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Abstract—Multimemetic algorithms (MMAs) are a subclass of
memetic algorithms in which memes are explicitly attached to
genotypes and evolve alongside them. We analyze the propagation
of memes in MMAs with spatial structure. For this purpose
we propose an idealized selecto-Lamarckian model that only
features selection and local improvement, and study under
which conditions good, high-potential memes can proliferate. We
compare population models with panmictic and toroidal grids
topology. We show that the increased takeover time induced by
the latter is essential to improve the chances for good memes to
express themselves in the population by improving their hosts,
hence enhancing their survival rates.

I. INTRODUCTION

FOUR decades ago, Richard Dawkins [3] put forward

the definition of meme in analogy to the biological

concept of gene. Memes were broadly characterized as units

of imitation, that is, ideas or pieces of knowledge that jump

from brain to brain, striving and proliferating in some cases

and becoming extinct in others. Even more interestingly,

memes are not static objects but dynamic entities that mutate

during their lifetime; these mutations can make them more

strong/interesting/useful/... thus boosting their propagation, or

can have the opposite effect, making that particular mutation

fade away. This plasticity explains their comparatively faster

rate of adaptation with respect to biological genes.

Inspired by this notion of meme, Moscato [13] conceived a

new optimization paradigm: memetic algorithms (MAs). MAs

are a family of population-based optimization techniques that

blend together ideas of different metaheuristics, most notably

the orchestrated interplay between global (population-based)

search and local (individual-based) search. The most popular

incarnation of MAs features an evolutionary search engine

endowed with local search add-ons. The notion of memetic

evolution is here captured by the Lamarckian lifetime learning

to which solutions are subject to, via the use of some local

search operators. Incidentally, it has been suggested [17] to

use the term agent rather than individual or solution in this

context, to emphasize the fact that they are active entities that

purposefully try to optimize the problem under consideration.

We refer to [7], [12], [14], [15], [16] for a broad discussion

on MAs.
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While memes are typically fixed in classical MAs (i.e.,

they are given by the particular choice of local search op-

erators), several models trying to make them change during

the optimization process have been proposed. This can be

accomplished at a variety of levels. A simple possibility is the

so-called ‘meta-lamarckian learning’ [18] in which the MA

has a collection of local search operators (memes) available a

priori, and some mechanism is used to decide which of them

is applied on which solution and when (notice the connection

with hyperheuristics [2]). A more complex approach features

self-adaptation of the memes themselves. An example of this

kind of self-adaptation is provided by multi-memetic algo-

rithms (MMAs), in which each solution carries “genes” that

indicate which local search has to be applied on it. These can

range from simple pointers to existing local search operators

to the parametrization of a general local search template [10]

or even to the definition of a grammar to specify new complex

local search operator [9], [11].

An interesting issue that arises in the context of MMAs is

how memes propagate and spread over the population. While

population dynamics has been well-studied in the case of

evolutionary algorithms – e.g., [1], [6], [19], [20], the scenario

is more complex in the case of memes: unlike genotypes

(which correspond to solutions and thus can be evaluated

according to the problem under consideration), memes can be

only indirectly assessed via the effect they have on genotypes.

Furthermore, memes evolve in MMAs alongside with solutions

by attaching to them. Since this attachment is part of the self-

adaptive process, it is up to the algorithm to discover good fits

between individual pairs of genotypes and memes, and this

is commonly done using only information about the genetic

quality of solutions (i.e., fitness information). This work is

aimed to study how memes propagate in such an environment

driven by genetic selection and spatial structure. To this end,

we consider and analyze an idealized model of MMAs. This

model is described in next section.

II. MODEL DESCRIPTION

Let us consider an abstract model of MMAs in which each

agent is characterized by a pair 〈g,m〉 ∈ D2, for some D ⊂ R.

The first member of the pair –g– represents the genotype,

which we equate to fitness for simplicity. As to the second

member –m– it represents a meme. More precisely, this value

captures the improvement potential of that meme, that is,
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a measure of how good solutions can get by applying the

meme. We assume there is a monotonically increasing function

f : D2 → D encapsulating the application of a meme to

a genotype, i.e., the effect of a single epoch of Lamarckian

learning. Thus, an agent 〈g,m〉 becomes 〈f(g,m),m〉 after

the application of the meme, where

lim
n→∞

fn(g,m) = m if g < m (1)

f(g,m) = g if g > m (2)

Here fn(g,m) is the n-th composition of the function on

the first argument, i.e., f(f(· · · f(f(g,m),m), · · · ,m),m). It

must be noted that while this is very idealized characterization

of the potential of a meme (since in general this potential is

not going to be absolute but may depend on a complex match

between the meme, the genotype and the problem landscape)

it serves as an initial approximation to study several issues

related to meme propagation in the agent pool.

The population P of the MMA is thus a collection of µ
such agents, P = [〈g1,m1〉, · · · , 〈gµ,mµ〉], endowed with a

spatial structure that constrains agent communication. Let this

spatial structure be characterized by a µ × µ Boolean matrix

S, where Sij is true if, and only if, the agent placed in the

i-th location can communicate with the agent placed in the j
location. Since we are interested in observing the dynamics

of propagation of memes, we consider a extension of the

selection-only model of evolutionary algorithms (i.e., using

only selection/replacement and no variation operator) in which

we add the local improvement stage of memetic algorithms.

A scheme of the model is shown below in Algorithm 1.

Algorithm 1: Selecto-Lamarckian Model

for i ∈ [1 · · ·µ] do

INITIALIZE〈gi,mi〉;
end

while ¬ CONVERGED (P ) do

i← URAND(1, µ) // Pick random location

〈g,m〉 ←SELECTION(P, S, i);
g′ ← f(g,m) // Local improvement

P ← REPLACE(P, S, i, 〈g′,m〉);
end

After initializing suitably the contents of the population, the

algorithm engages on a cycle of selection plus improvement

until the agents converge. Convergence is here approached

from a memetic perspective, that is, we terminate the algorithm

when the population comprises a homogeneous collection of

memes (regardless of whether there is still diversity at the

genetic level or not). As to the inner working of the algorithm,

it resembles the uniform choice update strategy of cellular

automata [21], in which the next location to be activated is

selected uniformly at random with replacement.

III. MEME PROPAGATION

Having defined the general model in the previous section,

let us consider some qualitative features of meme propagation

that can be extracted from it. Let us assume that selection is

done by binary tournament, i.e., once a location i selected, a

neighboring location j is selected from N (i) = {j | Sij}, and

the agent with the best fitness is retained. As to replacement,

let us assume that the improved agent replaces the agent that

lost the previous tournament.

We are interested in analyzing the number of copies of each

meme in the meme pool, so let us denote by N(m, g, t) the

number of instances of meme m attached to genotype g at time

t, assuming for simplicity that D is some discrete domain. If

we divide this quantity by the pool size µ we obtain p(m, g, t),
the fraction of the population comprising meme m attached to

genotype g at time t. In each passing iteration of the system

the number of copies can be estimated as

N(m, g, t+ 1) = N(m, g, t) + C(m, g, t)−D(m, g, t) (3)

where C(m, g, t) and D(m, g, t) represent the expected num-

ber of copies of meme m attached to genotype g that are

created or destroyed at time t. The creation of a new copy

can be accomplished by the combined effect of selection of a

suitable agent with meme m and the application of the meme

to the corresponding genotype. Let us express this as:

C(m, g, t) =
∑

g′

σ(m, g′, t)p(g′
m
−→ g) (4)

where σ(m, g′, t) is the probability of selecting an agent

carrying meme m and genotype g′ at time t and p(g′
m
−→ g)

is the probability that the application of meme m on genotype

g′ results in genotype g. The first quantity can be computed

as the probability that the binary tournament picks two agents

with meme m and genotype g or only one agent with this

structure but better fitness than its competitor:

σ(m, g, t) = p(m, g, t)2+

+ 2 {p(m, g, t) [1− p(m, g, t)]} ·

∑

m′

∑

g′<g p(m
′, g′, t)

1− p(m, g, t)
(5)

where the last factor is the probability that the fitness of

the competitor is worse than g provided it is not a 〈m, g〉
agent. This expression assumes that the global distribution of

memes/genotypes across the whole population is the same

as for local neighborhoods. Obviously, this holds for the

panmictic case in which any two agents are neighbors so

we can assume this case initially, and consider it a first

approximation to more general situations.

As to the destruction of a copy of a particular pair

meme/genotype, it can arise via the selection of such a pair

and the subsequent application of local improvement (which

will alter the genotype) or via replacement by an agent of

higher fitness. The first case also requires that the other agent

chosen in the tournament be a copy of the same pair, so that

it is later substituted by the improved agent. Thus,

D(m, g, t) =
∑

g′ 6=g

p(m, g, t)2p(g
m
−→ g′) + σ̃(m, g, t) . (6)
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The replacement probability σ̃(m, g, t) can be expressed as:

σ̃(m, g, t) = 2 {p(m, g, t) [1− p(m, g, t)]} ·

·

∑

m′

∑

g′>g p(m
′, g′, t)

1− p(m, g, t)
(7)

Let us know consider the evolution of the system in the early-

term and mid-term, before a particular meme starts to saturate

the population. In this situation memes are widely spread

across genotypes, so p(m, g, t)≪ 1, so we can take quadratic

terms p(m, g, t)2 as approximately 0 and terms 1− p(m, g, t)
as approximately 1. We thus have:

σ(m, g, t) = 2p(m, g, t)
∑

m′

∑

g′<g

p(m′, g′, t) (8)

σ̃(m, g, t) = 2p(m, g, t)
∑

m′

∑

g′>g

p(m′, g′, t) (9)

Substituting back into Eqs. (4) and (6) we get:

C(m, g, t) = 2
∑

g′,m′

p(m, g′, t)
∑

g′′<g′

p(m′, g′′, t)p(g′
m
−→ g)

(10)

D(m, g, t) = 2p(m, g, t)
∑

m′

∑

g′>g

p(m′, g′, t)

(11)

Since p(g′
m
−→ g) = 0 for g < g′ or m < g, Eq. (10) reduces

to

C(m, g, t) = 2
∑

g′′<g′6g

∑

m′

p(m, g′, t)p(m′, g′′, t)p(g′
m
−→ g)

(12)

If m 6 g then p(g′
m
−→ g) is 1 if g′ = g and 0 otherwise. Sub-

sequently, the difference ∆(m, g, t) = C(m, g, t)−D(m, g, t)
is in this case

∆(m, g, t) = 2p(m, g, t)
∑

m′

∑

g′′<g

p(m′, g′′, t)−

−2p(m, g, t)
∑

m′

∑

g′′>g

p(m′, g′′, t)

= 2p(m, g, t)·

·
∑

m′





∑

g′′<g

p(m′, g′′, t)−
∑

g′′>g

p(m′, g′′, t)





(13)

Focusing on the sign of the difference in the above expression,

we essentially obtain that inert memes (i.e., memes that can

no longer improve their hosts) can strive by hitchhiking, that

is, if they attach to agents above the median of the population.

Let us on the other hand consider the case m > g. In

this situation, p(g′
m
−→ g) is 1 if g′ = f−1(g,m) and 0

otherwise, where we denote by f−1(g,m) the genotype value

such that f(f−1(g,m),m) = g. Using g−m as a shorthand

for f−1(g,m),

∆(m, g, t) = 2p(m, g−m, t)
∑

m′

∑

g′′<g−m

p(m′, g′′, t)−

−2p(m, g, t)
∑

m′

∑

g′>g

p(m′, g′, t)

=
∑

m′



2p(m, g−m, t)
∑

g′′<g−m

p(m′, g′′, t)−

−2p(m, g, t)
∑

g′>g

p(m′, g′, t)



 .

(14)

The sign of this expression depends on the balance between

the goodness of genotypes in the basin of attraction of g and

the badness of g itself (in both cases goodness/badness relative

to the rest of the population). Notice that in general there is

a reinforcement between these quantities in the sense that the

better a genotype in the basin of attraction of g, the better

we can expect g to be. This does not just mean that active

memes proliferate more and more when they attach to good

solutions as one would expect, but also that memes with high

potential can find their way to the final stages of the evolution

provided they have enough time to improve their hosts (recall

that the goodness of solutions evolves with time as an effect

of the application of the meme). This suggests that models

with slower genetic convergence can have a beneficial effect

on the propagation of good memes, allowing the latter enough

time to express themselves in the population and overcome the

hitchiking effect of bad memes. Next section provides a more

quantitative analysis of this effect via numerical simulations.

IV. NUMERICAL SIMULATIONS

The numerical experimentation is aimed to explore em-

pirically the dynamics of meme propagation and how it is

affected by factors such as the population size, the relative

improvement potential of memes and the underlying spatial

structure of the population. Regarding population sizes, we

have considered values µ ∈ {100, 256, 400, 625}. These values

cover a broad range of population sizes and are also perfect

squares, which is important in connection with one of the spa-

tial structures considered, namely a square toroidal grid with

von Neumann neighborhood: two locations (i, j) and (i′, j′)
are connected if their Manhattan distance |i−i′|+ |j−j′| 6 r,

where r is the neighborhood radius. We have considered r = 1
which leads to the traditional North-South-East-West (plus

the current location) neighborhood. The other spatial structure

considered is the panmictic model in which all locations are

connected. In either case, we have considered the function

f(g,m) =

{

g if g > m

(g +m)/2 if g < m
(15)

to represent the action of memes. Intuitively, this function

provides smaller improvements for increasingly good geno-

types much like often happens in practice. All experiments
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Fig. 1. Meme maps for simulations with µ = 625. The upper row corresponds to panmictic connectivity and the lower row to von Neumann neighborhood.
Similarly, the left column corresponds to genotypes initialized in [0, 1] and the right one to initialization in [0, 0.5] (memes are initialized in [0,1] in both
cases). Lighter shades of gray indicate higher meme values. The evolution of the algorithm is depicted in each subfigure from left to right, each vertical slice
representing the distribution of memes at a certain time t. Notice the different scale in the X-axis.

are averaged over 100 runs in order to obtain representative

results. Each run is terminated upon convergence of memes,

which for simplicity is determined when all memes are equal

to 2 decimal positions.

Let us firstly analyze meme propagation as a function of the

relative improvement potential of memes at the beginning of

the run. For this purpose, we take D = [0, 1] and consider a

scenario in which genotypes and memes are randomly initial-

ized in this range, and another scenario in which genotypes

take initial values in [0, 0.5] whereas memes are randomly

sampled from [0, 1]. Figure 1 shows the distribution of memes

at each time step (the lighter the shade of gray, the higher the

meme value). Focusing firstly in the upper row (panmictic

topology), notice the clearly different behavior depending on

genotype initialization. When genes and memes are both ini-

tialized in [0, 1] the algorithm does seldom converge to a high-

potential meme. Actually, such memes temporarily proliferate

in the initial stages of the algorithm but are later driven to

extinction by memes hitchhiking on high quality genotypes to

which they sticked by chance. The situation is quite different

when genotypes are initially drawn from [0, 0.5]: in this

case the algorithm does gradually converge to the upper part

of the meme distribution, with low-potential memes quickly

disappearing from the population. A more detailed perspective

on this is provided by Figure 2 in which qualified runtime

distributions (QRTDs) [8] are provided. These indicate the

probability that a certain target (in this case, convergence to a

meme in a desired percentile) is reached as a function of the

number of iterations. Notice how the probabilities are below

10% for memes above the 95% percentile in the first scenario,

whereas this probability is 100% in the second scenario. In the

latter a spurious match between a very good genotype and a

bad meme cannot happen since these very good solutions do

not exist initially. Furthermore, high-potential memes initially

1016 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013



Fig. 2. Qualified runtime distributions for simulations with µ = 625. The upper row corresponds to panmictic connectivity and the lower row to von Neumann
neighborhood. Similarly, the left column corresponds to genotypes initialized in [0, 1] and the right one to initialization in [0, 0.5] (memes are initialized in
[0,1] in both cases). The curves indicate the probability that the population converges to a meme in the i-th initial percentile of the population as a function
of the number of iterations. Notice the different scale in the X-axis.

attaching to bad genotypes can highly improve the quality of

the latter in the initial steps, thus increasing their chances of

survival.

Let us know turn our attention to the effect of the spatial

structure. The bottom row of Figure 1 shows the distribution

of memes for the case of von Neumann neighborhood. Notice

how a similar pattern as in the panmictic case is observed with

respect to genotype initialization. A more detailed inspection

indicates several differences though. Firstly, notice how the

convergence is slower in this case (e.g., the scale in the X-

axis is larger). This is a well-known effect of the use of

spatial structure and is commonly exploited in the context

of evolutionary algorithms for promoting diversity and thus

decreasing the chances of getting stuck in local optima [4],

[23]. In the case of MMAs this has an additional advantage,

namely the fact that a slower convergence increases the

lifespan of individual memes, thus giving them more chances

to improve their hosts if they have the potential to do so.

Hence, the algorithm is more robust and can better cope with

hitchhiking inert memes. This can be seen in the meme map in

the bottom row of Figure 1 by a larger prevalence of lighter-

gray areas, and more clearly in the QRTDs (bottom row of

Figure 2), e.g., the 95% percentile is reached with nearly 20%

probability in the case of [0, 1]-initialization (cf. below 10%

in the panmictic case), and the 99% percentile is reached with

nearly 80% probability for [0, 0.5]-initialization (cf. about 65%

in the panmictic case). A signrank test [24] indicates that

the difference in the final percentile reached is statistically

significant in both cases (α = .05).

Finally, we consider the takeover time, namely the time

required for a meme (not necessarily the best one as shown

previously) to dominate complete the population. Figure 3

shows the growth curves, depicting the percentage of the meme

pool occupied by the most repeated meme (notice that the most

repeated meme need not be the same throughout a run; we

simply count the number of copies of the most repeated one
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Fig. 3. Growth curves for different population sizes. The upper row corresponds to panmictic connectivity and the lower row to von Neumann neighborhood.
Similarly, the left column corresponds to genotypes initialized in [0, 1] and the right one to initialization in [0, 0.5] (memes are initialized in [0,1] in both
cases). Notice the different scale in the X-axis.

TABLE I
FITTING GROWTH CURVES TO A LOGISTIC FUNCTION. FOR EACH ALGORITHM CONFIGURATION THE SCALE PARAMETER α AND THE MEAN SQUARED

ERROR IS SHOWN.

population size
µ = 100 µ = 256 µ = 400 µ = 625

topology G α mse α mse α mse α mse
panmictic 0.5 81.628878 0.000042 210.791430 0.000069 324.649846 0.000064 521.933265 0.000017

1.0 77.708284 0.000008 187.904342 0.000030 297.902782 0.000027 462.866673 0.000010
von Neumann 0.5 186.815036 0.000366 578.914610 0.000554 1046.429102 0.000361 1974.995403 0.000318

1.0 168.567695 0.000322 585.804249 0.000532 1057.519394 0.000537 1945.625376 0.000705

at each time step). These curves exhibit the typical shape of the

well-known logistic model f(t) = 1/(1 + Ke−t/α). Indeed,

such a model was proposed early in the literature by Sarma and

De Jong [20] in the context of spatially structured evolutionary

algorithms. While by no means the unique alternative – e.g.,

see [5]– it serves as a good starting approximation to quantify

the growth of the dominant meme. Qualitatively, we observe

as expected the well-known pattern of slower convergence for

increasing population sizes and for the von Neumann topology

[6] as opposed to the panmictic population. From a quantitative

point of view, we have fitted the growth data to a logistic

curve to identify the scale factor α that renders the number of

iterations dimensionless. The resulting data is shown in Table

I. As it can be seen, the fit is quite good, yielding very low

mean squared errors. The scale parameters are quite similar

for variants with the same topology, and are about 2-5 times

larger for the von Neumann topology than for the panmictic

case, in correspondence with the relative takeover time which
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can be seen in Figure 3. With respect to the population size,

the increase in the scale parameter admits a linear interpolation

α = a+ bµ yielding values of b = 0.84 and b = 0.74 for the

panmictic case and b = 3.43 and b = 3.40 for grid topology

with von Neumann connectivity.

V. CONCLUSIONS

We have presented some initial steps in the line of analyzing

meme propagation in MMAs. Using an idealized model of

genotypes and memes we have shown that the selection

intensity plays a very important role in allowing high-potential

memes to proliferate. In a panmictic model, good memes

will dominate the final population when the starting solutions

have a substantial improvement margin on average. When

this margin is smaller, average memes can hitchhike their

way to the final stages of the evolution and make other

comparatively better memes become extinct. In the presence

of a spatial structure inducing longer takeover times (in our

case a toroidal square grid with von Neumann topology),

this hitchhiking effect is somewhat mitigated, allowing good

memes to express themselves and increasing their chances for

making it to the final population. An interesting line of future

research focuses on the consideration of other topologies and

study their effect on meme propagation. Work is in progress in

this area. Looking beyond, another topic for further research

is the extension of this analysis to coevolutionary memetic

algorithms [22] in which memes are detached from genotypes

and co-evolve alongside the latter in a separate population.
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