do not have

the luxury to explain how quantum programming works. It

is assumed that the reader is familiar with the basics of

quantum computation and quantum circuits. There are several

introductory books [3], [12], [24], [16], as well as publicly

available manuscripts and course material on this field.

II. THE LANGUAGE NQML

The syntax of nQML is given by the following grammar. It

is assumed that x is a variable identifier and λ is a complex

constant. The grammar defines two syntactic classes. Quantum

expressions are denoted by e; they represent quantum pro-

grams and their syntax is similar to that of QML. Classical

expressions are denoted by c; they are only needed in the

quantum transformation construct |e〉 → x, x′. c and they can

represent two types of information: a structure of classical bits

or a complex number.

e ::= x | { (λ)qfalse+ (λ′)qtrue }
| let x = e1 in e2
| (e1, e2) | let (x1, x2) = e1 in e2
| if e then e1 else e2 | ifm e then e1 else e2
| |e〉 → x, x′. c

c ::= x | false | true | λ | let x = c1 in c2
| (c1, c2) | let (x1, x2) = c1 in c2
| if c then c1 else c2 | c1 = c2 | c1 < c2
| int c | c1 + c2 | c1 − c2 | c1 ∗ c2 | c1/c2 | cc2

1

Variables in nQML are viewed as references to quantum

information that is stored in a global quantum state. There are

two types of quantum information: qubits and products. A new

qubit is allocated in the quantum state when the superposition

operator { (λ)qfalse + (λ′)qtrue } is used, in the same

way that new objects are allocated on the heap when a data

constructor is used in a functional programming language.

Products are introduced and eliminated with the constructs

(e1, e2) and let (x1, x2) = e1 in e2. nQML also features

three control constructs:

• ifm e then e1 else e2: It conducts a measurement on

e, which must be of type qubit. Depending on the result,

it executes one of its branches. It is similar to a classical

random branching, based on a toss of a biased coin with

probabilities depending on the state of the qubit being

measured.

• if e then e1 else e2: It allows the programmer to

perform quantum branching. If e, which must be of type

qubit, is in a classical state, then the effect is what we

would expect from ifm. But if e is in a quantum super-

position, the program proceeds in a quantum superposi-

tion of both branches, most likely creating entanglement

among the qubits of the quantum state.

• |e〉 → x, x′. c: A generic means of expressing any

unitary transformation, which has to be relied upon when

a transformation can not be easily broken down to a

series of controlled operations, expressible with if . Its

advantage is that, rather than forcing programmers to

precompute and provide the whole unitary matrix of the

transformation, whose size is exponential in the number

of qubits that it affects, it allows them to express that

matrix as a complex function of the input and output

state of the transformed qubits. This leads to a succinct

and clear expression of many useful quantum algorithms,

such as the Deutsch-Jozsa or Grover’s algorithm that are

described in Section V.

In quantum pseudocode notation, all unitary transforma-

tions can be expressed in the form:

|i〉 →
2
n

−1
∑

j=0

f(i, j) |j〉

where f(i, j) is a function of the input state i of the

quantum register and its output state j. The construct

|e〉 → x, x′. c allows the programmers to use precisely

this natural notation: the classical variables x and x′

denote the register’s input and output state and the

classical expression c denotes the function’s body.

From this notation, if the function f is known, the unitary

matrix can be easily constructed by taking Sj,i = f(i, j).
Of course, not all functions f result in unitary matrices

and the type system of nQML cannot efficiently decide

whether the resulting transformation is indeed unitary.

The type system of Altenkirch and Grattage’s QML is

able to do that, at the expense of making the size of the

program exponential and complicating the typing with

orthogonality constraints.

nQML admits a simple type system and denotational se-

mantics [14]. By simple, we mean that both use structures

and techniques that are typical in the study of classical

programming languages of similar size and complexity.

The main novelty of nQML’s type system is that the

type of a quantum expression conveys information which

reveals the exact qubits of the quantum state in which the

expression’s value resides. Qubit aliasing is allowed in such

a way that the “no cloning” and “no dropping” principles are

not violated. Programmers have the look-and-feel of a classical

programming language, without linearity restrictions. The type

system can be extended to support polymorphic higher-order

1538 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

functions, where polymorphism is over the exact qubits of the

quantum state that are used for representing data [14].
Quantum types, in the type system of nQML, are defined

by the grammar

τ ::= qbit[n] | τ1 ⊗ τ2

where n is the exact qubit of the state that is used, e.g., an

expression has type qbit[5] if its value is stored in the 5th

qubit of the state. This information is used to make sure that

the same qubit cannot be used twice in a transformation.
There are two typing relations: Γ;n ⊢◦ e : τ ;m is

for type checking pure quantum expressions (i.e. without

measurements); on the other hand, Γ;n ⊢ e : τ ;m is for

type checking arbitrary quantum expressions, We refer to both

by Γ;n ⊢α e : τ ;m, allowing the superscript α to be

either ◦ or empty. As the types of nQML convey information

regarding the position of qubits in the quantum state, the typing

relation is forced to process and propagate such information.

In Γ;n ⊢α e : τ ;m, the natural number n appearing on the

left side of the relation stands for the number of qubits of the

original quantum state, before e starts evaluating. The natural

number m appearing on the right side of the relation stands

for the number of new qubits that are allocated during the

evaluation of e. The typing rules are defined in [14].
The denotational semantics of nQML is based on the use of

density matrices to describe quantum states. The meaning of a

well-typed nQML program is a function from density matrices

to density matrices and describes the program’s effect on an

arbitrary quantum input state. Pure well-typed programs, i.e.,

programs which conduct no measurements, are also assigned

a meaning in the form of a unitary matrix which describes

the transformation they perform on the quantum state. The

execution of an nQML program can be seen as a sequence of

steps which affect the quantum state by allocating new qubits,

by applying unitary transformations to existing qubits or by

measuring existing qubits.

III. QUANTUM CIRCUITS

Quantum circuits are one possible model of quantum com-

putation. We extend the Haskell data type proposed by Al-

tenkirch and Grattage [6], [8] by adding one more constructor

for arbitrary unitary matrices (Unit), which will be the target

of nQML’s |e〉 → x, x′. c construct.

data Circ = Rot (C,C) (C,C)

| Wire [Int]

| Par Circ Circ

| Seq Circ Circ

| Cond Circ Circ

| Unit (Matrix C)

The set of quantum circuits operating on a state of n qubits

are defined inductively using these constructors:

• Rotation Rot (λ0, λ1) (κ0, κ1): introduces a new unitary

transformation on one qubit (n = 1), defined by the

following matrix, where λ∗

0
κ0 + λ1κ

∗

1
= 0.

(

λ0 λ1

κ0 κ1

)

• Wire reordering Wire p: reorders the qubits in the state.

The parameter p must be a permutation of the sequence

[0 .. n − 1]. If the i-th element of this permutation is

j, this means that the wire at the i-th position in the

input state becomes the j-th wire of the output state. The

identity permutation corresponds to the identity unitary

matrix which leaves the state unchanged. When drawing

quantum circuits, we will not use quantum gates to

implement wire reordering; we will just draw crossing

wires, e.g., as follows:

n1
n2
n3
n4

n3
n1
n4
n2

In all circuits, the numbers next to the wires denote

multiplicity, i.e., the number of qubits in the state. If

n1 = n2 = n3 = n4 = 1, the reordering shown above

would be encoded in Haskell by Wire [1,3,0,2].

• Parallel composition Par c1 c2: combines c1 and c2 in

parallel, adding the number of qubits in their states.

c1n1

c2n2

n1

n2

• Sequential composition Seq c1 c2: combines c1 and c2 in

sequence, The two circuits must have a state of n qubits,

where n is also the number of qubits in their composition.

c1n c2 n

• Conditional Cond c1 c2: creates a conditional circuit that

is controlled by an extra qubit. The two circuits must

have a state of n qubits, whereas the number of qubits in

the conditional circuit is n+ 1.

c1n c2
1 1

n

• Arbitrary unitary matrix UnitC: creates a circuit with

a state of n qubits corresponding to the unitary matrix

C. Such a circuit must in general be approximated by an

appropriate composition of elementary quantum gates.

Ucn n

Reversible finite quantum circuits form the category FQC
≈

,

whose objects are states of n qubits and morphisms are unitary

YANNIS ROUSELAKIS ET AL.: COMPILATION TO QUANTUM CIRCUITS FOR A LANGUAGE WITH QUANTUM DATA 1539

transformations. Following Altenkirch and Grattage [6], [8],

we define two larger categories, FQC and FQC
◦

.
Circuits in FQC are not necessarily reversible: they can

also contain measurements and/or qubit initializations (which

also amount to measurements). To model circuits in FQC, we

separate a number of qubits of the input state, which we call

heap, and a number of qubits of the output state, which we call

garbage. Qubits in the heap are considered to be initialized

to |0〉. Qubits in the garbage are measured and discarded.

When drawing circuits, we denote the heap and garbage by

terminating lines. It must be n+ h = m+ g.

c
n
h

m
g

Also, the category FQC
◦

is a subset of FQC where circuits

are allowed to have a heap, but not garbage. Such circuits

are pure, in the sense that they do not contain measurements,

and can be modelled by unitary transformations between pure

quantum states. It must be n+ h = m.

c
n
h

m

Obviously, FQC
≈ ⊂ FQC

◦ ⊂ FQC.

IV. A COMPILER FOR NQML

Following the compilation approach used by Altenkirch and

Grattage [6], [8] we use the typing relation for compiling (pure

and impure) quantum expressions. However, in contrast to the

approach used for QML, the process is not guided by the linear

type system, deciding how to split the wires of the input state.

Instead, purity information and the numbers n and m from

nQML’s typing information are used.
If e is a pure quantum expression such that Γ;n ⊢◦ e : τ ;m,

then e is compiled to a circuit in FQC
◦

which has an input

state of n wires plus m wires of heap and an output state of

n+m wires (without garbage). We draw this as follows:

e
n
m

n+m

On the other hand, if e is an impure quantum expression

such that Γ;n ⊢ e : τ ;m, then e is compiled to a circuit in

FQC which has an input state of n wires plus h ≥ m wires

of heap and an output state of n + m wires plus g wires of

garbage. It must be h = m+ g. We draw this as follows:

e
n
�

n+m
g

Fig. 1 shows how nQML constructs are compiled to circuits.

The compilation process is based on the typing of expressions.

• Superposition. A new qubit is added to the state corre-

sponding to { (λ)qfalse + (λ′)qtrue }. The remaining

n qubits of the state are unaltered, whereas the new qubit

is initialized with the transformation matrix:
(

λ λ′

λ′ −λ

)

• Let construct and products. Although the typing rules

for these three constructs (simple let, product formation

and product elimination) are different when it comes to

the types of the participating expressions, they are all the

same w.r.t. the number of qubits in the state and they

produce the same quantum circuit, which is essentially

the sequential composition of two expressions.

• Quantum conditional. In the typing of

if e then e1 else e2, the condition is the k-th

qubit of the state and the pure expressions e1 and

e2 are not allowed to refer to the k-th qubit (as the

environment Γ|k suggests in the figure). The circuit

corresponding to condition e is generated first and the

k-th qubit of the output state is isolated. This qubit

controls the conditional circuit of e1 and e2. Notice

that it is not strictly true that this conditional circuit

is composed of e1 and e2. First of all, we have to

translate away the (unused) k-th qubit, by inductively

transforming the circuits corresponding to e1 and e2.

Then, we have to extend the input state of the smallest

of the two circuits, so that both expect an input state of

n+m− 1 + max(m1,m2) qubits.

• Measurement. The difference between the quantum con-

ditional and the measurement is that (a) impure expres-

sions are allowed in branches, (b) the branches can use the

qubit of the condition, and (c) the qubit of the condition

is measured at the end of the circuit. In order to be used

by the two branches and (at the same time) be measured

at the end, the qubit of the condition must be duplicated

(creating a quantum entanglement). This is achieved by

using one extra qubit and the controlled CNOT gate.

The two expressions may, of course, use the measured

value of this qubit. Notice that this is the only circuit

which explicitly creates garbage, by measuring the qubit

of the condition. Also, this is one of the two circuits

that explicitly use qubits from the heap (the other one is

generated by superposition).

• Unitary transformation. In |e〉 → x, x′. c, it is assumed

that c(x, x′) defines an arbitrary unitary transformation on

states of n+m qubits, and this transformation is applied

to the result of expression e.

The implementation of our compiler applies several simple

optimizations to the generated quantum circuits.1 In general,

1The implementation of nQML can be found at http://www.softlab.ntua.gr/
∼nickie/Research/nqml/. It consists of approximately 3,200 lines of Haskell
code. Parts of it have been written by Michael Lampis.

1540 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Superposition:

Γ;n ⊢◦ { (λ)qfalse+ (λ′)qtrue } : qbit[n]; 1

n
Uc1

n
1

Let and products:

Γ;n ⊢α let x = e1 in e2 : τ ;m1 +m2

Γ;n ⊢α (e1, e2) : τ ;m1 +m2

Γ;n ⊢α let (x1, x2) = e1 in e2 : τ ;m1 +m2

where:

Γ1;n ⊢α e1 : τ1;m1

Γ2;n+m1 ⊢α e2 : τ2;m2

e2

h2

n+m1+m2

g2

e1
n
h1 g1

n+m1

Quantum conditional:

Γ;n ⊢α if e then e1 else e2 : τ ;m+max(m1,m2)

where:

Γ;n ⊢α e : qbit[k];m

Γ|
k
;n+m ⊢◦ e1 : τ ;m1

Γ|
k
;n+m ⊢◦ e2 : τ ;m2

en
h

max(m1, m2) e1' e2'
g

1(k)
n+m-1

n+m n+m+
max(m1, m2)

1(k)

Measurement:

Γ;n ⊢ ifm e then e1 else e2 : τ ;m+max(m1,m2)

where:

Γ;n ⊢ e : qbit[k];m

Γ;n+m ⊢ e1 : τ ;m1

Γ;n+m ⊢ e2 : τ ;m2

en
h

e1' e2'
g
1

1(k)
n+m-1

n+m n+m+
max(m1, m2)

1
max(h1, h2)

1(k) max(g1,g2)

Unitary transformation:

Γ;n ⊢α |e〉 → x, x′. c : τ ;m

where:

Γ;n ⊢α e : τ ;m

c(x, x′) defines a unitary transformation on n+m qubits

Uc
n+m

e1
n
h

g

n+m

Fig. 1. Compiling nQML expressions to quantum circuits: A typing-directed approach.

the implementation is written in Haskell; it targets the poly-

morphic language described in [14] and consists of:

• a parser,

• a type checker,

• a first interpreter, based on the denotational semantics of

nQML, using density matrices and unitary transforma-

tions,

• the compiler from nQML to quantum circuits, defined in

this paper, and

• a second interpreter, based on the simulation of quantum

circuits generated by our compiler.

The implementation checks that the outputs of the two inter-

preters coincide, thus testing the correctness of our compiler.

V. EXAMPLES

In this section, we outline the use of nQML and its compiler

with two relatively simple but historically important examples:

Deutsch’s algorithm for testing whether a function on one bit is

balanced or constant [4], and Grover’s algorithm for searching

an unsorted database [11].

We begin by providing a couple of auxiliary functions,

not and had, that will be useful in both examples. They

correspond to the NOT gate and the Hadamard gate. Their

definitions can be given by simple unitary transformations.

def not q = |q> -> x, x’.

if x’ = x then 0 else 1;

def had q = |q> -> x, x’.

(if x then (if x’ then -1 else 1) else 1)

/ sqrt(2);

The syntax of function definitions in nQML follows the

proposed extension with polymorphic functions [14]. Such

functions could be treated as macros by the compiler.

We will also abbreviate tuples of more than two elements

by writing (x, y, z) instead of (x, (y, z)). Furthermore, we will

YANNIS ROUSELAKIS ET AL.: COMPILATION TO QUANTUM CIRCUITS FOR A LANGUAGE WITH QUANTUM DATA 1541

H 1

X H1

1 f
I X

H
1

Fig. 2. The circuit produced for Deutsch’s algorithm, where f is the
parameter: the function that we want to determine if it’s constant or balanced.

use qtrue as syntactic sugar for { (0)qfalse+ (1)qtrue }
and qfalse as syntactic sugar for { (1)qfalse+(0)qtrue }.

A. Deutsch’s Algorithm

Deutsch’s algorithm (later generalized by Deutsch and

Jozsa) was one of the first quantum algorithms to be studied.

Supposing that we have a function f(x) : {0, 1} → {0, 1},

we want to determine whether this function is constant,

i.e., f(0) = f(1), or balanced, i.e., f(0) 6= f(1), by just

computing it once.

There is obviously no classical solution to this problem. The

quantum solution employs the trick of computing the function

once, with a superposition of the two inputs, then appropriately

measuring the result. (The interested reader is refered to the

introductory literature in quantum computations for analyses

of the algorithm and proofs of correctness.) In nQML, it can

be written as follows. The measurement of had i gives 1 if

function f is balanced and 0 if it is constant.

def Deutsch f =

let (i, j) = (had qfalse, had qtrue) in

let r = if f i then j else not j in

ifm had i then qtrue else qfalse;

The circuit that our compiler produces for this program

(just measuring the result and excluding the new qubits for

the branches of ifm), is shown in Fig. 2.

B. Grover’s Algorithm

As a second example, let us see an implementation of

Grover’s fast database search. Consider an unsorted database

with N = 2n entries and the problem of finding the index

of a particular database entry that satisfies some criterion. To

simplify things, let us assume that c denotes the index that

we are searching for. We first need to implement the query

operator, which is a transformation corresponding to a matrix

which has 0 everywhere, 1 along the primary diagonal and −1
at the element with coordinates (c, c).

def query q = |q> -> x, x’.

if x = x’ then

if int x = c then -1 else 1

else

0;

We now define the diffusion operator, a transformation

corresponding to the matrix 2P − I , where P a matrix with

2−n everywhere.

def diffusion q = |q> -> x, x’.

if x = x’ then 2 / 2ˆn - 1 else 2 / 2ˆn;

The algorithm proceeds by repeated iterations of queries and

diffusions. Let us now consider the most simple application of

Grover’s algorithm: searching in a space of size N = 4 (with

n = 2 qubits). In this special case, one iteration is enough to

produce the correct result with certainty:

def grover2 =

let qs = (had qfalse, had qfalse) in

diffusion (query qs);

In the general case, O(
√
N) iterations of the two operators

are required to obtain the result with a high probability.

Consider N = 16 (with n = 4 qubits). Three iterations suffice:

def grover4 =

let qs = (had qfalse, had qfalse,

had qfalse, had qfalse) in

let step1 = diffusion (query qs) in

let step2 = diffusion (query qs) in

let step3 = diffusion (query qs) in

qs

The circuit that our compiler produces for grover4 is

shown in Fig. 3. The result is implicitly measured.

VI. RELATED WORK

The design of quantum algorithms, such as Shor’s algorithm

for the factorization of integer numbers in polynomial time

[21] and Grover’s algorithm for searching an unordered list of

n elements in O(
√
n) time [11], has shown that the quantum

model of computation is strictly more powerful than the clas-

sical model; although both can compute the same set of func-

tions, some functions can be computed in the quantum model

strictly faster than in the classical one. Quantum algorithms are

usually studied at a low level, either expressed directly in the

form of quantum circuits or using appropriate mathematical

models. The fact that reasoning about quantum circuits is

no easier than reasoning about their classical counterparts

has given rise to quantum programming languages, that is,

languages that allow programmers to implement quantum

algorithms and make use of the added power of the quantum

computational model, while respecting its special restrictions.

Knill’s conventions for quantum pseudocode [13] was the

first proposed formal language for the description of quan-

tum algorithms, tightly connected with the Quantum Random

Access Machine. Since then, several quantum programming

languages have been proposed; the reader is referred to an

excellent (although slightly outdated) survey of the emerging

field [5]. Ömer’s QCL is an imperative language with quantum

primitives and automatic quantum scratch space management

[17]. Moreover, van Tonder has proposed a λ-calculus for

higher-order quantum programs without measurements [22].

Both languages, however, do not compile to quantum circuits

and, in the case of van Tonder’s λ-calculus, it is not clear how

this can be done. Sanders and Zuliani have defined qGCL, an

extension of Dijkstra’s guarded command language [18], and

they have shown how to compile qGCL to a form of assembly

language for a quantum computer [25].

1542 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

1

H1

H1

H1

H1

Q D Q D Q D
1

1

1

Fig. 3. The circuit produced for Grover’s algorithm, where N = 16 (n = 4). The transformations Q and D correspond to the query and diffusion operators,
which are applied iteratively.

Selinger’s QPL is a language following the paradigm “quan-

tum data, classical control” [20]. It is functional in nature,

although from a programmer’s point of view it looks more

imperative than functional. QPL allows the programmer to

access both classical and quantum memory and includes high-

level features such as loops and recursion. Program control

is strictly classical and quantum branching can only be im-

plemented indirectly with appropriate unitary transformations.

The denotational semantics of QPL is given in the form of

superoperators on density matrices. A higher-order extension

of QPL in the form of a quantum lambda calculus has also

been proposed by Selinger and Valiron [19]. In the same

paradigm, Green et al. have recently defined Quipper [10],

a functional, higher-order quantum programming language

designed to be used for implementing large-scale quantum

algorithms. They have shown how programs can be compiled

to quantum circuits consisting of a large number of gates.
On the other hand, Altenkirch and Grattage’s QML is a

functional language that follows the paradigm “quantum data

and control” [1], [7], [8]. QML comes with a linear type

system prohibiting implicit weakening, which would lead to

implicit measurements and quantum collapse. The authors

describe a way to compile QML programs to quantum circuits

in the category FQC of finite quantum computations [6],

[9]. Variables in QML correspond to wires in the produced

quantum circuit and thus have to be shared implicitly when

they are used in several places in a program so as not to

break the “no cloning” rule. The sharing of wires is mon-

itored by a linear type system. Altenkirch and Green have

recently presented a monadic purely functional interface to

quantum programming (the QIO monad) and they provide an

implementation in the form of a quantum DSL in Haskell

[2]. Again, there is an almost direct translation from QIO to

quantum circuits. A similar embedding in Haskell, in the form

of arrows, is proposed by Vizzoto et al. [23].

VII. CONCLUDING REMARKS

We have defined a compiler for quantum programs written

in the language nQML that follows the paradigm “quantum

data and control”. The compiler targets quantum circuits in

the category FQC of finite quantum computations, defined by

Altenkirch and Grattage. We have implemented our compiler

as part of nQML’s implementation, which is publicly available.
The real challenge in quantum programming, and a definite

direction for future work, is the integration of features that

are at a higher-level than quantum gates and unitary transfor-

mations, for example, reversible binary arithmetic, quantum

data structures, etc. The proper integration of such features in

quantum programming languages is a hard problem in terms

of language design and usability, especially if one wants to

keep compatibility with the way in which quantum algorithms

are expressed (mostly by non-programmers) today.

ACKNOWLEDGMENT

This research is partially funded by the research project “SemNatComp:
Semantic models and technologies for natural computations” (ΓΓET 11
ROM 11 1 ET30), funded by the Greek General Secretariat for Research
and Technology and the European Regional Development Fund, through
the operational program “Competitiveness Entrepreneurship & Regions in
Transition”, action “Billateral Co-operation Greece-Romania 2011-2012”.

REFERENCES

[1] T. Altenkirch and J. Grattage, “A functional quantum programming
language,” in Proceedings of the 20th Annual IEEE Symposium on Logic

in Computer Science. IEEE Computer Society, 2005, pp. 249–258.
[2] T. Altenkirch and A. S. Green, “The quantum IO monad,” in Semantic

Techniques in Quantum Computation, S. Gay and I. Mackie, Eds.
Cambridge University Press, 2009, p. 173205.

[3] J. Brown, Quest for the Quantum Computer. Simon and Schuster, 2001.
[4] D. Deutsch and R. Jozsa, “Rapid solutions of problems by quantum

computation,” Proceedings of the Royal Society of London, vol. A 439,
pp. 553–558, Dec. 1992.

[5] S. J. Gay, “Quantum programming languages: Survey and bibliography,”
Mathematical Structures in Computer Science, vol. 16, no. 4, pp. 581–
600, Aug. 2006.

[6] J. Grattage and T. Altenkirch, “A compiler for a functional quantum
programming language,” Jan. 2005, manuscript, available from the
authors’ web page.

[7] ——, “QML: Quantum data and control,” Feb. 2005, manuscript,
available from the authors’ web page.

[8] J. Grattage, “QML: A functional quantum programming language,”
Ph.D. dissertation, School of Computer Science and School of
Mathematical Sciences, The University of Nottingham, Sep. 2006.
[Online]. Available: http://etheses.nottingham.ac.uk/archive/00000250/

[9] ——, “An overview of QML with a concrete implementation
in Haskell,” Electronic Notes in Theoretical Computer Science,
vol. 270, no. 1, pp. 165–174, 2011, proceedings of the
4th Workshop on Developments in Computational Models (DCM
’08), doi:10.1016/J.ENTCS.2011.01.015, arXiv:0806.2735. [Online].
Available: http://fop.cs.nott.ac.uk/qml

[10] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron,
“Quipper: A scalable quantum programming language,” in Proceedings

of the 34th annual ACM SIGPLAN conference on Programming Lan-

guage Design and Implementation, Jun. 2013, to appear.
[11] L. K. Grover, “A fast quantum mechanical algorithm for database

search,” in Proceedings of the 28th Annual ACM Symposium on the

Theory of Computing, Philadelphia, PA, May 22-24 1996, pp. 212–219.
[12] M. Hirvensalo, Quantum Computing, 2nd ed. Springer, 2004.

YANNIS ROUSELAKIS ET AL.: COMPILATION TO QUANTUM CIRCUITS FOR A LANGUAGE WITH QUANTUM DATA 1543

[13] E. Knill, “Conventions for quantum pseudocode,” Los Alamos National
Laboratory, Tech. Rep. LAUR-96-2724, 1996.

[14] M. Lampis, K. G. Ginis, M. A. Papakyriakou, and N. S. Papaspyrou,
“Quantum data and control made easier,” Electronic Notes in Theoretical

Computer Science, vol. 210, pp. 85–105, Jul. 2008.
[15] M. Lampis, K. G. Ginis, and N. S. Papaspyrou, “Quantum

data and control made easier,” in Preliminary Proceedings of the

4th International Workshop on Quantum Programming Languages,
P. Selinger, Ed., Oxford, UK, Jul. 2006, pp. 73–86. [Online]. Available:
http://www.mscs.dal.ca/∼selinger/qpl2006/

[16] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information, 10th ed. Cambridge University Press, 2010.
[17] B. Ömer, “Structured quantum programming,” Ph.D. dissertation, Insti-

tute of Information Systems, Technical University of Vienna, May 2003.
[18] J. W. Sanders and P. Zuliani, “Quantum programming,” in Proceedings

of the 5th International Conference on Mathematics of Program Con-

struction, ser. Lecture Notes in Computer Science, vol. 1837. London,
UK: Springer-Verlag, 2000, pp. 80–99.

[19] P. Selinger and B. Valiron, “A lambda calculus for quantum computation
with classical control,” Mathematical Structures in Computer Science,
vol. 16, no. 3, pp. 527–552, 2006.

[20] P. Selinger, “Towards a quantum programming language,” Mathematical

Structures in Computer Science, vol. 14, no. 4, pp. 527–586, 2004.
[21] P. W. Shor, “Polynomial time algorithms for prime factorization and dis-

crete logarithms on a quantum computer,” SIAM Journal on Computing,
vol. 26, no. 5, pp. 1484–1509, 1997.

[22] A. van Tonder, “A lambda calculus for quantum computation,” SIAM

Journal on Computing, vol. 33, no. 5, pp. 1109–1135, 2004.
[23] J. K. Vizzotto, A. R. D. Bois, and A. Sabry, “The arrow calculus as a

quantum programming language,” in Logic, Language, Information and

Computation, ser. Lecture Notes in Computer Science. Springer, 2009,
vol. 5514, pp. 379–393.

[24] N. S. Yanofsky and M. A. Mannucci, Quantum Computing for Computer

Scientists. Cambridge University Press, 2008.
[25] P. Zuliani, “Compiling quantum programs,” Acta Informatica, vol. 41,

no. 7, pp. 435–474, Jun. 2005.

1544 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

