
Performance Impact of Reconfigurable L1 Cache on
GPU Devices

Sasko Ristov, Marjan Gusev
Ss. Cyril and Methodius University

Rugjer Boshkovik 16, PO Box 393, 1000 Skopje, Macedonia

Email: {sashko.ristov, marjan.gushev}@finki.ukim.mk

Leonid Djinevski, Sime Arsenovski
FON University

Av. Vojvodina, 1000 Skopje, Macedonia,

Email: {leonid.djinevski, sime.aresnovski}@fon.edu.mk

Abstract—The newest GPU Kepler architecture offers a recon-
figurable L1 cache per Streaming Multiprocessor with different
cache size and cache associativity. Both these cache parameters
affect the overall performance of cache intensive algorithms, i.e.
the algorithms which intensively reuse the data. In this paper,
we analyze the impact of different configurations of L1 cache
on execution of matrix multiplication algorithm for different
problem sizes. The basis of our research is the existing theoretical
analysis of performance drawbacks which appear for matrix
multiplication while executed on multicore CPU. We perform
series of experiments to analyze the matrix multiplication exe-
cution behavior on GPU and its set associative L1 and L2 cache
memory with three different configurations: cache size of 16KB,
32KB and 48KB with appropriate set associativity of 4 and 6,
respectively. The results show that only L2 cache impacts the
algorithm’s overall performance, particularly the L2 capacity
and set associativity. However, the configuration of the L1 cache
with 48KB and 6-way set associativity slightly reduces these
performance drawbacks, compared to other configurations of L1
with 32KB and 16KB using 4-way cache set associativity, due to
greater set associativity.

Index Terms—Cache Memory, Set Associativity, GPGPU.

I. INTRODUCTION

C
ACHE memory is a very important part of memory

hierarchy since it reduces the performance gap between

the main memory and the CPU [1]. The algorithm perfor-

mance with a certain problem size depends on several cache

parameters: cache size, cache replacement policy, cache levels,

cache-line size, cache inclusivity, cache associativity, etc.

Today’s GPU (Graphics Processing Unit) devices are more

appropriate for applications with regular data access patterns

[2]. They have multilevel set associative cache memory ex-

pressed with L1 and L2 level. The former is private per

SM (Streaming Processor), while the latter is shared among

all SMs on a single GPU device. The NVIDIA’s Fermi

architecture introduced size configuration (and automatically

the appropriate cache set associativity) of L1 cache memory,

while the newest Kepler architecture allows the programmer

even further configuration.

In this paper, we configure the GPU device with three

different cache sizes and two different set associativity sizes

in order to determine how this new feature impacts the

most common cache intensive algorithm, i.e. dense matrix

multiplication (DMM). Our intention is neither to speedup the

algorithm execution using the power of many core GPU, nor

to speedup the algorithm using some existing transformations,

but to use the DMM algorithm as a benchmark and evaluate

the impact of cache sizes and associativity on the overall

performance. We use only one processing unit of only one

SM and realize a micro-benchmark to avoid the impact of

many cores and potential additionally generated cache misses.

Since the cache set associativity can provide huge per-

formance drawbacks for cache intensive algorithms, such as

DMM, we perform additional analysis on the performance of

those matrix sizes where the drawbacks are expected due to

L1 and L2 cache set associativity. A performance drawback is

a phenomenon where the performance does not follow the

existing trend and has smaller value than the performance

obtained in the neighboring points. Usually this is reflected as

a negative performance peak, i.e. the performance in analyzed

point x is lower than the performance in the points left or right

of x, which follow a trend in performance behavior.

The goal in this research is to determine which configuration

of L1 cache memory provides the best cost - performance ratio.

The rest of the paper is organized as follows. In Section II,

we give an overview of related work in the area of the research

problem. Analysis of possible performance drawbacks and

a description of methodology used in the experiments is

presented in Section III. The results of the experiments are

elaborated in Section IV. Finally, we conclude our work

followed by our plans for future work in Section V.

II. RELATED WORK

The latest GPUs have two level cache hierarchy organized

with set cache associativity. The impact of cache associativity

on GPU performance was analyzed by several authors. Perfor-

mance drawbacks are likely expected for DMM execution on

GPU for particular matrix sizes, due to the usage of only small

subset of the cache due to the matrix storage pattern, similar

to the effect on multicore architectures reported by Gusev

and Ristov [3]. An example of huge performance drawbacks

of DGEMM (Double precision General Matrix Multiply) for

matrix size that are multiples of 1024 are reported by Mat-

sumoto et. al [4] without deeper explanation. This problem

was also analyzed by Batson and Vijakumar [5]. They propose

reactive mechanisms (selective displacement and feedback) as

a solution. Calder et al. propose that way prediction [6] can

improve set-associative cache access times.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 507–510

978-1-4673-4471-5/$25.00 c© 2013, IEEE 507

TABLE I
CONDITIONS FOR PERFORMANCE DRAWBACKS

L1 (16KB) L1 (32KB) L1 (48KB) L2 (512KB)
N d N/d n N d N/d n N d N/d n N d N/d n
64 16 4 4 64 32 2 4 64 32 2 6 64 128 0.5 16
128 8 16 4 128 16 8 4 128 16 8 6 128 64 2 16
256 4 64 4 256 8 32 4 256 8 32 6 256 32 8 16
512 2 256 4 512 4 128 4 512 4 128 6 512 16 32 16
1024 1 1024 4 1024 2 512 4 1024 2 512 6 1024 8 128 16
2048 / / 4 2048 1 2048 4 2048 1 2048 6 2048 4 512 16
4096 / / 4 4096 / / 4 4096 / / 6 4096 2 2048 16
8192 / / 4 8192 / / 4 8192 / / 6 8192 1 8192 16

Greater set associativity will reduce the cache misses, but

will still not improve the performance since this will increase

the cache hit access time. Padding the first element of the

second matrix will amortize the performance drawback due

to cache associativity [7]. Hongil [8] dynamically selects an

optimized replacement policy for each cache set via workload

speculation mechanism to improve the cache performance.

Ding et al. [9] designed a software runtime library to include

intelligence in the cache allowing the programmers to manage

and optimize last level cache usage by allocating proper cache

space for different data sets of different threads.

Gusev and Ristov [3] proved both theoretically and ex-

perimentally that CPU cache memory storage pattern can

significantly reduce the performance of DMM execution by

increasing the generation of last level cache misses due to

the usage of set associative cache. By using their theorems

one can determine the matrix sizes where maximum cache

performance drawback in the matrix multiplication algorithm

will appear due to matrix storage pattern in a n-way associative

memory. Our recent research proved those theoretical results

for GPU’s L2 set associativity cache [10]. In this paper, we set

a research problem to check validity of theoretical results and

experimentally test if they hold for different configurations of

L1 set associative cache in GPU architectures.

Two problems are exposed with usage of the caches, cache

capacity problem refers to the lack of the resources, while the

cache associativity problem refers to inefficient usage of the

cache. In this paper, we are focused on performance analysis

of the cache associativity problem.

III. TESTING METHODOLOGY

We use the classical DMM algorithm, where the operations

are performed column-wise in order to exploit the effect of

cache reuse, assuming that the matrix elements are stored in

row-major order, usually used in C programming language.

This research is focused on GPUs analyzing both the

cache capacity and cache associativity problems defined for

multicore architectures by Gusev and Ristov [3].

Table I presents the cache parameters of the GPU model

GeForce GTX 680 for each configuration of L1 cache and

for L2 cache, using the theoretical analysis described in

[3]. According to this analysis, we expect the performance

drawbacks for bold values of d (n < N/d), as presented in

Table I. Further on we calculate that maximum N for which

the performance drawback will appear is determined as:

• N = 1024 for L1 cache configured with 16KB cache and

4 way set associative;

• N = 2048 for L1 cache configured with 32KB (4 way

set) or 48KB (6 way set); and

• N = 8192 for 512KB L2 cache 16 way set associative.

This paper aims to confirm these theoretical results for

GPUs by experimental research.

The Ubuntu 12.04 LTS operating system runs on Intel i7-

3770 CPU@3.40GHz, 32GB of Kingston RAM @ 1.60GHz

and NVIDIA GeForce GTX 680 GPU. The implementations

of all of the experiments are compiled with the Nvidia’s nvcc

compiler from the CUDA 5.0 toolkit.

We conducted experiments for three different configurations

of 16/32/48KB of L1 cache memory. Since the cache-line

size (cbs) does not influence the equations in our theoretical

analysis, there isn’t any particular reason to choose a value of

cbs. In our case we have chosen 128B. We also assume that

the cache memories are set-associative.

Six experiments of the sequential matrix multiplication

algorithm were performed in the regions around the critical

matrix sizes: N = 64, 128, 256, 512, 1024 and 2048. The

sequential implementation of the DMM runs one thread per

only one active SM [11], thus the whole L1 cache is dedicated

to the thread. Each experiment consists of twenty test cases

for problems in the area around the critical points.

Average execution time is measured from 10 iterations,

excluding the first iteration.

IV. RESULTS OF THE EXPERIMENTS

The obtained results of the experiments on the GPU to

analyze the impact of different L1 cache size and set as-

sociativity configuration are presented in this section. Our

focus is to observe the areas around the problem size for

the points where maximum drawbacks are expected from the

theoretical analysis performed in Section III. All 6 experiments

are performed for three different configurations of L1 cache

size, i.e., 16KB, 32KB or 48KB.

The results on performance around the area of N = 64

(Experiment 1) are depicted in the left part of Figure 1. For

this example, both matrices can be stored completely in the

L1 cache.

508 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

 19.8

 20

 20.2

 20.4

 20.6

 20.8

 21

 21.2

 54 56 58 60 62 64 66 68 70 72 74

Sp
ee

d
(M

FL
O

PS
)

N

L1 (16KB)
L1 (32KB)
L1 (48KB)

 21.5

 21.55

 21.6

 21.65

 21.7

 21.75

 21.8

 21.85

 118 120 122 124 126 128 130 132 134 136 138

Sp
ee

d
(M

FL
O

PS
)

N

L1 (16KB)
L1 (32KB)
L1 (48KB)

 21.4

 21.5

 21.6

 21.7

 21.8

 21.9

 22

 22.1

 246 248 250 252 254 256 258 260 262 264 266

Sp
ee

d
(M

FL
O

PS
)

N

L1 (16KB)
L1 (32KB)
L1 (48KB)

Fig. 1. Speed in the area around N = 64 (left), N = 128 (middle) and 256 (right)

 18.5

 19

 19.5

 20

 20.5

 502 504 506 508 510 512 514 516 518 520 522

Sp
ee

d
(M

FL
O

PS
)

N

L1 (16KB)
L1 (32KB)
L1 (48KB)

 15

 16

 17

 18

 19

 20

 21

 1014 1016 1018 1020 1022 1024 1026 1028 1030 1032 1034

Sp
ee

d
(M

FL
O

PS
)

N

L1 (16KB)
L1 (32KB)
L1 (48KB)

 20

 22

 24

 26

 28

 2038 2040 2042 2044 2046 2048 2050 2052 2054 2056 2058

Sp
ee

d
(M

FL
O

PS
)

N

L1 (16KB)
L1 (32KB)
L1 (48KB)

Fig. 2. Speed in the area around N = 512 (left), N = 1024 (middle) and 2048 (right)

This experiment proves our theoretical analysis since the

performance drawbacks do not appear in this region. The

elements of a matrix B column can be stored in a particular

set and no cache misses will be generated. All three L1 cache

size configuration comply with the theoretical analysis.

We observe a very strange speed curve, which increases

for even matrix size N and decreases for odd matrix size N .

This phenomenon appears due to the average load time for

a matrix element, which is smaller for an even matrix size

N . Therefore, the matrix elements fulfill the cache line more

efficiently within a given cache line.

The speed in this region has a positive increasing trend due

to increased amount of data reuse without repeated generation

of cache misses.

Experiment 2 covers the area around matrix size N = 128.

The middle part of Figure 1 depicts the results. The second

matrix cannot be stored completely in the L1 cache for

these matrix sizes and therefore drawbacks appear due to

insufficient L1 cache. However, comparing it with the previous

experiment, we can conclude that despite the increased number

of generated L1 cache misses, the speed in the Experiment 2

is greater than the speed achieved in Experiment 1.

The results show that performance drawbacks due to L1

cache set associativity are seemingly small due to the unsat-

isfied condition for L2 cache set associativity, as presented in

Table I. We observe a slight speed discrepancy for different

L1 cache configurations using the same matrix size. Similar

to the Experiment 1, performance discrepancy is observed for

even and odd matrix sizes. The speed holds the positive trend

as in the Experiment 1, but with smaller intensity.

The Experiment 3 covers the area of N = 256. The second

matrix cannot be stored completely in the L1 cache as in

the Experiment 2. The speed in this region has even lighter

positive trend than experiments 1 and 2, as depicted in the

right part of Figure 1.

Similar to the previous case, performance drawbacks are not

observed in this region, due to the smaller impact of L1 cache

associativity in comparison to L2, where the set associativity

problem does not appear in this region. Additionally, we

observe that the performance for N = 256 is even greater

than the values near N in that region, for each L1 cache size

configuration. We explain this observation with the fact that

despite the L1 cache associativity problem, the whole matrix

row can be stored in the exact number of cache blocks and no

L2 cache misses are generated neither due to L2 capacity nor

L2 associativity problem. Therefore, the average access time

is smaller for a matrix element stored in a particular cache

block for N = 256. We observe a slightly higher speed while

L1 cache is configured with 48KB.

Similar performance discrepancy is observed for even and

odd matrix sizes, as in previous experiments.

The Experiment 4 covers the area around matrix size N =

512 and the results of the experiment are depicted in Figure 2

(left). Matrix B cannot be stored completely neither in L1 nor

L2 cache, and thus the drawback exists mainly due to their

size and associativity.

Although one might think the results are strange in this

region, there is an explanation. The speed for matrix size N =

512 is much greater than the other problem sizes in the region,

except for N = 504 and N = 520. We have also tested the

other close positioned points N ∈ {488, 496, 528, 536} and

achieved the same positive peaks. The conclusion is that the

execution for N = 512 has performance drawback compared

to these points. The observation consists of two parts: greater

speed and performance drawbacks. The former appears for

the same reason as explained for N = 256. The latter appears

SASKO RISTOV, MARJAN GUSEV, ET AL.: PERFORMANCE IMPACT OF RECONFIGURABLE L1 CACHE 509

compared due to cache associativity and condition of Table I,

compared to points N = 504 and N = 520 (and for the other

points that we measured additionally).

We also observe a slightly better speed while L1 cache is

configured with 48KB for N = 512.

Experiment 5 analyzes the area around N = 1024. Matrix

B cannot be stored completely in L2 cache and drawbacks

appear due to L2 cache size and associativity. The speed draw-

backs are clearly detected and they are depicted in Figure 2

(middle).

Significant performance drawback appears as stated in Ta-

ble I, but also smaller performance drawbacks appeared in

points N − 4 and N +4 (as well as for N +12 and N − 12).

The same positive peaks are observed in the points N + 8

and N − 8 as in the region around N = 512.

We also observe a slightly better speed while L1 cache is

configured with 48KB in the point N = 1024, similar to the

result for N = 512.

Experiment 6 analyzes the area around the matrix size N =

2048 where matrix B also cannot be stored completely in

the L2 cache. Performance drawback is clearly observed for

N = 2048 as depicted in Figure 2 (right).

Neither additional positive nor negative peaks are observed

in this area since the number of generated L2 cache misses

is huge. The impact of L2 cache capacity problem is greater

than the positive impact of cache memory to data locality in

this region, i.e., loading the elements of the whole cache line

while reading one element of that cache line.

V. CONCLUSION AND FUTURE WORK

The performance of GPU general purpose application can

be seriously degraded by the set associative L1/L2 caches. In

this paper, we present the performance drawbacks for specific

problem sizes of the DMM algorithm for different L1 cache

configurations and fixed L2 cache size. We have performed

series of experiments in the areas of critical problem sizes,

which prove the analysis.

It is shown that the side effects of the associative cache on

the CPU, as discussed in our earlier paper are also present in

the GPU environment. However, this paper shows also some

other interesting conclusions, due to a specific organization

of caches in GPU, which is quite different from CPU (very

small 1st level cache and no third level cache in comparison

to CPU).

A total of six experiments were evaluated in points where

theoretical results expect negative performance peaks with

analysis of speed diagrams. The results show that the con-

figuration of L1 cache size does not influence significantly on

performance drawbacks, which appear for N = 1024 and 2048

due to L2 cache set associativity. Because L2 cache set size

is enough to fit the cache storage requirements for problem

sizes N = 64, 128 and 256, performance drawbacks are not

observed, i.e., the algorithm performance depends mostly on

L2 cache size, rather than L1’s. The performance for N = 256

is even greater than the matrix size values near N in that region

for all L1 cache size configuration.

An interesting phenomenon appears in the region around

N = 512. The speed for N = 512 is greater than the other

problem sizes in the region, except for N = 504 and N = 520.

Although higher values are obtained than the neighboring

points, still there is a performance drawback compared to

analyzed points N = 504 and N = 520. More interestingly,

we have found smaller negative peaks in the region around

N = 1024 in points N + 4 and N − 4, as well as positive

peaks in the points N + 8 and N − 8.
Another phenomenon was observed in the regions around

N = 64, 128 and 256, i.e., the speed increases for even matrix

size N and decreases for odd matrix size N . This happens due

to the effect of loading the elements of the whole cache line

while reading one element of the same cache line.
Probably the most important result is to report the platform

impact of reconfigurable cache, i.e. what the user can choose

for configuration of the L1 cache to achieve maximum pro-

cessing speed and avoid associativity problems.
Future work will cover further research on these phe-

nomenons, as well as analysis of correlation of power con-

sumption with the L1/L2 capacity and associativity, since the

results show that L1 cache size does not impact the algorithm

performance, but different cache associativity configuration

due to different cache size configuration can reduce the power

consumption.
Also, we plan to measure the number of generated L1 and

L2 cache misses to determine the performance drawbacks and

performance discrepancies more precisely.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth

Edition: A Quantitative Approach. MA, USA: Elsevier, 2012.
[2] D. Tarjan, J. Meng, and K. Skadron, “Increasing memory miss tolerance

for simd cores,” in Proc. of the Conf. on High Performance Computing

Networking, Storage and Analysis, ser. SC ’09, 2009, pp. 22:1–22:11.
[3] M. Gusev and S. Ristov, “Performance gains and drawbacks using set

associative cache,” Journal of Next Generation Information Technology

(JNIT), vol. 3, no. 3, pp. 87–98, 31 Aug 2012.
[4] K. Matsumoto, N. Nakasato, and S. Sedukhin, “Implementing a code

generator for fast matrix multiplication in opencl on the gpu,” in Embed-

ded Multicore Socs (MCSoC), 2012 IEEE 6th International Symposium

on, sept. 2012, pp. 198–204.
[5] B. Batson and T. N. Vijaykumar, “Reactive-associative caches,” in Pro-

ceedings of the 2001 International Conference on Parallel Architectures

and Compilation Techniques, ser. PACT ’01, 2001, pp. 49–60.
[6] B. Calder, D. Grunwald, and J. Emer, “Predictive sequential associa-

tive cache,” in Proceedings of the 2nd IEEE Symposium on High-

Performance Computer Architecture, ser. HPCA ’96, 1996, pp. 244–253.
[7] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,

“Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms,” Parallel Comput., vol. 35, no. 3, pp. 178–194, 2009.

[8] H. Yoon, T. Zhang, and M. H. Lipasti, “Sip: Speculative insertion
policy for high performance caching,” Computer Sciences Department
University of Wisconsin-Madison, Tech. Rep. 1676, 2010.

[9] X. Ding, K. Wang, and X. Zhang, “Ulcc: a user-level facility for
optimizing shared cache performance on multicores,” in Proceedings

of the 16th ACM symposium on Principles and practice of parallel

programming, ser. PPoPP ’11. ACM, 2011, pp. 103–112.
[10] L. Djinevski, S. Arsenovski, S. Ristov, and M. Gusev, “Performance

drawbacks for matrix multiplication using set associative cache in
gpu devices,” in MIPRO, 2013 Proceedings of the 36th International

Convention, IEEE Conference Publications, Croatia, 2013, pp. 213–218.
[11] L. Djinevski, S. Ristov, and M. Gusev, “Superlinear speedup for matrix

multiplication in gpu devices,” in ICT Innovations 2012, ser. AISC.
Springer Berlin Heidelberg, 2013, vol. 207, pp. 285–294.

510 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

