
Abstract—An original approach to digital moving trend based
filters (MTF) design, based on Bode plots analysis is proposed,
aimed at seasonal time series  decomposition and prediction.  A
number  of  polynomials  of  different  range  are  discussed  to  be
used in the MTF as the LS approximation formula.  The Bode
plots of the MTF are shown, and the best filter is selected. Results
of a seasonal time series decomposition and prediction with the
best  MTF  is  presented  and  compared  to  the  classical  MTF
calculations (involving the linear LS approximation).

I. INTRODUCTION

he  nonstationary  time  series  filtering  with  moving

trends is the well known approach to a nonparametric

long term trend extraction from the series, aimed at further

processing of stationary residuals and the series prediction

[1], [2]. The classical moving trend filter (MTF) is based on

rolling  approximation  of  the  series  with  the  least-square

(LS)  linear  approximation  in  a  moving  window  [1].  The

window width  affects  the extracted  trend  smoothness  and

cyclic components separation effectiveness.  However typi-

cally, it is adjusted by a trial method, to reach the appropri-

ately  smooth  nonparametric  trend.  This  paper  shows  that

much better smoothing properties and cyclic component ex-

traction  may be reached by using in  MTF a higher  order

polynomial approximations and by specification of the re-

quired  filter  properties  in  frequency  domain.  Hence,  the

MTF design is proposed by analysis of Bode plots [4] of a

number of the filter variants. The MTFs designed in this way

were  successfully  applied  to  analysis  of  hydrogeological

data [5] and to financial time series prediction [6]. Smooth-

ing and prediction of a step change and a cyclic signal with

the studied MTF was shown to illustrate their properties.

T

II. MOVING TREND BASED FILTERS – FORMAL BASIS AND

PROPERTIES

Nonstationary time series  y(t) may be viewed as the sum

of an aperiodic trend function  f(t), a cyclic component  C(t)

of time period T, and a higher frequency zero-average noise

z(t) [3], [7]: 

y t = f t C t z t  (1)

The periodic component can be written in the form of the

harmonic series [4]: 

C t =∑
k=1

K

Ak sin T ik t− k  ,T=
2
T

(2)

where ik , k=1,..., K denote the set of harmonics indices of

the consecutive components  k=1,...K (e.g.  ik=1, 2, 10),  Ak –

the amplitude of  ik-th harmonic,  τk is the delay of the  k-th

component.

The nonparametric trend  f(t) may be calculated for each

time step  tn by a low-pass digital filter designed in such a

way  to  remove  the  ωT and  higher  frequency  components

from the original series y(t). The cyclic component C(t) can

be extracted from the filtering residuals by the Least Square

(LS) approximation with the regression model of the form

(2), and then, the regression residuals z(t) may be viewed as

a high-frequency stochastic process and treated with ARMA

approach  [2]  (if  its  homoscedasticity  can  be  assumed)  or

with GARCH models in case of its heteroscedasticity [3]. 

One of the techniques recommended to calculate the non-

parametric trend f(tn) is a rolling approximation of the series

y(tn) with the LS linear approximation in a window contain-

ing  M  samples,  and  then  averaging  of  the  approximates

yF(i,tn) obtained for each  tn [1]. It is referred to as moving

trend based smoothing/filtering, which may be further used

to h-samples ahead prediction of the series main component

f(tn+h) by its extrapolation with a  h-samples increment  ∆hf

averaged with harmonic weights [1]:

f t nh= f t n h f ,

h f =∑
i=1

n−h

C

C i f tih− f t i

C0=0,C i=C i−1
1

n−hn−h−i1

(3)

Hereby we propose a generalization of the moving trend

smoothing algorithm, by employing  higher  order  approxi-

mating polynomials, with appropriately designed properties.

Let us consider the polynomial of the form (4) in the time

interval  of  M  samples,  with the time counted  from –M+1

to 0:
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yF ti=
def.

b0b1 tib2t i

2b3t i

3b4 ti

4
,

t i={−M 1,... ,−1,0}
(4)

The derivatives of  yF() at the interval  end (ti = 0) can be

easily shaped by fixing selected coefficients  bk at zero val-

ues, which implies different profiles of the LS approximates

yF, as shown in figure 1.

Fig 1. Properties of the approximating polynomials (4) considered to be
used in the moving trend based filters; filter codes z0, z1, ..., s3, s4 used

in sequel and corresponding nonzero coefficients are listed; vertical
dotted line shows the interval end; shadow line: 

y(tn)=sin(0.5ωTtn)- sin(ωTtn)+ sin(2ωTtn)- sin(3ωTtn), T=M=52

In the moving trend algorithms the series splits into three

sections. The first (starting s) section begins at the first (old-

est) sample and finishes with the (M-1)-th one, the filtering

window width enlarges from M to 2M-2, and the number Ln

of the approximates  yF(i,tn)  to be averaged  increases  from

1 to the M-1. The second (central c) section ranges from the

M-th to n–M+1 samples, the filtering window width is 2M-1

(constant), and the number of approximates is M. The third

(final  f)  section  contains  the  samples  from  n–M+2  to  n

(the newest one), the window width reduces from 2M-2 to

M, and the number of approximates  yF(i,tn) to be averaged

decreases from M-1 to 1.

The calculations in the sections {s, c, f} may be expressed

in the FIR filtering form [3], [5]:

for i = 1,...,M-1:

f t i= ∑
k =1

iM −1

gsi , k ⋅y t iM −k 

=∑
k=1

n

G sk , i ⋅y t n−k1 ,

G sk , i=
def.

[ g si , k ,0n−i−M 1]
T

,

(5)

for i = M,...,n-M+1:

f ti= ∑
k =1

2M−1

gc k ⋅y t iM −k 

=∑
k=1

n

G ck ,i ⋅y t n−k 1 ,

Gc k ,i =
def.

[0 i−M 1 , g c , 0n−i−M ]
T

,

(6)

and  for  the  final  section,  i=n – M 2,... , n ;

j =
def.

i – nM – 1=1,... , M – 1 :

f t i= ∑
k =1

2M− j−1

g f  j , k ⋅y tiM − j−k 

=∑
k=1

n

G f k , i ⋅y t n−k1 ,

G f k , i=
def.

[0i−M  , g f  j , k ]T

(7)

where gs, gc, gf denote the impulse response vectors of fil-

ters in the sections s, c, f, written also as the columns Gs, Gc

and Gf of the unified smoothing filter matrix Gnx(n-1), and the

proper filter vector G(k,n).

Similarly, the prediction formula (3) may be written in the

following convolution form:

f (t n+h)=∑
k=1

n

Ph(k )⋅y (t n−k +1) ,

Ph(k )=
def.

G f (k , M −1)+∑
i=1

n−h

C i⋅(G (k ,i+h)−G(k , i)) ,

G =
def.

[G s ,G c , G f ]

(8)

Notice that  Ph are strongly affected by properties of the

proper (the worst) filter Gf(k,M-1)=G(k,n).

By making the Fourier Transform of the filters  gs,  gc,  gf

and  Ph involving different approximating polynomial types

{z0....s4}  with  different  M  (see  fig. 1),  one  may examine

their properties in frequency domain, and select a filtering

variant  (type,  M)  suitable for  smoothing and/or  prediction

demands,  usually  related  to  ωT viewed as  the cut-off  fre-

quency of the designed low-pass filters. The Bode plots of

the  examined  filters  are  shown  in  figures  2-6.  We have

stated that  the approximation window width  M  affects  di-

rectly gs,  gf and Ph delays, but it is of almost no effect on a

shape of all the filters gain. Hence  M  may be taken as the

lowest value producing gains close to 1 for ω<ωT, near zero

for ω=ωT and close to 0 for ω>ωT. 

Figure 2 shows the central smoothing filters are much bet-

ter than 1st order recursive ones.
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Fig 2. Gain diagrams (vs. ω/ωT) for the best smoothing filter (central

section); vertical point lines show ωT, shadow solid lines – gain dia-

gram for the 1st order recursive filter of the same half-gain frequency.

Fig 3. Gain diagrams (vs. ω/ωT)  for the smoothing filters: central sec-

tion - bold lines h<-M, the final section for h=0 solid lines (proper fil-
ter), h=-20 dotted lines, h=-40 point-dotted lines.

Fig 4. Gain diagrams for the moving trend based predictors: shadow
bold line – final filter h=0; h=5 solid lines, h=10 dotted lines, h=26

point-dotted lines, h=T=52 point lines.

Gain properties of all the smoothing filters in the central

section (fig. 2) are similar. When assuming  M=1.38*T=72,

the classical filter z1 seems to be the best due to the pass-

and attenuation band properties as well as cut-off frequency

gain, although z3 pass-band and attenuation of z0 look bet-

ter. However a view on figures 3 and 4 gives evidence that

only z0, s3 and s4 might be accepted from the perspective of

final section smoothing (fig. 3) and prediction (fig. 4) prop-

erties. In particular, very bad pass and attenuation properties

(excessive  gain)  of  the classical  filter  z1 are clearly seen.

Having in mind numerical problems (ill-conditioning) which

can be met in s4 for larger M, one may take that the filter s3

with  M=72 (1.38T) is the best choice (its pass-band is no-

ticeably better than that of z0). The same conclusion may be

drawn  on  a  basis  of  delay  properties  shown  in  figures  5

and 6. In the pass-band a close to uniform and small delay is

required (minimum delay distortion of the trend). It is satis-

fied only by z0 filters, but s4 delay distortion is acceptable

and significantly lower than for the classical filter z1. The

delay of predictors is larger than that of the final filter (h=0)

by prediction  horizon  (see  fig. 7).  It  means that  the  MTF

prediction (eq. 3) does not differ essentially from Zero Order

Hold of the f(tn).

Fig 5. Delay of the final section smoothing filters: h=0 solid lines,
h= -20 dotted lines, h=-40 point-dotted lines, h=-60 point lines, h=-70
solid lines close to the zero-delay, bold-line 0 delay of central section

filter.

Fig 6. Predictors delay: h=0 shadow point lines, h= 5 solid lined, h=10
dotted lines, h=26 point-dotted lines, h=T=52 point lines.

The frequency properties presented above are visible in

time domain responses – see figures 8, 9. Step change dis-

tortions shown in figure 8 are the larger, the greater irregu-

larities of the pass-band gain and delay.

Fig 7. Delay of smoothing filters and predictors for ωT/2 versus the

sample delay.
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Fig 8. Signal step-wise  change smoothing and prediction: shadow bold
line – signal; bold dotted line – central segment filter response (h<-M);
dotted point line  smoothing with h=-40, h=-20 dotted line; bold line

final filter response (h=0); prediction with h=5 solid lines, h=10 dotted
lines, h=26 point-dotted lines, h=52 point lines.

Fig 9. Periodic signal processing with the studied filters: shadow bold
line – the signal y(tn) (see fig.1); bold line – the main harmonic of y,

ω=0.5ωT (to be extracted), bold point lines – the main harmonic recon-

struction by the central filter response (h=-M), the main harmonic re-
construction with the final filter – bold dotted lines, and prediction with
h=5 solid lines, h=10 dotted lines, h=26 point-dotted lines, h=52 point

lines.

Figure 9 illustrates effects of filtering and prediction of a

periodic signal (used also as the example in fig. 1). The har-

monic of ω=ωT/2 has to be extracted (reconstructed), but the

signal contains strong components in the filters attenuation

band. Hence the attenuation gain profile is of significant ef-

fect on the extracted signal shape. The best reconstruction is

reached  with  z0  filters.  The  classical  (z2)  filters  produce

highly distorted responses, both in smoothing and prediction

cases, while s3 and s4 yield acceptable results. All predic-

tions are similar in shape to the proper filter response (h=0)

and  additionally  delayed  by  the  prediction  horizon  –  see

fig. 7 (i.e. they do not differ noticeably from ZOH predic-

tions). 

The extracted  signal  distortion  in  the starting  and  final

sections is significant, hence separation of the filtering resid-

uals into periodic C(t) and stochastic z(t) components, by fit-

ting the regression model (2), should be performed with the

central section data only. Then the periodic component C(t)

should extrapolated on the full data interval and subtracted

from the filtering residuals to get z(t).

III. CONCLUSION

The classical  moving trend smoothing algorithm (based

on linear approximates) is of low efficiency, when applied to

series  prediction.  Much  better  smoothing  and  prediction

properties may be reached by employing the 3.th order poly-

nomial (s3) including only a constant and 3.th order mono-

mial (only b0, b3 are to be tuned by LS method). The approx-

imation window width M may be easily adjusted by exami-

nation the Gain Plots of the moving trend based filters in

frequency domain. The recommended filter  s3 enables  for

very effective separation of the series onto low frequency

(ω<ωT) and high frequency (ω≥ωT) components, by taking

the approximation window width M=1.38*T. 

Smoothing (reconstruction of low frequency components)

is the most effective (with no delay) in the central segment

of the series. In  the final section the low frequency signal

distortion is significant, mainly due to varying delay of the

consecutive final segment filters, which decreases prediction

quality. The distortion produced by the recommended filter

s3 is much weaker than that of the classical moving trend

smoothing. 

The periodic component  C(t) may be extracted from the

filtering residuals by a regression method applied to residu-

als in the central section of the processed series.

REFERENCES

[1] M.  Cieślak  (red.),  Prognozowanie  gospodarcze.  Metody  i
zastosowanie, PWN Warszawa, 2002

[2] G.E.P.  Box,  G.M.  Jenkins,  G.C.  Reinsnel,  Time  Series  Analysis,
Forecasting and Control. 3rd ed. Prentice Hall, Englewood Cliffs, NJ,
1994

[3] M.V. Askom, S. Chenouri, A.K. Mahmoodabadi: ARCH and GARCH
models. Department of Statistics & Actuarial Sciences, University of
Waterloo, 2001

[4] R.K.  Otnes,  L.  Enochson,  Digital  Time Series  Analysis,  New York:
John Wiley, 1972

[5] J.T.  Duda,  T.  Pełech-Pilichowski,  A.  Augustynek,  Wykorzystanie
trendu  pełzającego  do  analizy  i  prognozowania  szeregów
finansowych.  [W:]  Współczesne  problemy  zarządzania
przedsiębiorstwami  w  gospodarce  rynkowej  (red.  H.  Howaniec,
W. Waszkielewicz), Wyd. ATH, Bielsko-Biała, 2013 (in print)

[6] J.T. Duda, T. Pełech-Pilichowski.,  Opracowywanie prognoz  sytuacji
hydrogeologicznej  i  ostrzeżeń  przed  niebezpiecznymi  zjawiskami
zachodzącymi  w  strefach  zasilania  lub  poboru  wód  podziemnych.
Research Report, AGH UST, Faculty of Management, Kraków, 2012

930 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013


