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Abstract—This work concerns the mathematical modeling
and computer simulations of the heat transfer process. The
core is solving the time-dependent partial differential equation
of parabolic type. Instead of a uniform discretization of the
considered time interval, an adaptive time-stepping procedure
is applied in an effort to decrease the simulation time. The pro-
cedure is based on the local comparison of the Crank Nicholson
and backward Euler approximations. Computer simulation on
geometry obtained from a magnetic resonance imaging (MRI)
scan of the patient is performed. Results of some preliminary
numerical experiments performed on a selected test problems
are presented and discussed

I. INTRODUCTION

THE minimally invasive treatment called radio-frequency

ablation (RFA) guided by imaging techniques, the doctor

inserts a thin needle through the skin and into the tumor,

(see Fig. 1, [11]). High-frequency electrical energy delivered

through this needle heats and destroys the tumor. The circuit

is closed with a ground pad applied to the patient’s skin.

The right procedure parameters are very important for the

successful killing of all of the tumor cells with minimal

damage on the non-tumor cells.

Fig. 1. CT Scan, Showing Radio-Frequency Ablation of a Liver Lesion

Computer simulation on geometry obtained from a magnetic

resonance imaging (MRI) scan of the patient is performed.

In this work, an adaptive time stepping algorithm is applied

to the simulation in order to reduce the computational time.

The rest of the paper is organized as follows. The mathemat-

ical and numerical models are shortly presented in Section 2.

The adaptive time-stepping algorithm is described in Section 3.

Section 4 is devoted to the computer simulations and analysis

of the results obtained on an IBM Blue Gene/P supercomputer.

Finally, some concluding remarks can be found in Section 5.

II. THE MATHEMATICAL AND NUMERICAL MODELS

The bio-heat time-dependent partial differential equation [4],

[5] is the governing equation describing the RFA process. It

can be presented as follows:

ρc
∂T

∂t
= ∇ · k∇T + J · E − αhB (T − TB), (1)

where the thermal energy arising from the current flow is

described by J ·E in (1) and αhB (T − TB) accounts for the

heat loss due to blood perfusion in the capillaries. The heat

produced from metabolic functions of the liver is neglected.

The initial and boundary conditions which are used in this

approach are as follows:

T = 37◦C when t = 0 at Ω, (2a)

T = 37◦C when t ≥ 0 at ∂Ω, (2b)

−k
∂T

∂n
= α(T − TB) when t ≥ 0 at ΓR (2c)

The notations which are used in (1) and (2) are given bellow:

• Ω – the entire domain of

the model;

• ∂Ω – the boundary of

the domain;

• Γr – the boundary of the

blood vessel;

• ρ – density [kg/m3];

• c – specific heat [J/kg

K];

• k – thermal conductivity

[W/m K];

• J – current density

[A/m];

• E – electric field inten-

sity [V/m];

• t – time [s];

• T – temperature [K];

• TB – blood temperature

(37◦C);

• wB – blood perfusion

coefficient[s−1];

• hB = ρBcBwB – convec-

tive heat transfer coeffi-

cient accounting for the

blood perfusion in the

model;

• α – tissue state coeffi-

cient;

• n – the outward-pointing

normal vector of the

boundary.
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The cumulative damage integral Ψ(t) is used as a measure

of ablated region [1], [9]:

Ψ(t) = ln

(

c(0)

c(t)

)

= A

∫

e
−

∆E

RT (t) dt, (3)

where c(t) is the concentration of living cells, R is the

universal gas constant, A is the “frequency” factor for the

kinetic expression [s−1], and ∆E is the activation energy for

the irreversible damage reaction [J mol−1]. The values used

A = 7.39 × 1039s−1 and ∆E = 2.577 × 105J mol−1 are

taken from [1]. Tissue damage Ψ(t) = 4.6 corresponds to 99%

probability of cell death. The value of Ψ(t) = 1, corresponding

to 63% probability of cell death is significant, because at this

point the tissue coagulation first occurs and blood perfusion

stops.

The tissue state coefficient α is expressed as

α(t) =

{

e−Ψ(t) if Ψ(t) < 1,
0 if Ψ(t) ≥ 1.

In the presented algorithm the bio-heat problem (1) is solved

in two steps (see [9] for more details):

1) Finding the heat source J ·E using that: (a) E = −∇V

(V is the electric potential in the computational domain

Ω), and (b) J = σE, where σ is the electric conductivity

[S/m];

2) Finding the temperature T by solving the heat transfer

equation (1) using the heat source J ·E obtained in the

first step.

For the numerical solution of (1) the finite element method

in space is used ([7]). Linear conforming tetrahedral elements

are used in this study. They are directly defined on the

elements of the used unstructured mesh (see Fig. 2). An

algebraic multigrid (AMG) preconditioner is used [3]. The

time derivative is discretized via finite differences and the

both the backward Euler and the Crank-Nicholson schemes

are used ([8]).

Fig. 2. Inserted RF Probe and the Finite Element Mesh

Let the matrices K and M be the stiffness and mass

matrices from the finite element discretization of (1):

K =

[
∫

Ω

k∇Φi · ∇Φjdx

]N

i,j=1

,

M =

[
∫

Ω

ρcΦiΦjdx

]N

i,j=1

.

Let us also denote with ΩB the subdomain of Ω where we

account for the blood perfusion (the liver tissue) and with MB

the matrix

MB =

[
∫

Ω

δBhBΦiΦjdx

]N

i,j=1

,

where

δB(x) =

{

α for x ∈ ΩB,

0 for x ∈ Ω \ ΩB.

The influence of the Robin boundary conditions given in (2c)

and the electric field intensity is presented by:

MR =

[

∫

ΓR

αΦiΦjdx

]N

i,j=1

, (4)

and

F =

[
∫

Ω

JEΦiΦjdx

]N

i,j=1

, (5)

Than, the spatially discretized parabolic equation (1) can be

written in matrix form as:

M
∂T

∂t
+ (K +MB +MR)T = F +MBTB +MRTB. (6)

III. ADAPTIVE TIME-STEPPING ALGORITHM

To ensure accuracy and not waste computational effort, it

is important to adapt the time steps to the behavior of the

solution.

The time discretization for both backward Euler method and

the Crank-Nicolson one can be written in the form

(M+τnθ(K +MB +MR))T
n+1

=(M − τn(1− θ)(K +MB +MR))T
n

+ (τnθ + τn(1− θ))(F +MBTB +MRTB), (7)

where the current (n-th) time-step is denoted with τn, the

unknown solution at the next time step – with T n+1, and the

solution at the current time step – with T n. If we set the

parameter θ = 1, (7) gives a system for the backward Euler

discretization. When θ = 0.5 (7) becomes Crank-Nicolson

one. The solution of the linear system (7) with θ = 1 and

θ = 0.5 gives us TBE and TCN respectively.

A suitable adaptive time-stepping procedure is based on a

local comparison of the backward Euler (TBE) and Crank-

Nicolson (TCN) approximations for the current timestep, and

is controlled by the ratio

η =
‖TCN − TBE‖

‖TBE‖
. (8)

This approach has a down side, that solving two linear

systems is required to obtain TBE and TCN. This is, from the

computational point of view, expensive. Nevertheless overall

decrease in computational time is expected.
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The algorithm below, describing our adaptive time-stepping

procedure, is based on the one for adaptive time stepping for

processes in spent nuclear fuel repositories [2]. It has several

parameters:

1) τ1 – initial timestep;

2) NAdapt – a parameter showing how often the adaptive

time stepping strategy is applied, e.g. NAdapt = 1 shows

that the adaptive time stepping is used on each step

while NAdapt = 3 – that the adaptive time stepping is

performed at every third time step, NAdapt = 0 indicates

that all time steps are non-adaptive.

3) λNonAdapt – a parameter showing whether and by how

much the time step is multiplied, in non-adaptive time

steps, e.g. λNonAdapt = 1 means that the time step is not

changed, while λNonAdapt = 1.2 means that the time step

on the current level is multiplied by 1.2 for the next time

level.

4) εmin and εmax are minimal and maximal thresholds for

the error estimate η.

Algorithm 1 (Adaptive Time-Stepping Procedure):

1. for k = 1, 2, . . . until the end of time do

2. if CurrentStepIsAdaptive(NAdapt, k)
2. then

3. do

4. compute TBE, TCN with τk

5. compute η

6. if η < εmin then τk+1 = 2τk

7. if η > εmax then τk = 0.5τk

8. while η > εmax // if too big error

// stay on the same timestep

9. T k+1 = TBE

10. else

11. compute TBE with τk

12. T k+1 = TBE

13. τk+1 = τkλNonAdapt

14. end if

15. end for

The last timestep is always truncated to the time of simulation.

Inner PCG iteration with the BoomerAMG [3] precondi-

tioner, part of the software package HYPRE [10], is used for

the solution of (7). The preconditioner is reconstructed if the

number of inner iterations goes above 12. The reconstruction

takes place before the solution of the next timestep.

IV. COMPUTER SIMULATIONS AND ANALYSIS OF THE

OUTPUT RESULTS

The IBM Blue Gene/P computer, located at the Bulgar-

ian Supercomputing Center, is used for the simulations and

numerical experiments with the new adaptive time stepping

algorithm. This machine consists of two racks, 2048 Power

PC 450 based compute nodes, 8192 processor cores and a

total of 4 TB random access memory. Each processor core has

a double-precision, dual pipe floating-point core accelerator.

Sixteen I/O nodes are connected via fiber optics to a 10 Gbps

Ethernet switch.

The material properties which are used in the simulations

are taken from [4]. The applied electrical power is 15 W, and

the simulation is done for 7 minutes.

We run several test to choose a suitable set of values for

the threshold parameters εmin and εmax. As a quantitative

criterion of quality of the solution we used two volumes –

the volume Vol1, which is the volume of the tissue, where the

cumulative damage integral Ψ is greater than 1, and Vol4.6
– the volume of the tissue, where Ψ > 4.6. The results of

the nonadaptive algorithm with step τ = 1 s were compared

with the ones from adaptive runs. As a result of these tests

we found that an acceptable variation in the two important

volumes less than 3 % occurs when the threshold interval is

[2.5×10−4, 1.25×10−3] and this interval is used in the further

computer simulations.

Based on these preliminary tests, a number of runs were

done both using 128 and 1024 processors. Uniformly refined

mesh was used for the runs on 1024 processors. Some of the

output results obtained during the simulations are presented

in Table I and Table II. An excellent scalability is observed

– we solve eight times bigger problems on eight times more

processors for almost the same time. One can see in both tables

that the best results with regards to CPU time and number of

the inner iterations are obtained when the adaptive strategy

is applied at each second time step and meanwhile, at the

intermediate time steps τ is multiplied by 1.2. In this case,

comparing the total CPU times of the algorithm without the

adaptive time-stepping and using this strategy, it is seen that

the time of the new algorithm is almost three times shorter.

V. CONCLUSIONS

The first experimental results show that the new algorithm is

scalable. The tests allowed us to find some suitable parameters

and showed the practical usefulness of the developed solver

for such kind of computer simulations. One can observe that

the computing time is decreased more than three times, the

number of outer iterations is decreased from 420 to 71, and

the number of inner iteration decreases form 2233 to 535. This

preliminary results are a good motivation for further improving

the algorithm and doing more simulations.
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