
Abstract—Autonomous  Ground  Vehicles  (AGV)  require
diverse  sensor  systems  to  support  the  navigation  and
sense-and-avoid tasks.  Two of these systems are discussed in
the  paper:  dual  camera-based  computer  vision  (CV)  and
laser-based detection and ranging (LIDAR). Reliable operation
of these optical systems is critical to safety since potential faults
or failures could result in mishaps leading to loss of life  and
property.  The paper identifies basic hazards and, using fault
tree analysis, the causes and effects of these hazards as related
to  LIDAR and CV systems.  A  Bayesian Belief  Network ap-
proach (BN) supported by automated tool is subsequently used
to obtain quantitative probabilistic estimation of system safety.

I. INTRODUCTION

ight  Detection  and  Ranging  (LIDAR)  combined  with

dual-camera  computer  vision (CV) are  used  as  a  pri-

mary technology for navigation representing a typical opti-

cal sensor systems for autonomous ground vehicles (AGV).

Researchers at the National Institute for Standards and Tech-

nology [1], [2], [3], the U.S. Army [4], and Carnegie-Mellon

University [5] have been using such systems to detect obsta-

cles  and  navigate  at  ever  increasing  speeds.  Obviously,

AGVs  combing  physical  and  computing  components  are

typical cyber-physical systems.

L

AGVs may also be equipped with other navigation tech-

nologies  such  as  Inertial  Measurement  Units  (IMU)  or

Global  Positioning  System (GPS)  receivers;  however,  the

accuracy provided by optically-based navigation controls is

absolutely necessary for  a  safe and precise  vehicle opera-

tion. Since GPS position errors may be in the range of sev-

eral meters, GPS alone is not sufficient to safely control a

vehicle  in  urban  environment  without  endangering  street

signs, pedestrians, and other vehicles. Additionally, GPS re-

ception is obstructed by tall buildings, making GPS unsuit-

able as a primary navigation tool in an urban environment.

IMUs may be used to supplement GPS in low signal areas.

However, as kinematic devices, IMUs quickly build up in-

ternal error, making them essentially useless for prolonged

autonomous navigation. Due to these issues, it is necessary

to  navigate  with  a  combined  system which  relies  heavily

upon optically-based sensor devices.

The paper  specific  focus is on dependability of  the LI-

DAR and CV sensor systems. It is critical to analyze how

the systems work jointly during normal operations and how

they work separately under exceptional conditions.  To en-

courage simplicity and maintain focus on the technology, the

LIDAR and CV systems are  viewed  in a generic  manner

with no effort to model a specific brand of sensor platform.

The increasing importance of these issues is realized as fully

autonomous vehicles begin to find their way onto roads. En-

vironmental sensing i.e., the capability of the AGV to recog-

nize its location with respect to the environmental obstacles,

is  the major  reason  why LIDAR and CV systems are re-

quired. Since any unsafe AGV operation may result in viola-

tion of safety (property loss or harm to people), there is an

evident need for safety analysis. The AGV is safety-critical,

software  intensive  system  and  potential  faults  or  failures

could result in mishaps leading to loss of life and property.

By analyzing the hazards posed by the system, the chance of

mishap may be  reduced  or,  in some cases,  entirely elimi-

nated.

The paper classifies the risk related to AGV operations

and describes hazard analyses focusing on impact of LIDAR

and CV systems on  these operations.  Fault  Tree  Analysis

(FT) is used to identify undesirable events and sequences of

events leading to top level mishaps such as pedestrian in-

jury,  vehicle  damage,  and  external  property  damage.  The

Bayesian Belief Network (BN) was modeled based on the

FT  diagrams  along  with  estimations  of  likelihood  of  the

events  and decision nodes.  The presented model can be a

good  estimator  of  AGV  optical  navigation  systems  as  a

whole.

II.  SYSTEM DESCRIPTION

A. The AGV Sensor Systems

LIDAR and CV systems are optical sensor systems typi-

cally installed on AGV. Together with other sensors they are

capable of providing kinematic information about a vehicle

(position,  velocity,  acceleration)  and  physical  information

about surroundings (obstacles, road signs, pedestrians, etc).

The information from the sensors feeds into a sensor inte-

grator subsystem which filters and integrates data from all

vehicle  sensors.  Detectable  anomalies  and  erroneous  data

are typically filtered at this stage.
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Having been filtered, the input data are packaged and sent

to a state estimator which performs additional filtering and

estimates the current state of the vehicle. This state data are

then sent to the navigation module which acts as a high-level

controller for the individual control algorithms related to de-

grees of freedom of the vehicle (velocity, heading, etc). 

The navigation module (i.e., waypoint manager) handles

high level control of the AGV’s navigation. In the event of

an optical sensor failure, the data passed on to the state esti-

mator will be either corrupt or missing, generating a biased

position estimate for the navigation module. The navigation

module relies on this data to know where in the world the

AGV is with respect to the waypoints, so a simple LIDAR

failure could result  in the navigation module thinking that

the AGV is only 10 meters away from the target when in re-

ality it is 100 meters away.

B. LIDAR

Regardless  of  measurement  technique,  all  LIDAR  units

include the following (often redundant) components: laser,

lens  filter,  receiver,  power  regulator,  rotating  mirror,

position encoder,  and onboard processors.  As an example,

Fig.  1  shows  a  LIDAR  unit  (by  SICK)  with  panoramic

scanning using rotating a mirror, allowing the laser diode to

remain  stationary.  Detection  is  accomplished  through  a

complicated  combination  of  synchronizing  hardware

(including  precision  motors,  and  position  encoders),  and

onboard  processing  capabilities.  LIDAR  systems typically

use a lens filter to block wavelengths of light not identical to

that  emitted  by  the  laser  diode,  thus  passively  reducing

interference  in  the  receiver  and  avoiding  the  additional

complexity,  software,  circuitry,  and  cost  associated  with

active filtering. Received laser signals are processed based

on  this  synchronization  data  to  produce  a  two  or  three

dimensional  point  cloud.  Any  error  in  the  system  can

obviously lead to incorrect depth or position calculations.

Despite  being  designed  for  an  outdoor  use,  the

high-precision moving parts and optics in modern LIDAR

systems are very sensitive to shock. It is important to always

place  the  device  at  safe,  strategic  locations  around  the

vehicle. LIDAR should be placed at high clearance locations

from the  ground,  minimizing  the  amount  of  vehicle  parts

obstructing the field of view. Precautions should be taken to

protect  the  device.  Foreign-object  impact,  shock,  and

vibrations resulting from crashes or rough terrain navigation

could cause device failure.

The  LIDAR  optical  filter  is  one  of  the  most  important

components  of  the  device.  Any  damage  to  the  filter  will

adversely  affect  measuring  accuracy.  The  LIDAR  filter

should  be  protected  with  a  shroud  to  prevent  or  reduce

impacts and scratches due to vegetation.

C. Computer Vision

Similar to the LIDAR, the CV camera system can produce

a two dimensional image using a single camera (or a three

dimensional image using dual camera system with two cam-

eras arranged stereoscopically). Using two cameras also al-

lows the failure of a single camera to degrade but not com-

pletely void the CV system functionality. 

Computer  vision software  is fundamentally bounded by

image quality which is often related to the number of pixels.

As each pixel must be processed at least once, the quantities

of data and necessary memory may be overwhelming for a

system with  limited  resources.  With  sufficient  processing

hardware  it  is  possible  to  extract  quantitative  information

from scenes, detect obstacles, or track targets using nothing

but CV software.

Computer vision algorithms depend upon the video signal

received from the camera device. Almost every camera gen-

erates some form of distortion which may degrade or even

prevent  a  CV algorithm from operating properly.  For  this

reason, it is necessary to properly calibrate camera and cor-

rect image distortion prior to using the image as a source for

CV. Improper lighting typically affects both cameras at the

same time due to overcast or night condition etc. High-inten-

sity  headlights  and  ambient  light  sensors  on  the  cameras

would be the mitigation technique.

LIDAR failure alone should not significantly degrade sys-

tem  performance.  Cameras  misalignment  would  occur  if

they are displaced by an impact or vibrate free (which can

be mitigated with appropriate hardware, e.g., lock washers)

and  periodic  maintenance. Optical  receiver  misalignment

should be extremely rare and can only be caused by manu-

facturing defect or by physical stress on the device over time

(i.e., vibrations from road). 

III. SAFETY ASSESSMENT

A. Risks and Hazards

Incorrect  operation  of  AGV  may  result  in  mishaps  of

various severity levels (Table I). One may identify risk as a

measure of potential consequence of a hazard representing

both  the  likelihood  and  the  severity  of  something  bad  or

undesired happening. During the hazard identification stage,

hazards are classified according to their risks. A Preliminary

Hazard Analysis (PHA) is the starting point to classify these

hazards.  As  with  most  safety  critical  systems,  the  AGV

system hazards  can  be  classified  in  a  qualitative  manner,

using pre-defined arbitrary categories known as risk classes

computed  as  a  product  of  severity  and  the  likelihood  of

occurrence. For the AGV system, these levels are: negligible

Fig.  1 Example LIDAR
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(RV < 1), marginal (1 < RV < 10), critical (10 < RV < 100)

and catastrophic (RV > 100). 

TABLE I

MISHAP SEVERITY LEVELS

Severity
Level

Description

1 No loss of any kind

2 Minor property loss (low cost hardware 
parts)

3 Major property loss, damage to the 
environment

4 Loss of critical hardware, human injuries, 
major damage to the environment

5 Catastrophic loss of life, loss of the entire 
AGV system, serious environment damage

From a safety standpoint, hazards become the source for

safety requirements. Typically, loss of any system function-

ality may lead to a hazard (e.g., if the laser head of the LI-

DAR system stops rotating due to mechanical failure). The

loss of functionality usually allows identifying a hazard. In

turn, the hazard identification allows determining a control

measure to be established to prevent or control this hazard.

Finally,  this control  measure can be then converted into a

safety requirement for the system and thus be considered in

the system development lifecycle. 

For the LIDAR example, there is a known hazard of los-

ing the mechanical functionality of the laser rotor head due

to wear or manufacturing defects. Typically, engineering de-

partment would design and test systems well enough to pro-

vide  recommendations  of  conditions  for  safe  operation  of

their product. Furthermore, manufacturers will typically add

recommended  maintenance  checkups  to  prevent  hazards

from transforming into accidents and mishaps. Hazards are

always dormant, that is, they exist harmlessly unless certain

conditions and/or set of events occur, transforming the haz-

ard into an accident or mishap. Hazards by themselves are

not doing any harm unless some transformation takes place.

For  instance,  an energy build-up (e.g.,  stress  due  to  shaft

miss-alignment)  would  be  required  for  the  electric  motor

that  rotates  the laser  head  to eventually  give  up and  stop

working. This process takes time. As time passes, wear and

stress builds up on the weakest motor parts (with more criti-

cal defects). Eventually there will be enough wear and stress

accumulated that a point of no return will be reached and a

triggering event occurs. That is, at this point there is nothing

else that can be done to prevent this hazard from transform-

ing into some accident or mishap. As all this is happening,

the system safety levels are gradually degrading from an ini-

tial “safe and controlled state” to a final “unsafe and uncon-

trolled state” leading eventually to a mishap. In all cases a

hazard is a prerequisite to the final accident or mishap.

Since an AGV system is dependent on both LIDAR and

CV subsystems to assure proper navigation and avoidance

of  obstacles,  any  hazards  of  either  subsystem  constitutes

also a hazard for  the AGV system. From this perspective,

both LIDAR and CV are safety-critical. Any failure of these

subsystems could propagate and lead to a disaster with se-

vere consequences for the AGV. Preliminary list of hazards

for LIDAR and CV subsystem, including also hazards and

their severity levels is shown in Table II. 

TABLE II

HAZARDS IDENTIFICATION

Item Sub-ite
m

Fault
Condition

Hazard Severity
Level

LIDAR

Position 
Encoder

Fails to read 
position data

Mirror 
Motor 
Malfunction

4

Electrica
l

Short circuit Electrical 
Failure

4

Electrica
l

Overvoltage Electrical 
Failure

4

Optical 
Receiver

Misalignment Optical 
Receiver 
Error

3

Optical 
Filter

Damaged Optical 
Receiver 
Error

3

Mirror 
Motor

Malfunction LIDAR 
Failure

4

laser 
Radiation

4

CV

Camera Misalignment CV Failure 3

IR Filter Missing CV Failure 3

Lens Damaged CV Failure 3

Camera Improper 
Lighting

CV Failure 3

Navigatio
n Module N/A

LIDAR 
Failure

Navigational
Failure

4

CV Failure Navigational
Failure

4

Navigational 
Failure

Property 
Damage

5

Vehicle 
Damage

5

Pedestrian 
Injury

5

The most critical sequence of events is one that eventually

leads to top level mishaps in the AGV system. Top level

mishaps typically relate to loss of  life,  property or  severe

damage to the environment. The main goal of Safety Engi-

neering is to prevent these mishaps from happening.

Generally, mishaps are not caused by single events. The

accidents are almost always caused by a sequence of events

that  eventually  take the system to an  unstable  and unsafe

state causing  the mishap.  In  the case of  the AGV system

there  are  three  major  top  level  mishaps:  Critical  Vehicle

Damage,  Pedestrian  Injury,  and  Other  Property  Damage.

Critical Vehicle Damage refers to a sequence of events lead-

ing to an accident in which the AGV is lost. This type of

mishaps results from uncontrolled travel that leads to a phys-

ical contact involving substantial volume of kinetic energy

between the AGV system and the physical world (i.e., crash

or collision) which results in property loss. Pedestrian injury

or fatality is by far the most undesirable top level mishap

that may be caused by an uncontrolled travel of the AGV

system.  Other  property  damage  refers  to  loss  of  property

caused to third parties that are not a part of the AGV system.

For instance, during collision with another vehicle the AGV

system may cause  damage  to  the  other  vehicle.  All  three

above mentioned mishaps can be categorized at the highest

severity level.
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B. Fault-Tree Analysis

Based on the preliminary hazard identification presented

in Table II, we may use Fault Tree Analysis (FTA) to show

the chain of events that may lead to mishaps. FTA allows us

not  only to identify the set  of  events  leading to top level

mishaps but also determine the intermediate events that con-

stitute a cause-effect chain [6]. 

Figure 2 Top-level FTA for UGV

Fig.  2  presents  top-level  fault  tree  identifying  three

top-level mishaps and the LIDAR/CV contribution to these

mishaps.  LIDAR  and  CV subsystems  fault  trees  are  pre-

sented in Fig. 3 and 4. As Portinale [7] observed: “Any FT

can be transformed into a corresponding BN, by creating a

binary BN node for each event in the FT, and by setting the

probability of BN root nodes (corresponding to basic events

in  the  FT).”  Thus,  the  cause-effect  relations  between  the

events are the basis of subsequent quantitative probabilistic

analysis using a Bayesian Belief Network.   

The  FTA  analyses  show  that  any  major  mishap  will

involve the failure of one or more subsystem components. In

the  case  of  both  subsystem  components  failing  (CV  and

LIDAR)  the  resulting  behavior  of  the  AGV  system  will

always reach a top level mishap scenario.

IV. BAYESIAN BELIEF NETWORKS

A. Background

Bayesian Belief Networks have been widely used in In-

dustrial Information Systems for solving variety of computa-

tional problems with insufficient information and excessive

uncertainty [6, 8, 9].  Since the 18th century mathematician

Rev.  Thomas  Bayes  introduced  the  concept  of  updating

probabilities based on new information, the method has been

widely applied in probability and statistics. The basis for the

method is the inversion formula for belief updating from ev-

idence  (E)  about  a  hypothesis  (H)  using  probability  mea-

surements of  the prior  truth of  the statement enhanced by

posterior evidence:

                 P(H|E) = (P(E|H)*P(H)) / P(E) (1)

A  Bayesian  belief  network  is  a  probabilistic  graphical

model.  The belief  network  represents  the joint  probability

distribution of a set of random variables with explicit inter-

dependence assumptions.  In  this research a Bayesian net-

work is defined by a directed acyclic graph of nodes repre-

senting variables and arcs representing probabilistic depen-

dency relations among the variables [9]. 

Figure 3 Low-level FTA for LIDAR

Figure 4 Low-level FTA for CV
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An arc from node A to another node B indicates that vari-

able B depends directly on variable A. If the variable repre-

sented by a node has a known value then the node is said to

be observed as an evidence node. A node can represent any

kind of variable, be it a measured parameter, a latent vari-

able, or a hypothesis. Nodes are not restricted to represent-

ing random variables: this is what “Bayesian” is about a be-

lief network.  

Figure 5 BN of the AGV System – a nominal scenario

The approach supports three types of reasoning. Predic-

tive reasoning observes the causal evidence and updates the

middle and upper layer nodes reasoning from a cause to the

effects.  Diagnostic  reasoning  observes  the evidence  of  ef-

fects  and  updates  the middle and  the bottom layer  causal

variables, reasoning from an effect to the cause.  The BN's

also  allow  explanatory  (inter-causal)  reasoning,  in  which

middle layer reasoning evidence is used to update both the

causal and the effect variables.

B.Preliminary Modeling

There  is  a  variety  of  tools  supporting  BN  modeling:
www.dsl-lab.org/ml_tutorial/software_bayesian_networks.html.

The computations were done using Bayesian Networks gen-

erated by the tool Netica [10]. Based on the fault tree dia-

grams, along with assumption of base events likelihood (leaf

nodes) and the conditional probabilities, it was possible to

create a model which represents a good estimator of AGV

optical  navigation  systems  dependability.  Using  nominal

likelihood  values  based  on  the  system  analyses  and  the

available  data,  i.e.,  assuming  no  deterministic  evidence

about the status of the system components, we were able to

assess the likelihood of top level mishaps and thus identify

their criticality.  Fig.  5 presents a screenshot of the tool in

such nominal scenario.

From this nominal scenario the BN allows to introduce

evidence of selected events and analyze the impact of this

evidence on other events. The predictive reasoning property

of BN allows us to introduce the evidence of base events (as

an example: a camera misalignment) and observe the impact

on  intermediate  events  and  ultimately  on  the  top  level

mishaps (Fig. 6). 

Figure 6 BN predictive reasoning – evidence of camera misalignment 

Another  scenario  allows  the  presentation  of  the  in-

ter-causal reasoning property of the BN, i.e., analyzing im-

pact  of  known evidence  of  intermediate events  (e.g.  mal-

function  of  laser,  mirror  motor,  optical  receiver)  up  and

down the causal chain.  As an example, we show how intro-

ducing evidence of LIDAR failure results in over fivefold

increase  of  pedestrian  injury and  property/vehicle  damage

probabilities (Fig. 7).

Figure 7 BN inter-causal reasoning – effect of the LIDAR failure 

Similarly, the evidence of CV failure results in significant

increase to the likelihood of top level mishaps (Fig. 8). Us-

ing the inter-causal reasoning one can also assess the poten-
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tial  causes  of  the malfunctions  observing  increased  likeli-

hood of causal events such as electrical failure, optical filter

damage, or misalignment of the receiver. 

Figure 8 BN inter-causal reasoning – effects of CV failure

B. Detailed Analysis

Subsequently,  a  variety  of  scenarios  were  attempted  to

identify the impact of specific events and the criticality of

top level mishaps. The model base probabilities are the best

reasonable estimate numbers.  Due to uncertainty built into

the model, the top-level mishaps show relatively high likeli-

hood of occurrence even with the evidence of correct opera-

tion and lack of any problems. The model thus implicitly ac-

counts for unidentified hardware failures and other potential

system defects that may cause uncontrolled travel. Table III

presents partial results of the predictive and inter-causal rea-

soning  modeling.  In  a  nominal  scenario  (when  all  base

nodes  probabilities are  “unknown” i.e.  set  to the assumed

values based on the system analyses and available data), the

probability of pedestrian injury is 6.29%. Given evidence of

events such as overvoltage or damaged optical filter allows

one  to  predict  200-400%  increase  in  the  likelihood  of

mishap.  However,  improper  lighting  or  damaged  camera

lens increases the probability by less than twofold. 

Using the predictive and inter-causal reasoning capabili-

ties of Bayesian networks,  it  is possible to gain additional

insight  into  improvements.  For  example,  simply  reducing

the chance of inferior lighting is sufficient to remove cata-

strophic risks and substantially reduce the number of critical

risks. 

The BN also allows for a diagnostic reasoning (i.e., from

effects  to cause).  For example,  having evidence of pedes-

trian injury the BN estimates that the probability of mirror

motor malfunction grows to over six times, CV failure five

times, and state estimator failure nearly eight times its origi-

nal value (Fig. 9).

Figure 9 BN diagnostic reasoning – causes of pedestrian injury

Diagnostic  reasoning  is  the  most  desirable  in  this

research,  since  it  allows  making  predictions  on  potential

causes of mishaps, including quantitative assessment of risk.

This, in turn, makes it possible to prepare for catastrophic

events by minimizing their consequences or avoid them by

paying closer attention to potential causes.

Using diagnostic reasoning it is possible to derive inter-

esting statistics about the system, such as the rate of property

and pedestrian damage in incidents of uncontrolled travel in-

volving  vehicle  damage.  Using  available  evidence  it  has

been determined that vehicular damage will result in nearly

TABLE III

PREDICTIVE AND INTER-CAUSAL REASONING – IMPACT OF THE

EVIDENCE ON PEDESTRIAN INJURY

Evidence Pedestrian
Injury

Likelihood
%

Impact 
(in relation
to evidence
unknown)

All base nodes “perfect” 3.82 -39%

All base nodes “unknown” 6.29 0%

All base nodes “bad” 48.20 666%

Improper lighting 9.07 44%

Severe damaged camera lens 9.76 55%

Camera misalignment 15.70 150%

Optical receiver misalignment 16.50 162%

Damaged optical filter 19.50 210%

Mirror motor malfunction 31.00 393%

Overvoltage 31.40 399%

LIDAR failure 34.40 447%

CV failure 35.00 456%

CV and LIDAR failures 47.70 658%
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50% likelihood of property damage and pedestrian injury. It

is also possible to estimate that, given the evidence of pedes-

trian injury, there is a 98.6% chance that it is caused by un-

controlled travel.  Having evidence of  vehicle  damage,  the

reasoning  allows  us  to  estimate  the  likelihood  of  LIDAR

failure to be 55% and CV failure 27.6%. However, with the

evidence of no CV failure the likelihood of LIDAR failure

increases to 70.8%. The proposed approach allows thus to

analyze impact of given evidence on system in a variety of

scenarios.

Table IV presents another partial result of the modeling.

The columns present likelihood of the model events in two

scenarios: when there is no evidence and when there is evi-

dence of pedestrian injury. The LIDAR and CV failure show

as the leading causes of potential pedestrian injury. 

TABLE IV

DIAGNOSTIC REASONING – POTENTIAL CAUSES OF PEDESTRIAN

INJURY

No evidence
of pedestrian

injury

Evidence of
pedestrian

injury 
Electrical failure 0.52 2.81

Damaged optical filter 3.00 9.29

Position encoder failure 2.40 9.89

Camera misalignment 5.00 12.50

Optical receiver misalignment 5.00 13.10

Mirror motor malfunction 2.98 14.70

Laser malfunction 3.45 17.40

CV failure 4.95 27.60

Improper lighting 20.00 28.80

LIDAR failure 10.00 55.00

Interestingly, and in accordance with the hazard table, the

BN analysis shows that in the case of total state estimator

and thus navigation failure, improper lighting bears a signif-

icant probability of being the reason, with CV and LIDAR

being  evidently  on  the  top.  The  risk  value  corresponds

equally well to LIDAR failures on the BN, with the laser

malfunction as the primary cause. This correlation between

the hazard table and the BN implies that the proposed ap-

proach provides reasonable base for quantitative assessment

of system dependability.

V.   CONCLUSIONS

This paper describes the analysis of autonomous ground

vehicle  system  optical  navigation  components  to  identify

hazards leading to potential safety violations and top level

mishaps. We used safety analytical modeling techniques in-

cluding Fault Tree analysis and Bayesian Belief Networks to

better understand the sequence of events that could lead to a

major accident or mishap. The quantitative analysis helps to

determine the most important hazards that need to be miti-

gated or controlled.  Analysis  results confirmed the impor-

tance of the reliability and availability of the AGV sensor

LIDAR and CV subsystems. Based on the analysis, specific

mitigation measures can be recommended in order to reduce

the risk of loss of life and/or property. These risk mitigations

would  lead  to reducing  the probability for  subsystem and

system malfunction.

By utilizing both Fault Tree Analysis and Bayesian Belief

Networks  it  is  possible  to  better  determine  what  the

sequences  of  events  and  their  impact  on  the  top  level

mishaps.  From the FTA results  it  is  clear  that  any major

mishap  will  always  involve  the  failure  of  one  or  more

subsystem  components.  In  the  case  of  both  subsystem

components failing (CV and LIDAR) the resulting behavior

of  the AGV system will  always  reach  a top level mishap

scenario.  Using  predictive  reasoning  capabilities  of

Bayesian  Networks,  it  was  possible  to  gain  additional

insight into the system operation and identify the potential

mitigation sources. 

Future  work  would  need  to  assure  that  the  numerical

values for the likelihood of events as well as the dependency

relations  between  the  nodes  closely  represent  reality.   A

good source for these values would be published equipment

failure  rates  (e.g.  based  on  military  handbook

MIL-HDBK-217F 1995) or collected from industry studies

related to safety incident rates [11]. 

REFERENCES

[1] D. Coombs,  K. Murphy,  A. Lacaze, A. and S. Legowik,  “Driving
autonomously  offroad  up  to  35  km/h“.  Proceedings  of  the  IEEE
Intelligent Vehicles Symposium, Dearborn, Michigan. 2000.

[2] T.H.  Hong,  M.O.  Shneier,  C.  Rasmussen  and  T.  Chang,   “Road
detection  and  tracking  for  autonomous  mobile  robots“.  SPIE  16th
Annual  International  Symposium  on  Aerospace/Defense  Sensing,
Simulation, and Controls, Orlando, Florida. 2002.

[3] C.  Rasmussen,  “Combining  laser range,  color,  and texture  cues for
autonomous  road  following“,  IEEE  International  Conference  on
Robotics and Automation, Washington, DC. 2002.

[4] J.A. Bornstein and C.M. Shoemaker, “Army ground robotics research
program“,  Unmanned Ground Vehicle Technology V, Orlando, Flor-
ida. SPIE Proceedings Series, Volume 5083, pp. 303–310, 2003.

[5] C. Urmson, Navigation regimes for off-road driving, Technical Report
No. CMU-RI-TR-05-23. Pittsburgh, PA: Carnegie Mellon University,
Robotics Institute, 2005.

[6] W.  Vesely et al., Fault Tree Handbook with Aerospace Applications, 
NASA Office of Safety and Mission Assurance, August 2002.

[7] L.  Portinale,  “Bayesian  Belief  Networks  in  Reliability”,  Tutorial
Notes,  2012  Annual  Reliability  and  Maintainability  Symposium,
Reno,  NV, URL:  http://www.xcdsystem.com/rams2012/cdrom/tutori-
als/09a.pdf  

[8] N.E. Fenton and M. Neil, Risk Assessment and Decision Analysis with
Bayesian Networks, CRC Press, ISBN: 9781439809105, 2012.

[9] F.V.  Jensen  and  T.D.  Nielsen,  Bayesian  Networks  and  Decision
Graphs. Second Edition, Springer-Verlag, 2007.

[10] Netica Software  Package.   Norsys Software Corp.,  Vancouver,  BC.
URL: http://www.norsys.com/netica.html.

[11] R. Chalupa, Failure Modes, Effects and Diagnostics Analysis.  Report
No. 06-11-25-R001, Rosemount Corp., Eden Prairie, Minn. 2007.

DANIEL REYES-DURAN ET AL.: SAFETY ANALYSIS OF AUTONOMOUS GROUND VEHICLE OPTICAL SYSTEMS (FEDCSIS) 1413


