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Abstract—In the article we present a comparison of the classi-
fication algorithms focused on labeling Fire&Rescue incidents
with threats appearing at the emergency scene. Each of the
incidents is reported in a database and characterized by a set
of quantitative attributes and by natural language descriptions
of the cause, the scene and the course of actions undergone by
firefighters. The training set for our experiments was manually
labeled by the Fire Service commanders after deeper analysis of
the emergency description. We also introduce a modified version
of Explicit Semantic Analysis method and demonstrate how it
can be employed for automatic labeling of the incident reports.
The task we are trying to accomplish belongs to the multi-label
classification problems. Its practical purpose is to support the
commanders at a emergency scene and improve the analytics on
the data collected by Polish State Fire Service.

Keywords-Domain Knowledge, Multi-label Classification, Ex-
plicit Semantic Analysis, Fire Services

I. INTRODUCTION

T
HE MAIN goal of Fire Services activity at the fire

ground is elimination or neutralisation of arisen threats.

Therefore, the core of the Fire&Rescue (F&R) action is to

adequately recognize possible dangers for the involved people

and properties. A specific emergency generates specific threats.

It implies that if we posses a description of the emergency we

could predict dangers, or more precisely threats, related to the

actual emergency.

The recognition of the threats at the fire ground is only a

part of activities that should be performed at the beginning of a

F&R action. No less important is the recognition of threatened

individuals or objects. Together, those two tasks play a pivotal

role in planning of the further actions at the emergency scene.

The task of recognition and categorization of threats is

formalized in the tactic of German Fire Service [1]. After

arriving at a fire ground or an emergency scene German

commanders have to evaluate and recognise the appearing

threats. In order to do this systematically and not to miss

any of the threats, they have to fulfill the Threats Matrix (in

German – Gefahrenmatrix) [1]. The Threats Matrix helps to

identify the threats emerging at the scene and the threatened

objects. The columns of the matrix represent threats, and the

rows represent objects which can be threatened. The Table I

depicts the Threats Matrix.

TABLE I
THE THREATS MATRIX USED BY GERMAN COMMANDERS. LEGEND: A1 –
FEAR, A2 – TOXIC SMOKE, A3 – RADIATION, A4 – FIRE SPREADING, C –

CHEMICAL SUBSTANCES, E1 – COLLAPSE, E2 – ELECTRICITY, E3 –
DISEASE OR INJURY, E4 – EXPLOSION

Threat/object A1 A2 A3 A4 C E1 E2 E3 E4
People (ME)
Animals (T)

Environment (U) – – – –
Property (S) – – –

Rescuers (MA)
Equipment (G) – – –

In German language, column names are chosen so that they

can be easily remembered. In order to help to memorize all

threats by commanders, German threats’ names were taken

to form the following pattern: AAAA-C-EEEE Angstreaktion,

Atemgifte, Atomare Strahlung, Ausbreitung, Chemische Stoffe,

Einsturz, Elektrizität, Erkrankung, Explosion. The sign ’–’ in

the table indicates, that this threat in general does not apply

to this object. At the background of filled Threats Matrix,

German commanders define the Threat Focus and organize

their actions accordingly.

If we could create a computer system which can recognize

threats at the fire ground, we would effectively support the

commanders in doing their duty. Moreover, our previous

research [2], [3], [4] show that analytics performed in abstract

spaces, such as Threats Matrix allows to reduce significantly

the number of dimensions without loosing the information

about complexity of the real phenomena. Unfortunately, the

Polish Fire Services do not use the method of filling the

Threats Matrix at the incident scene. Therefore Polish Incident

Data Reporting System called EWID lacks of this information.

In the previous work [4] we labeled incidents with threats

manually. The reports from EWID database were analysed

and labeled by extramural students of The Main School

of Fire Service with commanding experience. We selected

only commanders having at least seven years experience in

commanding. They were involved as experts – practitioners

in labeling real action reports from the EWID system.

We created a special system to support manual labeling the

reports. The labeling process consists of two main phases:
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tutorial phase and labeling phase. The tutorial phase was

focused on introducing the Threats Matrix and the layout of

EWID incident reports to the experts. It was divided into three

consecutive parts. In the first part, experts were introduced to

the format and purpose of the Threats Matrix. In the second

part, some examples of filled Threats Matrices were presented

and discussed with the experts. In the third part, experts

received an exemplary EWID report together with a Threats

Matrix describing this report. The labeling phase consisted

of many evaluation stages. At every stage the experts were

provided with a single EWID report. On the ground of the

information about the incident described in the report, they

were asked to evaluate threats which appeared during the

reported incident and to complete its Threats Matrix. Every

expert was asked to label at least 100 EWID reports. Every

report description was labeled by only one expert. In total, we

collected 406 labeled incident descriptions.

The presented method has very serious shortcomings – it is

not scalable. If we need more labeled reports we need more

commanders. Up to now approximately 7 million reports have

been collected In the EWID database. Moreover, every day

1 500 new reports are submitted into the system. It is obvious

that such a number of incidents is not manually manageable

by people.

This article is devoted to prediction methods from Ma-

chine Learning which can be used to label the incidents

automatically. We use the 406 labeled incidents as a data

set to train and evaluate our classification algorithms. We

analyse different data representation and different multi-label

classification methods in order to find the best one.

The remaining of the paper is structured as follows. In

Section II we describe our data set which was used as an

input in our experiments. In Section III we present our method

of the analysis focused on determining the best classification

algorithm and data representation. Section IV contains the

results of the conducted experiments. The article is concluded

with the interpretation and a summary of the research results,

as well as a discussion on perspectives for the future research.

II. DESCRIPTION OF THE DATA

Our data set consists of 291 683 F&R reports. They contain

information about the incidents responded by Fire Service,

from the years 1992 to 2011. The data concerns the incidents

which happened in Warsaw City and its surroundings. In this

data set 136 856 reports represent fires, 123 139 local threats

and 31 688 where false alarms.

Each of the reports consists of an attribute section and a

natural language description part. The attribute section con-

tains 506 attributes describing all types of incidents. However,

depending on category of the incident, the number of attributes

that take values different than zero varies from 120 to 180 for

a report. Most of the attributes are boolean (True/False) type

but there are also numerical values (i.e. fire area, amount of

water used).

The natural language description (NL) part is an extension

to the attribute part. It was designed to store information,

which can not be represented in a form of a set of attributes.

Unfortunately there is no clear regulation what should be

written in the NL part. Therefore, in this part a full spec-

trum of information, from detailed information including time

coordinates, to the very general and brief descriptions can

be found. The simple statistics reveal that NL part contains

approximately three sentences that describe the situation at

the fire ground, actions undertaken and weather conditions.

Figure II depicts the idea of a report representation in EWID

database.
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After arriving at the fire scene the 
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line from the nearby lake was created. 
After putting out the fire, appliance crew 
came back to fire station

Fig. 1. Representation of a report in EWID database.

In factual aspects, the data stored in the EWID contain

information about persons, objects involved in the incident

and methods used to eliminate the arisen threats.

In our experiments we used a subset of this data set. For

the process of labeling (assigning threats) the incidents by

domain experts, we selected only the reports representing fires

of residential buildings. This subset of the data consisted of

31 556 reports. From this set 406 reports were labeled by the

experts. We used these reports in our experiments described

in Section III.

III. METHOD

The labeling methodology was briefly presented in Section

I and is broadly discussed in [4]. In this section we present

several approaches to automated labeling of the reports.

In this research we pay a special attention to two aspects

of the task: finding an appropriate classification algorithm and

selecting a good input data representation. The first approach

can be divided into two groups: classifiers which operate on

incident features and classifiers which operate on features of

the threats. The set of possible representations for the second

task consists of: structured part only (SP), NL part only (NLP),

structured part plus bag-of-words of descriptions of object (SP-

OD), structured part bag-of-words and NL part transformed

to the LSA space (SP-OD-LSA). In the next subsections we

describe the utilized methods in detail. All the performance

evaluation experiments were conducted on a training set of

285 incidents and a test set consisting of 122 incidents.

78 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013



A. Classification on Structured Part Only

As was mentioned in section II the structured of part EWID

database is represented by 506 attributes. However, for our

subset of 406 incidents many of them have zero values for

each of the incidents. Therefore, we removed those attributes

from our subset. We also removed semantically irrelevant

attributes, such as ID of a fire station. As a result we obtained

an information system with 208 attributes, from which 24

were numeric and 184 were of a boolean type. The prediction

targets were sets of combinations of threats and threatened

objects (the risks). The set of the possible risks was created

as a Cartesian product of threats and objects from the Threats

Matrix. Such a representation constituted an input for our

classifiers.

Our first experiment was focused on determining the best

classifier for a given representation. In this experiment we

used the whole set (406 cases) and 5 folds cross-validation

technique to evaluate the efficiency of different classifiers. We

tested: Naive-Bayes (NB), Classification Tree, Support Vectors

Machine (SVM), Clark Niblett induction algorithm (CN2)

and Random Forrest. We used Matthew correlation coefficient

(MCC)1 to evaluate the efficiency of the selected classifiers.

Table II depicts the comparison of the results.

TABLE II
COMPARISON OF THE CLASSIFIERS. AUC – AREA UNDER CURVE, MCC –

MATTHEW CORRELATION COEFFICIENT, SVM – SUPPORT VECTORS

MACHINE, CN2 – CLARK NIBLETT INDUCTION ALGORITHM.

Method AUC F1-score MCC
Naive Bayes 0.76 0.61 0.33

Classification Tree 0.71 0.53 0.26
SVM 0.75 0.46 0.27

CN2 rules 0.76 0.50 0.31
Random Forest 0.71 0.45 0.20

According to the criteria (MCC measure) presented in

Table II the Naive-Bayes classifier obtained the best results and

was selected as a representative for the rest of the experiments.

Next, we used training and test methodology to compare the

current methods with other approaches. The classifier was

trained and tested separately for each of the decisions classes.

Then we calculated some performance measures i.e. precision,

recall, F1-score in two way: for each of the incidents and for

each of the decision classes.

B. Classification on Structured and Object Description Parts

We repeated the experiment described in Section III-A

extending the incident representation by the object description

attribute. The attribute is an extension to the object type

attribute and contains information such as: storey or room

of the building where fire occurred, trash localization (inside,

outside in the case of a trash fire), etc. This attribute stores the

information in natural language form. In order to use this part

as a feature vector we transformed it into the bag-of-words

representation. We created Term-Document-Matrix (TDM) to

1http://en.wikipedia.org/wiki/Matthews_correlation_coefficient

transform the NL attribute into a feature vector. However, in

order to reduce the number of dimensions, we firstly lemma-

tized the descriptions using the Morfologik software [5]. As

a result of lemmatization we obtained 1 029 unigrams in bag-

of-words representation. Then we repeated the experiments

described in Section III-A and calculated the performance

measures.

C. Classification on Structured Object Description and NL

Part

In this experiment we extended the incidents representation

by the entire NL part. The difference between this approach

and the one presented in Section III-B is that, we are not

limited to the object description attribute only. We used the

whole description of the incidents stored in the NL part.

As in the case of object description we lemmatized the

textual data and created Term Document Matrix. The TDM

revealed that the number of unique words equals 1 277. It

our opinion the direct representation of NL part throughout

term vector is to exhaustive due to the fact that TDM is a

sparse matrix. In order to reduce the number of dimensions

and increase the separation of the incidents we use the Latent

Semantic Analysis method [6]. After conversion of the TDM

into LSA space we obtain 85 dimensions. We calculate the

number of dimensions finding the first position in the descend-

ing sequence of singular values where their sum, divided by

the sum of all values, meets or exceeds the 0.5 share value.

Next in order to obtain categorical arguments we discretized

the attributes of incidents represented in the LSA space. After

discretization, each of the LSA attributes had tree values: -

1, 0 or 1. Then, we repeated the experiments described in

Section III-A.

D. Classification Based on Features of the Threats

In this experiment we change our approach to the labeling

task. Instead of training a classifier to recognize which attribute

values should the incident have in order to be labeled with a

given threat, we try to learn the features of the possible risks.

In other words, we learn which features of the incidents most

adequately represent the given risk.

The risks are defined as a Cartesian product of threats and

objects from the Threats Matrix and are represented by a

concatenation of a threat and an abbreviation of an object name

(i.e. E1_ME). We decided to utilize the Explicit Semantic

Analysis method [7] to devise the new representation of the

risks in order to facilitate the labeling.

Explicit Semantic Analysis (ESA) proposed in [7] is a

method for automatic tagging of textual data with predefined

concepts. It utilizes natural language definitions of concepts

from an external knowledge base, such as an encyclopedia or

an ontology, which are matched against documents to find the

best associations. The definitions of concepts are regarded as

a regular collection of texts, with each description treated as

a separate document. The model structure imposed by ESA

can be interpreted as a one layer neural network [8] with

L input nodes corresponding to terms and K output nodes
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corresponding to concepts. The associations between terms

and concepts have numerical weights. Figure 2 depicts the

idea of ESA in a form of a neural network.

term

term

term

term

term

term

1

2

3

4

5

L

concept

concept

concept

1

2

K

weights

Fig. 2. Representation of the ESA as a neural network.

The implementations of ESA described in [7], [9] use

external resources (e.g., an ontology, Wikipedia) which contain

the definitions of concepts. In our case there are no external

sources of knowledge which can serve as definitions of the

risks, therefore we modified the primary idea of ESA and we

created self-defined ESA. We aggregated the NL parts of inci-

dent descriptions from the training set by the assigned risks.

In particular, all descriptions of incidents which were labeled

with the same risk were concatenated into one document. We

repeated this operation for consecutive threats obtaining as

many documents as there were threats. Next, we created a

Term-Document-Matrix where columns represent the risks and

rows represent the terms. The intersection of a column and

a row represents an association between a term and a risk.

Then, for each incident description in the test set we iterate

through the terms, obtain and sum the values of associations

to the consecutive risks. The risks for which the sum of the

associations is higher than zero constitute a bag-of-risks for a

given incident.

For the sake of clarity, we formalize this approach. Let

T be a set consisting of M incidents from the training

set, T = {I1, . . . , Ii, . . . , IM} and T ′ is a set consisting

of J incidents from test set T ′ = {I ′
1
, . . . , I ′i, . . . , I

′
J}. Let

R = {r1, . . . , rk, . . . , rK} be a set of risks at a fire ground

defined as R ⊆ H×O, where H is a set of the threats

from the Threats Matrix and O is a set of the objects from

the Threat Matrix (see Table I). Moreover, let us assume

that there were identified L unigrams (e.g. words, stems)

W = 〈w1, . . . , wi, . . . , wL〉 from the descriptions of incidents

in the training set (NL part of the EWID database). Any

incident Ii in the set T can be represented by a vector of

features Ii = 〈Ei, Ui〉, where Ei = 〈e1, . . . , ej , . . . , eL〉 ∈ R
L

is a bag-of-words representation of the incident Ii and Ui =
〈u1, . . . , uk, . . . , uK〉 ∈ {0, 1}K represents risks assigned by

the experts to the Ii. Each coordinate ei expresses a value of

some relatedness measure for i-th term in vocabulary (wi),

relative to the given Ei. The coordinate uk = 1 if the risk rk
was assigned to the incident Ii by the experts. Respectively,

any incident I ′i from the test set is represented by a vector of

features I ′i = 〈E′
i, U

′
i〉. However each coordinate of U ′

i equals

0 because the incidents from the test set were not labeled by

the experts.

We can now define the description of a risk rk. The

description Drk for risk the rk is a sum of all bag-of-words

representations of incidents in T where uk = 1

Drk =
∑

i:uk=1

Ei (1)

Next, all the Drk from set D (set of all designations)

were converted to the Term-Document-Matrix (TDM), where

columns are labeled by descriptions, rows by terms from

vocabulary W and the coordinates di represent relatedness

measure for i-th term in vocabulary (wi), relative to the given

Drk . The measure used by us to calculate di is the tf-idf

(term frequency-inverse document frequency) index (see [10])

defined as:

di = tfi,k × idfi =
nk,i∑L

j=1
nk,j

× log
|D|

|{Drk : wi ∈ Drk}|
,

(2)

where nk,i is the number of occurrences of the term wi in

the description Drk , |D| is the cardinality of D which equals

K, and |{Drk : wi ∈ Drk}| is the number of the descriptions

where the term wi appears.

Next, the TDM representation of the risks descriptions can

be used as an inverted index that maps terms into lists of risks.

Each row of TDM expresses an association of the given term

from W to K risk descriptions. The inverted index is utilized

as a semantic interpreter to assign the risk into incidents from

the set T ′. Given an incident description E′
i, it iterates over

terms from the description, retrieves the corresponding entries

and merges them into a weighted vector of risks that represent

the given incident.

Let E′
i = 〈e′

1
, . . . , e′j , . . . , e

′
L〉 be a bag-of-words representa-

tion of the description of incident I ′i from the set T ′. Let invi,k
be an inverted index entry for e′i. It quantifies the strength of

association of the term wi to a risk rk. For convenience, all

the weights invi,k can be arranged in a sparse matrix structure

with L rows and K columns, denoted by INV , such that

INV [i, k] = invi,k for any pair (i, k).
Next we can create a new representation U INV

i of incident

I ′i from the test set as a sum of values from the TDM of terms

which appear in E′
i:

Uk =
∑

i:e′
i
6=0

e′i × invi,k = Wi ∗ INV [·, k]. (3)

In the above equation ∗ is the standard dot product and

INV [·, k] indicates k-th column of the sparse matrix INV .

This new representation will be called a bag-of-risks of an

incident Ii.

The new representation of incident I ′i can be now definded

as I ′′i = 〈E′
i, U

′′
i 〉 where U ′′

i is created as follows U ′′
i =

〈u′′
1
, . . . , u′′

k , . . . , u
′′
K〉 ∈ {0, 1} uINV

k > 0 ⇒ u′′
k = 1.

80 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013



For practical reasons it may also be useful to represent the

incidents only by the most relevant risks. In such a case, the

association weights can be used to rank the risks and to select

only the top risks from the ranked list. Therefore, we changed

the rule uINV
k > 0 ⇒ u′′

k = 1 into uINV
k > var ⇒ u′′

k = 1
where var is some threshold.

IV. RESULTS OF THE EXPERIMENTS

In Table III we summarized the results obtained in the ex-

periments. We calculated the performance measures separately

for each of the consecutive incidents from the test set, and

then we calculated the average for each of the methods. The

number of assigned risks for the ESA was set to five with the

highest score.

TABLE III
THE PERFORMANCE COMPARISON FOR THE CLASSIFICATIONS METHODS.

Method Precision Recall F1-score
SP 0.68 0.64 0.61
SP-OD 0.45 0.50 0.43
SP-OD-LSA 0.43 0.51 0.43
ESA NLP 0.48 0.70 0.54

The second summarization (see Table IV) compares the

performance of different classification methods, according to

the risks from Threats Matrix. In this table we also presented

the number of the incidents in the training (#T ) and test

(#T ′) sets, which were labeled by a given threat.

Figure 3 outlines the comparison of versatility of the meth-

ods. We compare the classification methods according to the

number of different risks which were at least once properly

assigned to an incident.

The practical usefulness and the importance of the results

presented in the Tables and Figure 3 is more broadly discussed

in Section V.

V. DISCUSSION OF THE RESULTS

The obtained results revealed that for the maximization

of F1-score for a given document we should choose the

method which is based on the attribute section only and the

classification algorithm (SP). This method achieved very good

performance – F1-score reach the value 0.61 (see Table III).

However the value of recall is lower than value obtained by

ESA NLP approach. That means the best scoring method does

not detect the full spectrum of risks.

The intuition is confirmed by the results from Table IV. We

observed that if we calculate the F1-score according to the

risks, the SP method is classified as the second best. Table IV

also reveals the reason for this situation. The SP approach

achieves a very good performance for the risks which are

assigned very often to the incidents. As an example may serve

the risks: A1_ME (86% of incidents labeled in the training set

and 88% in the test set), A2_MA (85% and 89%, respectively),

A2_ME (88% and 84% of incidents). For these risks the

SP method achieves scores 0.86, 0.81 and 0.83, respectively.

However, for the risks which were rarely assigned to the

incidents the SP methods fails to achieve good performance.

TABLE IV
THE PERFORMANCE COMPARISON (F1-SCORE) OF THE CLASSIFICATIONS

METHODS RELATIVE TO THE RISKS. #T – NUMBER OF INCIDENTS IN

TRAINING SET LABELED BY THE GIVEN RISK, #T ′ – NUMBER OF

INCIDENTS IN TEST SET LABELED BY THE GIVEN RISK. THE RISKS ARE

DEFINED AS A CARTESIAN PRODUCT OF THREATS AND OBJECTS FROM

THE THREATS MATRIX AND ARE REPRESENTED BY A CONCATENATION OF

AN ABBREVIATION OF A THREAT AND AN OBJECT NAME (I.E. E1_ME:
CALLAPSE_PEOPLE).

Risk #T #T ′ SP SP-OD SP-
OD-
LSA

ESA
NL

A1_MA 99 46 0.38 0.49 0.54 0.45
A1_ME 245 107 0.86 0.71 0.69 0.82
A1_T 27 5 – 0.10 0.06 0.07
A2_MA 242 108 0.81 0.64 0.65 0.84
A2_ME 251 103 0.83 0.64 0.70 0.84
A2_S 8 6 0.29 – 0.11 0.22
A2_T 36 8 0.05 0.14 0.06 0.14
A2_U 57 28 0.39 0.37 0.37 0.30
A4_G 3 4 – – – 0.08
A4_MA 15 7 0.30 0.32 0.14 0.22
A4_ME 18 9 0.27 0.27 0.15 0.17
A4_S 20 13 – 0.38 0.05 –
A4_T 1 1 – – – 0.13
E1_MA 6 3 – – 0.50 0.11
E1_ME 3 1 – – – –
E2_MA 29 13 0.11 – 0.11 0.31
E2_ME 14 6 – – 0.13 0.24
E2_S 9 1 – – – 0.15
E3_G 3 1 – – – 0.12
E3_MA 9 13 – – 0.10 0.50
E3_ME 2 7 – – – 0.12
E4_MA 3 4 – – – –
E4_ME 2 1 – – – –
E4_S 5 2 – – – –

Average
F1-
score

0.179 0.169 0.181 0.243

Figure 3 compares the versatility of the methods. It depicts

the spectrum of risks used by different methods. It illustrates

that for the method SP and SP-OD only 10 out of 24

risks could be successfully assigned. The extension of the

information by the NL part of the EWID database increases

the spectrum of the utilized risks. The SP-OD-LSA method

successfully assigned 15 out of 24 risks. However, the most

versatile method is ESA NL which is able to properly assign

19 out of 24 risks. We may conclude that the attribute section

lacks information related to very rare risks. Only the extension

by the NL part allows labeling the incidents with these risks.

The conducted experiments proved that there is a potential

in ESA method even for short texts and even in a situation

when there are no descriptions available for the concepts in

a form of external knowledge base (compare the experiments

with long text and an external ontology [7], [9], [11]). How-

ever, it should be stated that the descriptions stored in the NL

part of EWID database are very specific. In the future work

the method should be tested against some more general texts

like blogs or news.

The future work should also concentrate on methods for

improving ESA. Results of our preliminary experiments sug-

gest that a properly adjusted weights in the inverted index

ADAM KRASUSKI, ANDRZEJ JANUSZ: SEMANTIC TAGGING OF HETEROGENEOUS DATA 81



SP SP−OD SP−OD−LSA ESA NL

0
5

1
0

1
5

Fig. 3. The comparison of versatility of the methods. Y-axis represents the
number of different risks which were at least once properly assigned to an
incident.

used by ESA can increase the average F1-score by more than

100%. Therefore, in our research we will focus on finding an

appropriate algorithm for updating ESA on for this set.

The experiments also reveal that different risks have dif-

ferent best scoring methods. Therefore, we also consider

utilization an ensemble approach in order to assemble a multi-

classifier algorithm [12].
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