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Abstract—Spam detection based on flow–level statistics is a
new approach in anti–spam techniques. The approach reduces
number of collected data but still can obtain relative good results
in a spam detection task. The main problems in the approach are
selection of flow–level features that describe spam and detection

of discrimination rules. In this work, flow–level model of spam
is presented. The model describes spam subclasses and brings
information about major features of a spam detection task. The
model is the base for decision trees that detect spam. The analysis
of detectors, which was learned from data collected from different
mail servers, results in the universal spam description consists of
the most significant features. Flows described by selected features
and collected on Broadband Remote Access Server were analysed
by an ensemble of created classifiers. The ensemble detected
major sources of spam among senders IP addresses.

Index Terms—Spam detection, Flow analysis, Anomaly detec-
tion

I. INTRODUCTION

R
APID development of the Internet and associated ser-

vices induced growth of the desired bandwidth for their

execution. Customers expect their Internet Service Providers

(IS) to provide a flexible, fully secured access to the In-

ternet. Requirements related to privacy and confidentiality

increasingly important. The political environment inside Eu-

ropean Union is discussing adjustment of law regulations

to market needs. ISPs have to consider Quality of Service

(QoS), security, Service Level Agreement (SLA) among others

committed to privacy guarantee. This is one of the reasons for

development of methods used for monitoring and analysis of

traffic in the ISP’s core network.

Two approaches are interesting from the perspective of

multi–gigabit stream: packet header analysis and flow analysis.

Both techniques do not use information contained in payload,

which is very important from data reduction and privacy point

of view. Additionally, the hash function can be executed on IP

addresses to guarantee higher data protection. In some cases,

data does not need to be stored. A good example is the sta-

tistical detection of Distributed Denial of Service (DDoS) at-

tacks [1] and solutions developed on Field Programmable Gate

Array (FPGA) cards [2]. Moreover, such limited data were

successful used in an Internet traffic classification task [3].

The packet header analysis is focused processing of headers.

The flow analysis is focused on sets of headers determined

by a source, a destination IP, source and destination port,

timestamps, etc. depending on parameters used to define a

flow. The flow analysis enables more compact data reduction.

IP Flow Information Export (IPFIX) [4] and NetFlow [5] are

well known standards. The equivalent given by Juniper is

named J-flow.

Regardless of what was an object of analysis (headers

or flows), methods are based on a language that describes

analysed events. Usually components of the language are

values from packet headers, statistical values such as the

average time, the maximal, or the minimal size of packets.

Wide lists of defined primitives for flow analysis and honeypot

detection are given in [6] and [7] respectively.

In all cases, the following schema is used:

1) select observed parameters [(m1, . . . ,mn) ⊂ {M}]
(metric),

2) capture values for the parameters [m1 ← .09,m2 ←
11, . . . ,mn ← false] (measurement),

3) calculate features [f1 ← m1 ∗ m4, f2 ← m3 +
m5, . . . ](features),

4) determine logical relationships between features [if

(f1 > f2) then action1 else action2](decision).

One of the most important issues in the presented schema

is a selection of features. The features that describe spam can

be used to create its detection rules. In this paper, flow–level

parameters {m} selected by Z̆ádník [8] as a subset of the

set {M} defined in [6] are used create a primary model of

spam. In collected spam records, well–separate subclasses are

detected (Section II-A). The comparison of subclasses defines

important discriminants (Section II-B) that can be used to

determine separation rules between spam and the rest of the

flows (Section II-C).

Created model was trained and tested on separate data but

collected from the same mail server. Therefore, a new data set

was created and the most significant features were calculated

once again on new data (Section III-A). Both sets of features

were compared (Section III-B) and the comparison resulted in

a universal set of features (Section III-C).

The final model was checked with Broadband Remote

Access Server (BRAS) data (Section IV-A). Decision trees

created on the base of both learning sets were used to detect
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spam among BRAS data (Section IV-B). The classification

resulted in detection of main sources of spam (Section IV-C).

Conclusions from all tests are presented in Section V.

II. SPAM MODEL

The spam model is based on flows collected by Z̆ádník and

Michlovský [8]. The flows are defined by by NetFlow protocol

that contains:

• source IP address,

• destination IP address,

• IP protocol,

• source port,

• destination port,

• IP type of service.

The NetFlow version 9 allows the user to collect additional

features. The features collected in the flows are a subset of

features presented in [6].

The authors collected data from the SMTP server hosting

mailboxes the Liberouter project group. The data set contains

over 58 thousand records described by 64 features and divided

into several classes. Among classes, two describe spam. The

first class dnsbl contains flows from IP address mentioned on

DNS black lists. The second class y_spam consists of flows

that have been successfully received and marked as spam by

SpamAssassin.

In the case of the dnsbl class flows were labelled because

of a source IP address. All flows send from the denied

addresses are labelled as spam. For the second class y_spam,

the labelling process is more complex. The flows are labelled

in the off–line mode. The IP addresses and the time of arrival

for the flow are compared with the SpamAssassin logs. If a

mail with the same source IP address and the destination IP

address was marked as spam then all flows with a similar time

of arrival are labelled as spam.

The described division of spam is a consequence of used

methodology and cannot be used as a framework of the model

without any doubt. In the following section, the statistical

methodology that creates spam subclasses is presented.

A. Detection of subclasses

Spam subclasses are created in two steps. Firstly, a cluster-

ing method is used to detect inner clusters. Next, a decision

tree is created to find discrimination rules.

1) Clustering: The predefined spam subclasses dnsbl

and y_spam are a consequence of used methodology. It should

not be assumed that this division has a statistical base. There-

fore, a new division is created using k–means clustering [9].

In the analysis, all members of dnsbl and y_spam are

treated as a single class spam. The class consists of almost

54 thousand records.

A number of spam subclasses is unknown. Therefore, var-

ious values of k coefficient from the range k ∈ [2, 25] are

tested. The results of subsequent tests are compared in v–

fold cross–validation process. In such test, random samples

are drawn v times. Summary indices of the accuracy of

Fig. 1. The classification tree that divides spam into subclasses

the prediction are computed over the v replications. In the

described case, the value v is fixed as 10.
A classification error calculated among cross–validation

probes was smallest for division into four classes. In such

case, the obtained error was 8 percent. However, one of the

created classes has a relatively small cardinal number (632

records, which is about 1.3 percent of spam).
Significant differences between cardinal numbers of classes

determine a priori probability used in a classification task.

Members of classes with small a priori probability are clas-

sified as members of numerous classes to reduce the risk of

misclassification.
To avoid future problems the number of classes was reduced

to three. The cross–validation classification error increased

over 8 percent, which is still an acceptable level. The smallest

class was eliminated and the new distribution is more reason-

able. The biggest class 2 contains 78.5 percent of record when

classes 3 and 1 contain 12.9 and 8.6 percent respectively.
2) Separation rules: The second step of modelling creates

discrimination rules between subclasses created during the

clustering process. This task is done using a C&RT tree [10].

Such tree is not a very advanced classifier but creates clear

decision rules.
The classification accuracy was over 99 percent. That proves

a good division of spam into subclasses. Detailed information

about classification errors is given in Table I.

TABLE I
THE MISCLASSIFICATION MATRIX FOR SUBCLASSES OF SPAM

Observed 1 Observed 2 Observed 3
Predicted 1 4206 2 24
Predicted 2 1 38396 0
Predicted 3 6 6279

However, not the accuracy of classifier but the simplicity of

created rules is the point to stress in this case. The classifier

uses a single feature maxpl, which is the maximal length of a

packet. The structure of classification tree is given in Figure 1.
Reasons for selection of maxpl as the most important

discrimination factor are given in the next section.
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Fig. 2. Normalised average values of the most important spam features
calculated separately for subclasses

B. Description of spam subclasses

A classification tree selects features because of the Gini

coefficient [11] that is a measure of statistical dispersion. The

feature significance is computed by summing over all nodes in

the tree the drop in node impurity. The results are expressing

relative to the largest sum found over all predictors where the

largest sum gets 100 points. Details are given in [10].

The maximal length of package as the feature with major

statistical dispersion should differ significantly among classes.

It is proved by an analysis of normalised average of features

for all three subclasses (presented in Figure 2). The differences

between normalised average values calculated for separate

subclasses are most significant for this feature. On the same

basis, a set of important discriminants may be defined as:

spl Average package length,

spl2 Variation of package length,

maxpl Maximal package length,

slas Average length of package having the ACK flag,

slps Average length of package having the PUSH flag,

rspps Number of packages having the PUSH flag in

response,

rslps Average length of package having the PUSH flag

in response,

rmaxtw Maximal size of the response TCP window.

All mentioned features (except rmaxtw) take highest values

for the subclass number 3 and the lowest for the subclass

number 2. The subclass number 1 is somewhere between.

The presented analysis is limited to the normalised averages.

More information is given by a probability density function.

The function that was calculated for selected features (sepa-

rately for all subclasses) is presented in Figure 3.

The presented normal distribution functions are determined

by the following formula

f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 , (1)

TABLE II
THE DISTRIBUTION OF dnsbl AND y_spam GROUPS AMONG SPAM

SUBCLASSES

dnsbl [%] y_spam [%]
Subclass 1 2.9 97.1
Subclass 2 98.3 1.7
Subclass 3 0.0 100.0

where µ is the mean and σ is the standard deviation. Both

values are estimated on the base of values of a feature in the

given subclass.

The distribution for the feature maxpl presented in 3(b)

shows once again that the maximal length of packets is a

good discriminant of subclasses. The feature gives three well–

separate distributions.

Finally, an analysis of distribution of groups dnsbl

and y_spam among calculated subclasses is presented. The

analysis shows that the subclass 2, which has the lowest values

of analysed features, consists of spam sent by IP addresses

from DNS black lists. In this case, the analysis confirms

division of original data between spam detected by blacklists

and a spam analyser. However, spam in the y_spam group,

which contains spam detected by SpamAssassin, is not a solid

group and its members split between subclasses 2 and 3.

Details are given in Table II.

C. Spam subclasses in classification task

In section II-A, the decision tree was presented as a source

of discrimination rules. The tree, which separates spam sub-

classes, brings the description of the most significant spam

discriminants.

The features are used to create a similar tree that separate

spam from the rest of network traffic. The tree separates

known spam subclasses (1–3) from flows without spam. This

new class, labelled as 0, consists of records accepted by

SpamAssassin as well as outgoing traffic. The class consists

of about 4 thousand of records, which is significant less than

number of spam records (54 thousand).

The created tree is given in Figure 4. The tree uses the rslps

feature that describes the average length of package having the

PUSH flag in response.

TABLE III
THE CLASSIFICATION MATRIX FOR THE CLASSIFICATION TREE THAT

SEPARATES SPAM SUBCLASSES FROM THE REST OF TRAFFIC

Class 0 Class 1 Class 2 Class 3
Predicted 0 2920 2 0 282
Predicted 1 242 4169 2 0
Predicted 2 86 1 38396 0
Predicted 3 924 41 0 6021

The classes 1 to 3 are covered with a false positive error.

A part of valid traffic is recognised as spam. The error is not

equally distributed among classes. The error is minimal for

the class 2 where it is only 0.2 percent. For classes 1 and 3
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Probability density calculated for the most characteristic spam features

it is 5.5 and 13.8 percent respectively. Details are given in

Table III.

The total accuracy of the tree is 97 percent. When spam is

treated as a single class, the accuracy is a slightly lower and

the classification tree creates seven rules instead of three.

Similar results, for the same data set but described by

different features, are presented in [12] (over 95 percent) where

the Principal Component Analysis (PCA) was used to reduce

number of features and in [8] (about 96 percent) where 64

features were used.

Although the accurate rate is higher than in cited works,

a high error (about 30 percent) in classification of class 0

can be observed. This class is corresponding to the flows

without spam. Obviously, this is the most important class

since the classifier has to avoid misclassifying non–spam flows

with spam flows. The high false positive ratio makes the

binary classifier useless, but the classifier that recognises spam

subclasses can be still used as a filter.

In the described example, there are three different cases.

The first case concerns separation of valid traffic (class 0) and
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Fig. 4. The classification tree that separates spam subclasses from the rest of traffic

spam from blocked DNS addresses (class 2). In this case, the

tree is an adequate tool to separate classes. The second case

concerns the class 1. Nearly all members of this class are

recognised correctly. However, some flows without spam are

also classified as members. This class requires future analysis

of false positive. The last case is focused on the class 3.

Misclassifications are noticed between this class and the class

0. A more powerful classifier is needed to separate these

classes.

III. MODEL VERIFICATION

The results of analysis presented in Section II were ver-

ified with separate data. Significance of features determined

on Z̆ádník’s data was validated by comparison with features

calculated on Warsaw University of Technology mail server

called Alpha.

A. Alpha

The described spam model was created on the base of

NetFlow records collected by Z̆ádník. For validation, a new

set of NetFlow records was collected at Warsaw University

of Technology. The set originates from the mail server called

Alpha and consists of NetFlow records described by the same

collection of features as Z̆ádník’s set. Data was collected

through one working week. Over 42 thousand NetFlow records

were collected. Among them 589 were labelled as spam.

This ratio between spam and non–spam data is completely

different from the data discussed before. Here, the number of

non–spam data is lower than the spam data. Therefore, the

model was created on a dataset that is not very similar to the

dataset collected from the Alpha.

Using the same method as for the Z̆ádník’s set (section II-C)

a classifier based on a classification tree was created. The

classifier separates spam from the rest of flows. The accuracy

for both classifiers is very similar (about 97 percent). However,

the disparate distribution of classes in the Alpha set results in

much lower observed error (about 3 percent) in classification

of class 0.

The created classification trees have different structures and

splits are based on different features. Therefore, a set of

features chose on the base of analysis of the Z̆ádník’s set

should be verified.

B. Verification of features

Two decision trees that separate spam from the rest of

traffic were created. The first one was trained on data from

the Z̆ádník’s set, the second one on data collected from the

Alpha server.

In the training process, the Gini coefficients were calculated.

Therefore, the same approach that was used before to evaluate

features describing spam can be applied once again to evaluate

importance of features. The importance was calculated for all

features proposed in [8].

An importance ranking on a 0–100 scale for each feature

was created separately for each set. Figure 5 presents calcu-

lated significance of features.

The significant correlation between sets cannot be detected.

There are several possible reasons for the difference between

features selected by different classifiers.

The first reason may lie in the method. When a classification

tree is created, the algorithm focuses on the most important

features. Third–rate features may be different in various solu-

tions.

The second reason lies in difference between the contents

of discussed sets. As an example the feature spas, which

describes the number of packages having ACK the flag set
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Fig. 5. Significance of features for both data sets: Z̆ádník and Alpha

will be discussed. The feature is quite important for the

classifier created on the Alpha set whereas of little importance

for classifier created on the Z̆ádník’s set. The observation is

highlighted in Figure 5.

The ACK flag is used to acknowledge the successful receipt

of packets. Therefore, it should be turned on in almost all

packages. The only exception is the first package sent in an

exchange. In a transaction, the total number of packages with

the ACK flag should be the total number of packages sent by

a sender minus one. In practice, packages can be resend or

missed and exceptions to the rule can be observed.

For discussed sets, the relation between the total number of

packages (sp) and the total number of packages with the ACK

flag (spas) in a flow was estimated using the method of least

squares [13]. Results are presented in Figure 6.

For data collected on the Alpha server, (Figure 6(b)) the

relation is similar to the ideal one:

spas = sp− 0.6. (2)

Meanwhile, in the Z̆ádník’s set (Figure 6(a)), the relation is

farther from the ideal:

spas = 0.9 × sp− 9.4. (3)

Such differences may influence features evaluation.

C. Universal features

Despite the differences in importance of features evaluated

on the base of data from different sources there is a small

number of features such as rslas or rspl significant for both

classifiers. However, their number is not enough to create a

universal set of features. Therefore, the following method was

used to create such set.

Each feature f calculated for a flow from source to des-

ignation has its equivalent rf calculated for a response. It is

assumed, in the described method, that if a feature is added to

the universal set then a response equivalent will be also added

and vice versa.

The significance of features is evaluated on the base of

Gini coefficients calculated during the decision tree creation.

The evaluation functions gA and gZ are calculated from the

Alpha and the Z̆ádník’s sets respectively. Each feature should

be evaluated on the base of both evaluations. The presented

assumptions result in the following evaluation function

g(f) =
max(gA(f), gA(rf)) + max(gZ(f), gZ(rf))

2
. (4)

Because the range of evaluation functions gA and gZ is

[0, 100] it is reasonable to assume that significant features

should at least achieve the level of 50 points.
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(a) (b)

Fig. 6. The relation between the total number of packages and the total number of packages with the ACK flag calculated for the Z̆ádník 6(a) and the
Alpha 6(b) sets

TABLE IV
THE MOST SIGNIFICANT FEATURES DESCRIBING SPAM

Rank Name Description
100,0 slas Average length of package having the ACK flag
99,5 spl Average package length
91,0 slps Average length of package having the PUSH flag
90,5 maxpl Maximum package length
84,0 maxtw Maximum TCP window size
82,5 spps Count of packages having the PUSH flag
73,0 stw Average TCP window size
68,0 mintw Minimum TCP window size
67,5 maxttl Maximum TTL
67,0 sp Packages count
66,5 minttl Minimum TTL
66,5 sttl Average TTL

Among features, twelve have the evaluation result greater

than 50 points. The most significant features are collected in

Table IV. Information about direction of traffic is skipped. It

is assumed that mentioned features should be calculated for

both directions. That gives 24 features.

IV. MODEL APPLICATION

The model was applied on data collected from a Broadband

Remote Access Server (BRAS). On the base of learning data,

an ensemble of classifiers was created and used to detect main

sources of spam.

A. BRAS

Data was collected from a Broadband Remote Access

Server (BRAS). Firstly, a probe that contains full headers was

created. In eight seconds, almost 50 million PCAP packages

were captured. From the packages payload was removed. The

total size of remaining headers was 4.44 GB. Among all

packages, 29.5 thousand were transferred by STMP protocol.

That produced 407 NetFlow records. The ratio of collected

records to the size of created file forced a different approach.

The second set was calculated in a reduced form. Because of

huge size of collected PCAP headers NetFlows record were

captured instead. Each record was described by 12 features

including minimum, maximum, and average size of package,

and binary information about flags occurrence. 176 thousand

records were captured. The total size of collected NetFlow

records was 18 MB.

Collected records was analysed by a spam detector to get

out information about sources of spam.

B. Detector

The classifiers that detect spam were created on the base of

two learning sets: Alpha and Z̆ádník. Both sets were divided

into learning and testing sets. The cardinal number of the

training set was similar to the cardinal number of the learning

set. Moreover, the proportion of spam to the rest data was

similar in the learning and the testing sets, although the

proportion of spam in the Z̆ádník’s set and the Alpha set are

different.

It was mentioned before that a single tree should not be used

as a detector. Instead, detector was projected as an ensemble of

trees. Each tree was trained on the learning set and validated

on the training set.

Each classifier from the ensemble recognises two classes:

spam and background traffic. Before, the subclasses of spam

were considered to determine the spam model. However, for

the final user a determination of the spam subclass is not

such important as a detection of spam. Therefore, the binary

classification is performed.

The classes are labelled by 1 and -1 respectively. The

classifier Ci that returns a decision yi is described by the

si coefficient that is the accuracy of discrimination between

spam and the background. The final classification decision is

the sign of a weighted sum given by the formula:

y = sgn

n∑

i=1

si∑n
j=1

sj
yi, (5)

where n is the number of classifiers in the ensemble.

The detector can return 0 what means that the decision is

uncertain.
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C. Detection of spammers

The created detector was used to detect spam among flows

collected from the BRAS. Over 60 trees trained on various

subsets of the universal features set were used to create the

detector defined by (5). In the result, 934 records from 176

thousand records were labelled as spam.
In the next step, sources of spam were localised. Records

from the captured data came from 64088 unique IP addresses.

Among them, 359 have sent at least one record labelled as

spam. Most of them (211 addresses) sent just one record

labelled as spam, but the record holder sent 221 spam records.
It is hard to assume that each sender from this set is a

spammer. Therefore, a spammer was defined as a source of at

least 10 spam records. This limitation results in seven main

spam senders. Together they sent 46 percent of records labelled

as spam. The main spammers can be easy blocked, which

results in a significant reduction of spam.

V. CONCLUSIONS

In this work, the approach to detect main sources of spam

in collected network traffic is presented.
Firstly, flow–level model of spam is created. The model

describes spam subclasses and brings information about major

features for a spam detection task. The presented model

was verified on separate data. The verification resulted in a

universal set of features.
The universal set consists of features that should be col-

lected from a network in the form of NetFlow records. Among

features are length of packages, information about window

size, information about flags etc.
Selected features from the universal set were collected

on Broadband Remote Access Server. Next, the detector,

which was an ensemble of decision trees learned on various

datasets, was created. The detector showed main source of

spam among senders of collected flows. An elimination of

detected spammers will reduce a number of spam by over 45

percent.
It should be noticed that the spam traffic properties will

be changing over time and model will need to be retrained.

The traffic properties can be also different in case of intensive

spam attack. However, a regular collection of learning records

from a network should resolve the first problem. Additionally,

special learning sets that simulate intensive attacks can be used

to improve model.

Gradually modifications of the model can be easy done

by addition of new classifiers to the detector represented by

equation (5) (although the total number of classifiers should

be limited to avoid the drift learning problem).

Moreover, the detector based on decision trees can be

implemented as a network probe. A software solution can

be implemented as an nProbe [14] plug–in, but a hardware

solution is also possible if the decision algorithm will be

implemented on FPGA card.
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