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Abstract—The advance of high-throughput techniques, such as
gene microarrays and protein chips have a major impact on con-
temporary biology and medicine. Due to the high-dimensionality
and complexity of the data, it is impossible to analyze it manually.
Therefore machine learning techniques play an important role

in dealing with such data. In this paper we propose to use a
one-class approach to classifying microarrays. Unlike canonical
classifiers, these models rely only on objects coming from single
class distributions. They distinguish observations coming from
the given class from any other possible states of the object,
that were unseen during the classification step. While having
less information to dichotomize between classes, one-class models
can easily learn the specific properties of a given dataset and are
robust to difficulties embedded in the nature of the data. We
show, that using one-class support vector machines can give as
good results as canonical multi-class classifiers, while allowing
to deal with imbalanced distribution and unexpected noise in
the data. To cope with high dimensionality of the feature space,
we propose to form an ensemble, based on Random Subspace
and prune it with the usage of diversity measure. Experimental
investigations, carried on public datasets, prove the usefulness of
the proposed approach.

Index Terms—machine learning, one-class classification, mul-
tiple classifier systems, classifier ensembles, bioinformatics, mi-
croarray analysis, high dimensionality.

I. INTRODUCTION

C
ONTEMPORARY high-throughput technologies pro-

duce massive volumes of biomedical data. Transcrip-

tional research and profiling, with the usage of microarray

technologies are powerful tools to gain a deep insight into the

pathogenesis of complex diseases that plague modern society,

such as cancer. Recent works on cancer profiling showed

without a doubt, that gene expression patters can be used for

high-quality cancer subtype recognition [1] - leukemias [2],

melanoma [3], breast cancer [4] or prostate cancer [5] to name

a few.

Identifying cancer properties, based on their distinct expres-

sion profiles may provide necessary information for a break-

through, that is required for patient-tailored therapy. Currently

there are no distinct rules on how individuals respond to

chemotherapy and existing chemotherapies have in most cases

severe side-effects with varying medical efficiency.

Due to massive amounts of data generated by microarray

experiments and their high complexity and dimensionality, one

requires a decision support system to extract the meaningful

information from them. Machine learning is widely used for

this task [6], with two distinct areas - unsupervised [7] and

supervised learning [8]. In this paper we will focus on the

latter one.
Supervised machine learning is a promising approach for

analyzing microarray results in context of predicting patients

outcome. Support Vector Machines are among the most popu-

lar classifiers used for this task [9]. Multiple Classifier Systems

[10], or classifier ensembles, have gained an significant atten-

tion of the bioinformatics community in recent years. Random

Forest [11] and Rotation Forest [12] ensembles have displayed

an excellent classification accuracy for small-sample, high di-

mensionality microarray datasets, outperforming single-model

approaches.
Another important issue is the problem of curse of di-

mensionality. Microarray data suffer from a relatively small

number of objects, in comparison to the feature space di-

mensionality, often reaching several thousands. This causes

difficulties for machine learning algorithms, reducing their

performance and increasing their computational complexity.

Among this data flood a major number of parameters possess

small discriminative power and is irrelevant to the classifica-

tion process, which makes feature selection a crucial step in

microarray analysis [13].
Although there are many applications of machine learning-

based decision support systems in bioinformatics, there are

still many unresolved problems, such as:

• How to integrate heterogeneous data sources to achieve

better insight into the mechanism behind complex dis-

eases?

• How to organize, store, analyze and visualize high-

dimensionality data obtained from the biomedical data

flood?

• How to deal with the problem of high-dimensionality,

small sample size, which strongly affects the classifi-

cation performance and may lead to overfitting, poor

generalization and unstable predictors?

• How to cope with difficulties embedded in the nature

of microarray data, such as noise or class imbalance, as

canonical machine learning classifiers cannot cope with

them easily?

In this paper the last two issues are addressed.
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We propose to analyze microarray data with the usage of

one-class classifiers, instead of commonly applied binary ones.

Up to author’s knowledge this is the first work on applying

one-class ensembles and one-class classification in general, to

the microarray classification.

To cope with the high dimensionality problem we apply

an ensemble approach, based on Random Subspaces [14]. By

decomposing the feature space we at the same time reduce the

overall computational complexity of the classification model

and assure initial diversity among the pool of individual clas-

sifiers in the committee. A diversity-based pruning method is

applied to discard redundant classifiers and to chose mutually

complementary one-class predictors. Experiments, based on a

set of publicly available microarray datasets, show that the

proposed approach maintains a good classification accuracy,

while displaying an improved robustness to atypical data

distribution and prevalent noise.

II. ONE-CLASS CLASSIFICATION

The aim of one-class classification (OCC) is to recognize

one specific class from the more broad set of classes (e.g.,

selecting horses from all animals). The given class is known

as target class ωt, while the remaining are denoted as outliers

ωO. During the learning only examples target class (known

also as positive examples) are being presented to learner, while

it is assumed that during the exploitation phase new, unseen

objects from other classes may appear.

OCC problems are common in the real world where positive

examples are widely available but negative ones are hard,

expensive or even impossible to gather [15]. Let us consider

an engine. It is a quite easy and cheap to collect data about

its normal work. Collecting observations about failures it is

expensive and sometimes impossible, because in this case we

would have to spoil the engine.

Such approach is very useful as well for many practical

cases especially when the target class is ”stable” and outlier

one is ”unstable”. To explain this motivation let us consider

a computer security problem as spam filtering or intrusion

detection (IDS/IPS) [16].

Among several types of classifiers dedicated to OCC, the

most popular is one concentrating on estimation of a closed

boundary for given data, assuming that such a boundary will

describe sufficiently the target class [17]. The main aim of

those methods is to find the optimal size of the volume

enclosing given training points. Too small size could lead to

overfitting the model, while too big size might lead to exten-

sive acceptance of outliers into the target class. Those methods

rely strongly on the distance between objects [18]. Boundary

methods require smaller number of objects to properly esti-

mate the decision criterion, which makes them a perfect tool

for applications suffering from a small sample size,such as

microarrays classification. The well-known boundary methods

are one-class support vector machine (OCSVM) [19] and

support vector data description (SVDD) [20]. In this work we

will use the former one.

A. One-class support vector machine

One-class SVM classifier (OCSVM) [19] can deal with

datasets containing only patterns from one target class.

OCSVM classification aims at discriminating one class of

target samples from all other ones. It consists of learning the

minimum volume contour that encloses most of the data in a

given dataset. Its original application is the outlier detection

finding data that differ from most of the data within a dataset.

Let χ = {x1, x2, ..., xm} be a given dataset in R
d. Each

xj is a feature vector describing an object. OCSVM use the

training data to learn a function fχ : Rd 7→ R such that most

of the data in χ belong to the set Rχ = {x ∈ R
d; fχ(x > 0)}

while the volume of Rχ is minimal. This problem is known as

MinimalV olumeSet (MVS) estimation. Membership of x to

Rχ indicates whether this estimated volume is overall similar

to χ or not. Therefore when considering a M -class recognition

problem we have to learn M membership functions fχi
- one

for each class.

OCSVM uses the following approach to estimate the MVS.

A kernel function k(·, ·) : Rd × R
d 7→ R. In our research we

use a Gaussian Radial Basis Function(RBF) kernel :

k(x, x′) = exp[− ‖ x− x′ ‖2 /2σ2], (1)

where x′ is the object after mapping to a hypersphere, ‖ · ‖
denotes the Euclidean norm in R

d. The kernel induces a new,

artificial feature space H by the usage of mapping φ : Rd 7→ H
dened by φ(x) , k(x, ·). It has been shown that H reproduces

kernel Hilbert spaces of given functions, with dot product

denoted as 〈·, ·〉H. The reproducing kernel property implies

that:

〈φ(x), φ(x′)〉H = 〈k(x, ·), k(x′, ·)〉H = k(x, x′), (2)

which makes the evaluation of k(x, x′) a linear operation in

H, while it is a nonlinear operation in R
d.

Considering the RBF:

‖ φ(x) ‖2H, 〈φ(x), φ(x)〉H = k(x, x) = 1. (3)

From this one may assume that all the data mapped into

H are located on the hypersphere with radius equal to one,

centered onto the origin of H, which is denoted S(o,R=1). The

OCSVM determines in H the hyperplane W that separates

most of the data from the S(o,R=1), while at the same time

maximizing the distance from it. This practically implements

the solution to the MVS estimation problem.

Let:

W = {h(·) ∈ H; 〈h(·), w(·)〉χ − ρ = 0}, (4)

where parameters w(·) and ρ are the results of the following

optimization problem

min
w,ξ,ρ

1

2
‖ w(·) ‖2H +

1

vm

m∑

j=1

ξj − ρ, (5)

subject to (for j = 1, ...,m)

〈w(·), k(xj , ·)〉χ > ρ− ξj , (6)
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where ξj > 0, v is a control parameter for the fraction of the

data that are allowed to be located on the wrong side of the

W (outliers which do not belong to the Rχ) and ξj are slack

variables.

It can be shown that a solution to Eq. (5,6) can be expressed

by the following:

w(·) =
m∑

j=1

αjk(xj , ·), (7)

where αj comes from the dual optimization problem

min
α

1

2

m∑

j,j′=1

αjαj′k(xj , xj′ ), (8)

subject to 0 ≤ αj ≤
1

vm
,
∑

j αj = 1.

The OCSVM decision function fχ(x) is given as follows:

fχ(x) =

m∑

j

αjk(xj , x)− ρ, (9)

where the value of ρ is calculated from knowing that fχ(xj) =
0 for those xj ∈ χ that verify both αj 6= 0 and αj 6= 1

vm
.

Objects from χ that satisfies those conditions are located onto

a decision boundary.

III. PROPOSED APPROACH

In this paper we propose to use a one-class classification

approach to microarray analysis. Let us list the main features

and advantages of the proposed approach:

1) We utilize one of the classes as the target concept ωT

and the remaining one as outliers. In case of imbalanced

dataset the minority class is considered as the target

concept, while in case of balanced distributions we chose

the more numerous class. This is motivated by the fact,

that while sacrificing the additional information about the

second class, we gain a classifier that is able to adjust

itself to the specificity of the given class and is more

robust to difficulties that may be encountered, such as

class imbalance or in-class noise.

2) The high dimensionality of the feature space is difficult to

handle for one-class boundary classifiers. It significantly

increases their complexity, the training and execution

times and lead to a much more difficult optimization task

(and hence to a degradation of the recognition quality).

To cope with this problem we propose to use a Random

Subspace ensemble to decompose the feature space into

smaller competence areas and build an ensemble of

simpler one-class models.

3) As Random Subspace may lead to creation of similar

classifiers, or classifiers with low discriminative power,

a pruning procedure is beneficial, as it may discard

irrelevant predictors. We use a diversity-based method,

which uses a criterion optimized for OCC task.

A. Dealing with the high dimensionality problem

The one-class boundary compute a distance between the

object x and the estimated boundary, which encloses the

target class ωT . This allows to apply fusion methods, that

are based on the discrete output (returned class label) of the

individual classifiers - such as the voting methods. However,

to apply more sophisticated fusion methods, which assume the

continuous outputs of each of the individuals, the support of

an object x for a given class is required.

We propose to use the following heuristic support function

produced on the basis of a distance:

F (x, ωT ) =
1

c1
exp(−d(x|ωT )/c2), (10)

which models a Gaussian distribution around the classifier,

where d(x|ωT ) is a distance (Euclidean distance is used) from

the evaluated object to the support vectors describing the target

concept, c1 is the normalization constant and c2 is the scale

parameter. Parameters c1 and c2 should be fitted to the target

class distribution.

Estimating this mapping for high dimension is very complex

and requires a significant computational power and time. To

cope with this difficulty we propose to use a Random Sub-

space method to partition the dataset into many subspaces of

smaller dimensionality. Each base classifier is trained on a new

subset, which is highly smaller than the original feature space

size. This boosts the training time, while applying ensemble

principles makes sure that despite using weaker predictors, we

still get a satisfying accuracy [21].

B. Pruning the ensemble

As Random Subspace may produce classifiers of different

level of individual quality and diversity, a classifier section

step is most beneficial to forming an one-class ensemble.

Multiple Classifier Systems, in order to work properly, must

consist of predictors of at the same time high accuracy and

diversity. Only mutually complementary classifiers may lead to

an improvement over using a single-model approach. Diversity

is one of the most popular measures for this task. It may be

applied to one-class classifiers, but after modifications, that

take into consideration the nature of the OCC problem [22].

For this application an one-class entropy measure [23] is used.

Let’s assume that the highest ensemble diversity for a given

object xj ∈ X is displayed by [R/2] of the ensemble votes

with the same value (ωT or ωO) and remaining R - [R/2]

with the other value. If all votes returned identical response the

ensemble cannot be considered as a diverse one. Let us denote

by r(xj) the number of one-class classifiers that correctly

recognize the object xj . Assuming there are N objects in the

training set, one may use entropy to measure the diversity

using the presented concept:

Eoc(Π
r) =

1

N

N∑

j=1

1

(R − [R/2])
min{r(xj), R− r(xj)}.

(11)

where Πr is the considered pool of classifiers.
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TABLE I
STATISTICS OF THE DATASETS USED IN THE EXPERIMENTS.

dataset samples (class 1 / class 2 ) features
Breast Cancer 78 (34 / 44 ) 24481
Breast Cancer - noise 78 (34 / 44 ) 24481
Central Nervous System 60 (21 / 39) 7129
Colon Tumor 62 (22 / 40) 6500
Lung Cancer 181 (31 / 150) 12533

This is a non-pairwise (global) diversity measure, which

take values from [0,1]. 0 corresponds to identical ensemble

and 1 corresponds to the highest possible diversity.

C. Fusion method

As a fusion method we use a one-class mean vote, which

combines binary output labels of one-class classifiers. It can

be written as:

ymv(x) =
1

L

∑

k

[(Pk(x|ωT ) ≥ θk)], (12)

where [(·)] is the Iverson brackets and θk is threshold for the

target class. When a threshold equal to 0.5 is applied this rule

transforms into a majority vote for binary problems.

IV. EXPERIMENTAL INVESTIGATIONS

In this section we evaluate the proposed one-class ensemble

on the basis of datasets available at 1, whose details are given

in Table I. Four different datasets were used and additional,

fifth one, was generated. It was based on the Breast Cancer

dataset. To test the performance of classifiers in difficult

scenarios we have affected 25% of objects with Gaussian

noise, thus creating in-class outliers in the data.

As base classifier we have used an OCSVM with RBF

kernel [24].

To put the obtained results into context we have tested the

performance of multi-class classifiers used for this task - single

SVM (trained with RBF kernel and SMO procedure), Random

Forest (consisting of 100 decision trees) and Rotation Forest

(consisting of 100 decision trees). Additionally we show the

performance of a single OCSVM and the proposed ensemble

without the pruning step.

Results are based on leave-one-out cross-validation

(LOOCV).

All experiments were carried out in the R environment [25],

with classification algorithms taken from the dedicated pack-

ages, thus ensuring that the results achieved the best possible

efficiency and that the performance was not decreased by a bad

implementation. The Friedman ranking test [26] was done for

comparison over multiple benchmark datasets.

Firstly the parameters for the proposed pruned one-class

ensemble are examined. We test the correlations between the

accuracy and size of the subspaces / number of classifiers in

the pool. For analyzing the optimal number of the classifiers,

a subspace size equal to 0.2 was used. Then, when the size

was selected, the subspace size parameter was investigated.

1http://datam.i2r.a-star.edu.sg/datasets/krbd/

One should note that these results are prior to the pruning

phase - which firther improves the accuracy while reducing

the number of classifiers in the pool. Results are presented in

Fig 1 - 5.
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Fig. 1. Correlation between the accuracy and size of the pool of individual
classifiers (top) and between the accuracy and size of the feature subspaces
(bottom) for the Breast Cancer dataset.

The established optimal settings are then used for the second

stage of the experimental investigation - comparison with other

classification methods. Results with respect to sensitivity and

specificity, are given in Tab. II.

Analyzing the results of parameter settings for one-class

models shows us, that there are some common properties

regardless the analyzed dataset. The optimal size of the

ensemble was around 100-120 classifiers, built on a small

subspaces (consisting of 10% - 20% of features). This allowed

to maintain high diversity of the ensemble and allowed for a

pruning procedure to select valuable classifiers with mutually

complementary areas of competence. Additionally smaller size

of the subspaces allowed for training less complex OCSVMs,

which in turn prevented them for too overfitted decision

boundary.

From the results one may clearly see, that in case of

standard microarray datasets the proposed approach returns

both specificity and sensitivity similar to those of the state-of-
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TABLE II
RECOGNITION SENSITIVITY [%] AND SPECIFICITY [%] FOR EXAMINED METHODS. RandF STANDS FOR RANDOM FOREST, RotF FOR ROTATION

FOREST, OCCE FOR AN ONE-CLASS ENSEMBLE WITHOUT PRUNING AND POCCE FOR THE PROPOSED PRUNED ONE-CLASS ENSEMBLE. AVERAGE

RANK OF TESTED CLASSIFIERS, ACCORDING TO FRIEDMAN RANKING TEST, ARE GIVEN AT THE BOTTOM.

Dataset SVM RandF RotF OCSVM OCCE POCCE
Sens [%] Spec[%] Sens [%] Spec[%] Sens [%] Spec[%] Sens [%] Spec[%] Sens [%] Spec[%] Sens [%] Spec[%]

Breast Cancer 90.23 91.46 92.32 93.65 92.32 93.65 87.85 90.07 88.11 90.86 92.89 92.70
Breast Cancer - noise 74.46 83.59 77.36 84.90 80.05 85.72 75.20 82.98 80.95 85.20 89.09 90.05

Central Nervous System 85.60 94.36 88.20 95.90 88.20 95.90 82.95 90.11 84.07 92.01 87.84 93.96
Colon Tumor 78.90 91.25 81.35 94.03 82.70 93.90 80.15 92.36 83.85 93.05 84.05 93.83
Lung Cancer 61.72 93.05 65.89 95.11 67.00 94.85 69.22 92.08 70.98 93.90 74.61 94.78
Avg. score 4.85 2.90 2.25 5.21 4.11 1.68
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Fig. 2. Correlation between the accuracy and size of the pool of individual
classifiers (top) and between the accuracy and size of the feature subspaces
(bottom) for the Breast Cancer - noise dataset.

the-art multi-class models. However in case of noisy (dataset

no. 2) and imbalanced (datasets no. 4 and no. 5) our proposed

approach is able to outperform significantly the standard

classifiers. This happens due to the nature of OCC models

- as they are able to learn the distinct properties of the target

class, they are able to cope with in-class difficulties.

V. CONCLUSIONS

In this paper a novel approach for microarray analysis, based

on an ensemble of one-class support vector machines, was

presented. To deal with the problem of high dimensionality,
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Fig. 3. Correlation between the accuracy and size of the pool of individual
classifiers (top) and between the accuracy and size of the feature subspaces
(bottom) for the Central Nervous System dataset.

which may cause difficulties for one-class model, a Ran-

dom Subspace method was applied. This, combined with a

diversity-based pruning step, allowed for an effective classifier,

returning similar performance as state-of-the-art multi-class

methods. The strong points of the proposed method were

revealed when dealing with noisy and imbalanced data. In such

a case the proposed combined one-class classifier displayed

superior quality over its competitors.

The proposed approach may be an attractive tool for bioin-

formatics decision support systems, in which we deal with

uncertain, noisy data or data coming from uneven distributions.
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Fig. 4. Correlation between the accuracy and size of the pool of individual
classifiers (top) and between the accuracy and size of the feature subspaces
(bottom) for the Colon Tumor dataset.
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