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Abstract—The rising costs and demand of electricity for
high-performance computing systems pose difficult challenges
to system administrators that are trying to simultaneously
reduce operating costs and offer state-of-the-art performance.
However, system performance and energy consumption are often
conflicting objectives. Algorithms are necessary to help system
administrators gain insight into this energy/performance trade-
off. Through the use of intelligent resource allocation techniques,
system administrators can examine this tradeoff space to quantify
how much a given performance level will cost in electricity, or see
what kind of performance can be expected when given an energy
budget. A novel algorithm is presented that efficiently computes
tight lower bounds and high quality solutions for energy and
makespan. These solutions are used to bound the Pareto front to
easily trade-off energy and performance. These new algorithms
are shown to be highly scalable in terms of solution quality and
computation time compared to existing algorithms.

I. INTRODUCTION

THE race for increased performance in high-performance

computing (HPC) systems has resulted in a large increase

in the power consumption of these systems [1]. This increase

in power consumption can cause degradation in the electrical

infrastructure that supports these facilities, as well as increase

electricity costs for the operators [2]. The goals of HPC users

conflict with the HPC operators in that the users’ goal is to

finish their workload as quickly as possible. That is, the small

energy consumption desired by the system operator and the

high system performance desired by the users are conflicting

objectives that require the sacrifice of one to improve the other.

Balancing the performance needs of the users with energy

costs proves difficult without tools designed to help a system

administrator choose from among a set of solutions.

A set of efficient and scalable algorithms are proposed

that can help system administrators quickly gain insight into

the energy and performance trade-off of their HPC systems

through the use of intelligent resource allocation. The algo-

rithms proposed have very desirable run times and produce

schedules that are closer to optimal as the problem size

increases. As such, this approach is very well suited to large

scale HPC systems.

The focus of our work is on a common scheduling problem

where the users submit a set of independent tasks known

as a bag of tasks [3]. The tasks will run on a dedicated

set of interconnected machines. A task runs on only one

machine and, likewise, a machine may only process one task

at any one time. This class of scheduling problems is often

referred to as static scheduling because the full bag of tasks

is known a priori [4]. Task execution and power consumption

are deterministic in this model. The HPC systems of primary

interest have highly heterogeneous task run times, machines,

and power consumption which are known as heterogeneous

computing (HC) systems. Some machines in the HC systems

are often special purpose machines that can perform specific

tasks quickly, while other tasks might not be able to run at

all on that hardware. Another cause of heterogeneity is differ-

ing computational requirements, input/output bottlenecks, or

memory limitations, and therefore cannot take full advantage

of the machine. The machines may further differ in the

average power consumed for each task type. Machines may

have different architectures, leading to vastly different power

consumption characteristics. For instance, a task that runs on

a GPU might consume less energy to complete, but often

more power, than the same task run on a general purpose

machine, due to the shorter execution time. We assume one

objective is to minimize the maximum finishing time of all

tasks, which is known as the makespan. The heterogeneity in

execution time of the tasks provides the scheduler degrees

of freedom to greatly improve the makespan over a naı̈ve

scheduling algorithm. Similarly the heterogeneity in the power

consumption allows the schedulers to decrease the energy

consumption.

The contributions of this paper are:

1) The formulation of an algorithm that efficiently com-

putes tight lower bounds on the energy and makespan

and quickly recovers near optimal feasible solutions.

2) Finding a high quality bi-objective Pareto front.

3) An evaluation of the scaling properties of the proposed

algorithms.
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4) The addition of idle power consumption to the formu-

lation of the energy/makespan problem in [3].

The rest of this paper is as follows: first the lower bound

on the objectives is described in Subsection II-B. Then al-

gorithms are presented in Subsections II-C, II-D, and II-E

that reconstruct a feasible schedule from the lower bound. In

Subsection II-F, the complexity of the algorithm is analyzed.

Algorithm scaling quality and runtime results are shown in

Section III. Section IV shows how these bounds can be used

with any scalarization technique to form a Pareto front. Sec-

tion V compares these algorithms to the NSGA-II algorithm.

II. APPROXIMATION ALGORITHMS

A. Approach

The fundamental approach of this paper is to apply divisible

load theory (DLT) [5] to ease the computational requirements

of computing a lower bound solution on the energy and

makespan. For the lower bound, a single task is allowed to be

divided and scheduled onto any number of machines. After the

lower bound on the energy and makespan is computed, a two

phase algorithm is used to recover a feasible solution from the

infeasible lower bound solution. The feasible solution serves

as the upper bound on the optimal energy and makespan.

Often HC systems have groups of machines, usually pur-

chased at the same time, that have identical or nearly identical

performance and power characteristics. Even when every ma-

chine is different, the uncertainty in the system often allows

one to model similar machines as groups of machines of

the same type. A machine group is a collection of machines

that have virtually indistinguishable performance and power

properties with respect to the workload. Machines within a

machine group may differ vastly in feature sets so long as the

task performance and power consumption of the tasks under

consideration are not affected. Tasks often exhibit natural

groupings as well. Tasks of the same task type are often

submitted many times to perform statistical simulations and

other repetitive jobs. In fact, having groupings for tasks and

for machines permits less profiling effort to estimate the run

time and power consumption for each task on each machine.

Traditionally this static scheduling problem is posed as

assigning all tasks to all machines. The classic formulation is

not well suited for recovering a high quality feasible solution.

The decision variables would be binary valued (assigned

or not assigned) and rounding a real value from the lower

bound to a binary value can change the objective significantly.

Complicated rounding schemes are necessary to iteratively

compute a suitable solution. Instead, the problem is posed

as determining the number of tasks of each type to assign to

each machine group. With this modification, decision variables

will be large integers ≫ 1, resulting in only a small error to

the objective function when rounding to the nearest integer.

This approximation holds well when the number of tasks

assigned to each machine group is large. For this approx-

imation, machine groups need not be large. In addition to

easing the recovery of the integer solution, another benefit

of this formulation is that it is much less computationally

intensive due to solving the higher level assignment of tasks

types to machine groups with DLT, before solving the fine

grain assignment of individual tasks to machines. As such,

this approach can be thought of as a hierarchical solution to

the static scheduling problem.

B. Lower Bound

The lower bound is given by the solution to a linear bi-

objective optimization (a.k.a. vector optimization) problem and

is constructed as follows. Let there be T task types and M

machine types. Let Ti be the number of tasks of type i and Mj

be the number of machines of type j. Let xij be the number

of tasks of type i assigned to machine group j, where xij is

the primary decision variable in the optimization problem. Let

ETC be a T ×M matrix where ETCij is the estimated time

to compute for task type i on machine type j. Similarly let

APC be a T ×M matrix where APCij is the average power

consumption for task type i on machine type j. These matrices

are frequently used in scheduling algorithms [4], [6]–[8].

The lower bound of the finishing time of a machine group

is found by allowing tasks to be divided among all machines

to ensure the minimal finishing time. With this conservative

approximation all tasks in machine group j finish at the same

time, namely:

Fj =
1

Mj

∑

i

xijETCij . (1)

Sums over i always go from 1 to T and sums over j always

go from 1 to M , thus the ranges are omitted.

Given that Fj is a lower bound on the finishing time for a

machine group, the tightest lower bound on the makespan is:

MSLB = max
j

Fj . (2)

Energy consumed by the bag of tasks is
∑

i

∑

j xijAPCijETCij . To incorporate idle power

consumption, one must have a time duration for machines

not running any tasks. In this model, the makespan is used

for the time the machines’ power must be accumulated. Not

all machines will finish executing tasks at the same time.

All but the last machine(s) to finish will accumulate idle

power. When no task is executing on machine j, the power

consumption is given by the idle power consumption, APC∅j .

The equation for the lower bound on the energy consumed,

incorporating idle power, is given in:

ELB =
∑

i

∑

j

xijAPCijETCij

+
∑

j

MjAPC∅j(MSLB − Fj)

=
∑

i

∑

j

xijETCij

(

APCij − APC∅j

)

+
∑

j

MjAPC∅jMSLB

(3)
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where the second term in the first equation accounts for the

idle power.

The resulting bi-objective optimization problem for the

lower bound is:

minimize
xij , MSLB

(

ELB

MSLB

)

subject to: ∀i
∑

j xij = Ti

∀j Fj ≤ MSLB

∀i, j xij ≥ 0 .

(4)

The objective of (4) is to minimize ELB and MSLB, where x

is the primary decision variable. MSLB is an auxiliary decision

variable necessary to model the objective function in (2). The

first constraint ensures that all tasks in the bag are assigned

to a machine group. The second constraint is the makespan

constraint. Because the objective is to minimize makespan,

the MSLB variable will be equal to the maximum finishing

time of all the machine groups. The third constraint ensures

that there are no negative assignments in the solutions. This

vector optimization problem can be solved to find a collection

of optimal solutions. It is often solved by weighting the ob-

jective functions to form a linear programming (LP) problem.

Methods to find a collection of solutions are presented in

Section IV.

Ideally this vector optimization problem would be solved

optimally with xij ∈ Z≥0. However, for practical scheduling

problems, finding the optimal integral solution is often not

possible due to the high computational cost. Fortunately, effi-

cient algorithms to produce high quality sub-optimal solutions

exist.

C. Allocation Reconstruction

For infeasible solutions obtained from (4), an algorithm

is necessary to recover from each a feasible solution or full

allocation. Numerous approaches have been proposed in the

literature for solving integer LP problems by first relaxing

them to real-valued LP problems [9]. The approach here fol-

lows this common technique combined with computationally

inexpensive techniques tailored to this particular optimization

problem. The problem is broken up into two phases. The

first phase rounds the solution while taking care to maintain

feasibility of (4). The second phase assigns tasks to actual

machines to build the full task allocation.

D. Rounding

Due to the nature of the problem, the optimal solution x
∗

often has few nonzero elements per row. Usually all the tasks

of one type will be assigned to a small number of machine

groups. In the original problem, tasks are not divisible so

one needs to have an integer number of tasks to assign to

a machine group. When all the tasks of a given task type

are assigned to one machine group, that row of x has one

nonzero value which is equal to Ti, an integer. When tasks

are split between machine groups, an algorithm is needed to

compute an integer solution from this real-valued solution. The

following algorithm finds x̂ij ∈ Z≥0 such that it is near x∗
ij

while maintaining the task assignment constraint. Algorithm 1

finds x̂ that minimizes ‖ x̂ij − x∗
ij ‖1 for a given i.

Algorithm 1 Round to the nearest integer solution while

maintaining the constraints

1: for i = 1 to T do

2: n← Ti −
∑

j⌊x
∗
ij⌋

3: fj ← x∗
ij − ⌊x

∗
ij⌋

4: Let set K be the indices of the n largest fj
5: if j ∈ K then

6: x̂ij ← ⌈x
∗
ij⌉

7: else

8: x̂ij ← ⌊x
∗
ij⌋

9: end if

10: end for

Algorithm 1 operates on each row of x∗ independently. The

variable n is the number of assignments in a row that must

be rounded up to satisfy the task assignment constraint. Let

fj be the fractional part of the number of tasks that must be

assigned to machine j. The algorithm simply rounds up those

n assignments that have the largest fractional parts. Everything

else is rounded down. The result is an integer solution x̂

that still assigns all tasks properly and is near to the original

solution from the lower bound.

E. Local Assignment

The last phase in recovering a feasible assignment solution

is to schedule the tasks already assigned to each machine group

to actual machines within that group. This scheduling problem

is much easier than the general case because all machines in

a group are the same. This problem is formally known as the

multiprocessor scheduling problem [10]. One must schedule a

set of heterogeneous tasks on a set of identical machines. The

longest processing time (LPT) algorithm is a very common

algorithm for solving the multiprocessor scheduling problem

[10]. Algorithm 2 uses the LPT algorithm to independently

schedule each machine group.

Algorithm 2 Assign tasks to machines using LPT per machine

group

1: for j = 1 to M do

2: Let z be an empty list

3: for i = 1 to T do

4: z ← join(z, (task type i replicated x̂ij times))

5: end for

6: y ← sortdescending by ETC(z)
7: for k = 1 to ‖ y ‖ do

8: Assign task yk to earliest ready time machine in

group j

9: Update ready time

10: end for

11: end for

Each column of x̂ is processed independently. List z

contains task type i, x̂ij times. The tasks are then sorted
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in descending order by execution time to find y. Next the

algorithm loops over y one element (task) at a time and assigns

it to the machine that has the earliest ready time. The ready

time of a machine is the time at which all tasks assigned to

it will complete. This heuristic packs the largest tasks first in

a greedy manner. Algorithms exist that will produce a more

optimal solution, but it will be shown that the effect of the

sub-optimality of this algorithm on the overall performance of

the systems considered is insignificant.

F. Complexity Analysis

The complexity analysis of this algorithm shows some

desirable properties that are now discussed. One must solve a

real-valued LP problem to compute the lower bound. Using the

simplex algorithm to solve the LP problem yields exponential

complexity (i.e. traversing all the vertices of the polytope) in

the worst case; however the average case complexity for a

very large class of problems is polynomial time. Recall that

there are T task types and M machine types. The lower bound

LP problem has T + M nontrivial constraints and TM + 1
variables. The average case complexity of computing the lower

bound is (T +M)2(TM+1). Next is the rounding algorithm.

The outer loop iterates T times, and the rounding is dominated

by the sorting of M items. Thus the complexity of Algorithm 1

is T (M logM). The task assignment algorithm outer loop is

run M times. Inside this loop there are two steps. The first

step is sorting nj =
∑

i xij items which takes nj log nj time.

The second step is a loop that iterates nj times and must

find the machine with the earliest ready time each iteration,

which is a logMj time operation. The worst case complexity

of Algorithm 2 is thus M max
j

(nj log nj + nj logMj).

The complexity of the overall algorithm to find both the

lower bound and upper bound (full allocation) is driven by

either the lower bound algorithm or the local assignment

algorithm. Complexity of the lower bound and Algorithm 1

are independent of the number of tasks and machines. Those

algorithms depend only on the number of task types and

machine types. This is a very important property for large

scale systems. Millions of tasks and machines can be handled

easily so long as the machines can be reasonably placed in a

small number of homogeneous groups and, likewise, tasks can

be grouped by type. Only the upper bound’s complexity has a

dependence on the number of tasks and machines. This phase

is only necessary if a full allocation or schedule is required.

Furthermore, Algorithm 2 can be trivially parallelized because

each machine group is scheduled independently. The lower

bound can be used to analyze much of the behavior of the

system at less computational cost.

III. SCALING RESULTS

An important property of a scheduling algorithm is its abil-

ity to scale well as the size of the problem grows. Simulation

experiments were carried out to quantify how the relative

error and the computational cost of the algorithm scales.

These experiments are used to validate the complexity analysis

results from Section II-F. ETC and APC are needed to test

the algorithms. ETC and APC are based on a set of five

benchmarks executed over nine machine types [11]. Then the

method found in [7] was used to construct larger ETC and

APC matrices. Nominally there are 1100 tasks made up of 30

task types. There are 36 machines made up of nine machine

types. A complete description of the systems and output from

the algorithms are available in [12].

The number of tasks, task types, and machine types are

swept independently to generate a family of figures. For

this size system it is too expensive to solve for the optimal

makespan but one can compare bounds on the makespan to

gain insight into the algorithm. Each of the three parameter

sweeps is computed by taking random subsets with replace-

ment to handle the sweep variable. These results are averaged

over 50 Monte Carlo trials. The experiments where performed

on a mid-2009 MacBook Pro with a 2.5 GHz Intel Core 2

Duo processor. The code is written in Mathematica 9 and

the LP solver uses the simplex method which forwards to the

C++ COIN-OR CLP solver [13]. The scaling experiments all

optimize makespan while ignoring the energy objective.

Fig. 1 shows the relative change in makespan as the number

of tasks increase. The number of task types, machines, and

machine types are held constant and are the same as the orig-

inal nine machine system. The relative increase in makespan

is shown from the lower bound (MSLB) to the makespan after

rounding. Also shown is the increase in makespan from the

integer solution to the full allocation. The relative increase in

makespan from the lower bound to the upper bound or full

allocation is also shown. The loss in quality of the makespan

from the rounding algorithm is relatively low. Most of the

increase in makespan is caused by Algorithm 2. However,

Fig. 1 also shows that the relative increase in makespan

diminishes as the number of tasks increase. This is because

the approximation that tasks are divisible has less of an impact

on the solution as the number of tasks increase.

The run time of the scheduler as a function of the number of

tasks is shown in Fig. 2 to quantify computational efficiency

of the various algorithms. The blue (bottom) portion of the

graph is the time taken to compute the lower bound (solve

the LP problem). The green (middle) portion is the time it

takes to round the solution. Both of the computations required

to compute the lower bound and the integer solution do not

depend on the number of tasks. This corresponds to the results

derived for the complexity of the algorithm. The red (top)

portion of the figure shows the full allocation that seems

to scale linearly with the number of tasks. Recall that the

complexity of Algorithm 2 has a dependency on the number of

tasks which is linear or log linear depending on the parameters.

Fig. 3 shows the same three curves as Fig. 1, however

this time varying the number of task types. The number of

tasks, machines, and machine types are held constant for

this experiment. Fig. 3 shows that again the local assignment

algorithm is causing most of the degradation in makespan.

The relative error in makespan does not tend to zero because

increasing the number of task types does not improve the

quality of the approximation.
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lower bound ® full allocation

integer ® full allocation

lower bound ® integer

200 400 600 800 1000
tasks

50

100

150

increase in

makespan @%D

Fig. 1. Relative percent increase in makespan as a function of the total number

of tasks: The quality of the solution improves as more tasks are used.

full allocation

integer

lower bound

200 400 600 800 1000
tasks

5

10

15

20

run time @msD

Fig. 2. Algorithm run time versus total number of tasks: Both the lower
bound and the rounding algorithms are independent of the number of tasks.
The local assignment, used to obtain the full allocation, is linearly dependent
on the number of tasks.

Fig. 4 shows the run time of the three phases. Here the

lower bound has super linear dependence on the number of

task types. According to the complexity analysis this should

be cubic. The rounding algorithm seems to increase linearly,

which corresponds to the analysis. The full allocation phase

seems to be independent of the number of task types. This

agrees with the analysis because the complexity is not a

function of the number of task types T , but instead a function

of the number of tasks nj assigned to a group, regardless of

the type of task.

Fig. 5 shows the relative increase in makespan as the number

of machine types varies. In the previous parameter sweeps, the

number of tasks of a particular type may be zero if the random

sampling selected that configuration. Allowing the number of

machines in a machine group to be zero is more difficult due to

(1) because some constraint coefficients will be∞ in the linear

programming problem. Practically, an Mj = 0 means that the

jth column of ETC and APC should simply be removed and

the solution should never assign a task to that group because it

has no machines. To avoid this case altogether each machine

lower bound ® full allocation

integer ® full allocation

lower bound ® integer

10 20 30 40 50
task types0

2

4

6

8

10

12

14

increase in

makespan @%D

Fig. 3. Relative percent increase in makespan as a function of the number

of task types: Quality of the solutions are roughly independent of the number
of task types.

full allocation

integer

lower bound

10 20 30 40 50
task types0

5

10

15

20

25

30

run time @msD

Fig. 4. Algorithm run time as a function of number of task types: The
complexity of the lower bound and rounding algorithms grows super linearly
with the number of task types.

group has to have at least one machine (so that there are no

degenerate machine groups). Fig. 5 also shows that the quality

of the rounding algorithm decreases as the number of machine

groups increase. This is expected because there are less tasks

to assign to each machine’s group making the approximation

weaker. At 36 machine types there is one machine per group.

There is only one solution to that scheduling problem (assign

all tasks to the one machine), resulting in no increase in

makespan in that phase.

Fig. 6 shows the run time as the number of machine types

is increased. As expected, the lower bound grows roughly

cubicly. The rounding algorithm grows roughly linearly also as

expected. The time spent scheduling for each group decreases

because fewer tasks are scheduled to less machines as the

number of machine types increases so it effectively has little

dependence on the number of machine types.

Even though the performance of these polynomial time

algorithms are desirable, there is some prior work on theo-

retical bounds that should be noted. In [14] it is proven that

there exists no polynomial algorithm that can provably find

a schedule that is less than 3/2 the optimal makespan, unless
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lower bound ® full allocation

integer ® full allocation

lower bound ® integer

5 10 15 20 25 30 35
machine types0

2

4

6

8

10

12

14

increase in

makespan @%D

Fig. 5. Relative percent increase in makespan as a function of the number

of machine types: Overall performance is roughly independent of the number
of machine types.

full allocation

integer

lower bound

5 10 15 20 25 30 35
machine types0

20

40

60

80

run time @msD

Fig. 6. Algorithm run time versus the number of machine types: Lower bound
algorithm complexity is super linear in the number of machines types. The
rounding and local assignment algorithms are roughly independent.

P = NP . Even though Figures 1-6 suggest that one can do

better then 3/2, this is only the case on average. In the next

section these algorithms are used to generate the Pareto fronts.

IV. PARETO FRONT GENERATION

Multi-objective optimization is challenging because there is

usually no single solution that is superior to all others. Instead,

there is a set of superior feasible solutions that are referred to

as the non-dominated solutions [15]. Feasible solutions that

are dominated are of little interest because one can always

find a better solution in all objectives by picking a solution

from the non-dominated set. Formally, a feasible solution x

dominates a feasible solution y when:

∀i fi(x) ≤ fi(y)

∃i fi(x) < fi(y)
(5)

where fi(·) is the ith objective function. The non-dominated

solutions, also known as outcomes, compose the Pareto front.

Finding the Pareto front can be computationally expen-

sive because it means solving variations of the optimization

problem numerous times. Most algorithms use scalarization

techniques to convert the multi-objective problem into a set of

scalar optimization problems. Major approaches to scalariza-

tion include the hybrid method [16], elastic constraint method

[16], Benson’s algorithm [17] [18], and Pascoletti-Serafini

scalarization [19]. Pascoletti-Serafini scalarization is a general-

ization of many common approaches such as normal boundary

intersection, ǫ-constraint, and weighted sum. The focus of

our work is on the weighted sum algorithm. The weighted

sum algorithm can find all the non-dominated solutions for

problems with a convex constraint set and convex objective

functions [19]. Weighted sum is used for the linear convex

problem in (4) thus all non-dominated solutions can be found.

A known issue with the weighted sum algorithm is that it does

not uniformly distribute the solutions along the Pareto front.

The solutions are often clustered together, but this does not

present a problem for our particular use case.

Finding the optimal schedule for makespan alone is NP-

Hard in general [4], thus finding the optimal (true) Pareto front

is NP-Hard as well. Computing tight upper and lower bounds

on the Pareto front is still possible. Specifically, a lower bound

on a Pareto front is a set of solutions for which no feasible

solution dominates any of the solutions in this set. An upper

bound on the Pareto front is a set of feasible solutions which

do not dominate any Pareto optimal solutions.

A. Weighted Sum

The weighted sum algorithm simply forms the positive

convex combination of the objectives and sweeps the weights

to generate the Pareto front. The first phase is to compute the

lower bound solution for energy and makespan independently

of each other. Next ∆ELB, which is the difference between

the maximum and minimum values of energy, is computed.

Likewise, ∆MSLB is computed. The scalarized objective is:

min
α

∆ELB

ELB +
1− α

∆MSLB

MSLB . (6)

A lower bound on the Pareto front can be generated by

using several values of α ∈ [0, 1]. Weighted sums will

produce duplicate solutions (i.e., x is identical for neighboring

values of α). Duplicate solutions are removed to increase

the efficiency of the subsequent algorithms. Each solution is

rounded by Algorithm 1 to generate an intermediate Pareto

front. Rounding often introduces many duplicates that can be

safely removed. Each integer solution is converted to a full

allocation with Algorithm 2 to create the upper bound on the

Pareto front.

B. Non-dominated Sorting Genetic Algorithm II

NSGA-II [20] is an adaptation of the Genetic Algo-

rithm (GA) optimized to find the Pareto front of a multi-

objective optimization problem. Similar to all GAs, the NSGA-

II uses mutation and crossover operations to evolve a pop-

ulation of chromosomes (solutions). Ideally this population

improves from one generation to the next. Chromosomes with

a low fitness are removed from the population. The NSGA-

II algorithm modifies the fitness function to work well for

discovering the Pareto front. In prior work [3], the mutation
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and crossover operations were defined for this problem. The

NSGA-II algorithm will be seeded in two ways in the fol-

lowing results. The first seeding method is to use the optimal

minimum energy solution, sub-optimal minimum makespan

solution (from the Min-Min Completion Time [4] algorithm),

and a random population as the initial population. This is

the original seeding method used in [3]. The second seeding

method is to use the full allocations from Algorithm 2 as the

initial population for the NSGA-II.

V. PARETO FRONT RESULTS

The system used for these experiments is the same as in

Section III, unless stated otherwise. All 1100 tasks, 30 task

types, 36 machines, and nine machines types are used as

described in [8]; the complete description of the system and

output data files from the new algorithm are available in [12].

The hardware used for running the NSGA-II experiments is a

2011 Sager NP7280 with an Intel Core i7 980 @ 3.33 Ghz.

The NSGA-II code is implemented in C++.

Fig. 7 shows the Pareto fronts generated from the various

algorithms without idle power consumption. The figure shows

the actual solutions as markers that are connected by lines.

The lower bound, integer, and full allocation are nearly in-

distinguishable at the lower portion of the plot. This means

that the true Pareto front is tightly bounded even though it is

unknown. The curve that is dominated by all other curves is the

Pareto front generated by the NSGA-II using the first seeding

method. The NSGA-II took hours to find that sub-optimal

Pareto front. In contrast, the lower and upper bounds were

found in ∼ 10 seconds. The last Pareto front is the NSGA-II

seeded with the full allocation. Seeding with the full allocation

allows the NSGA-II to both converge to an improved Pareto

front as well as decreasing the run time necessary to converge.

The NSGA-II attempts to evenly distribute the solutions along

the Pareto front and tries to find solutions that are in the

convex regions as can be seen in Fig. 7. All the algorithms

seem to perform well when minimizing energy alone because

computing the optimal minimum energy solution is relatively

easy. One simply assigns each task to the machine that

requires the lowest energy to execute that task. Solving for

the optimal makespan is difficult in practice. Fig. 7 shows that

all the algorithms agree in the energy dimension, however in

the makespan dimension there are significant distinctions in

solution quality. Pareto fronts for other representative systems

were also computed with similar results. The new algorithms

produced better quality Pareto fronts in significantly less time.

Fig. 8 illustrates how the solutions progress through the

three phases of the algorithm when there is no idle power

consumption. The lowest line represents the lower bound on

the Pareto front. Each orange arrow represents a solution

as it is rounded. In every case, the makespan increases but

the energy may increase or decrease. As x is rounded, ma-

chines will finish at different times increasing the makespan.

Each blue arrow represents a solution that is being fully

allocated. The energy in this case does not change because

the local assignment algorithm does not move tasks across
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Fig. 7. Pareto front for lower bound, integer, upper bound, and NSGA-II.
The lower bound does truly lower bound the other curves. The full allocation
or upper bound is very near the lower bound so the optimal Pareto front is
tightly bounded. The NSGA-II with the original seed solution quality is rather
poor and expensive to compute, however the NSGA-II seeded with the full
allocations produces a reasonable result, close to the full allocation, in much
less time, but still not as good as the full allocation in places.
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integer

lower bound
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energy @MJD
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Fig. 8. Progression of solutions from lower bound to integer to upper bound
(no idle power)

machine types thus the power consumption cannot change.

The makespan increases are highly varying. The full allocation

solution second to the right dominates the one on the far right.

In this case the solution on the far right is taken out of the

estimate of the Pareto front.

Fig. 9 shows the progression of the the solutions with

non-zero idle power. The idle power consumption is set to

10% of the mean power for each machine type, specifically

APC∅j = 0.1
T

∑

i APCij . As the makespan increases, more

machines will be idle for longer, so the idle energy increases.

The local assignment phase now negatively affects the energy

consumption because it will often have machines idle for some

time.

Fig. 10 shows the effect of idle power on the Pareto front.

The curves show the lower bound on the optimal Pareto front

with different idle powers. The penalty for having a large

makespan increases as the idle power increases. The optimal

energy solutions now must have a shorter makespan to reduce

energy usage. This causes the Pareto front to contract in the

makespan dimension and shift to the right slightly.
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Fig. 9. Progression of solutions from lower bound to integer to upper bound
(10% idle power)
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Fig. 10. Pareto front lower bounds when sweeping idle power: Idle power is
swept from 5% increments as labelled on the figure. As idle power increases
the reward for improving makespan also increases.

VI. CONCLUSIONS

A highly scalable scheduling algorithm for the energy and

makespan bi-objective optimization problem was presented.

The complexity of the algorithm to compute the lower bound

on the Pareto front was shown to be independent of the number

of tasks. The quality of the solution also improves as the

size of the problem increases. These two properties make

this algorithm perfectly suited for very large scale scheduling

problems. Algorithms were also presented that allow one to

efficiently recover feasible solutions. These feasible solutions

serve as the upper bound on the Pareto front and can be used

to seed other algorithms. This upper bound was compared to

the solution found with the NSGA-II algorithm and shown to

be superior in solution quality and algorithm run time. These

algorithms allow the decision makers to more easily trade-off

energy and makespan to reduce operating costs and improve

efficiency of HPC systems.
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thanks to Brian Stefanović, Mark Oxley, and Tim Hansen for

their valuable comments.

REFERENCES

[1] J. Koomey, “Growth in data center electricity use 2005 to 2010,”
Analytics Press., vol. 1, 2011.

[2] K. W. Cameron, “Energy oddities, part 2: Why green computing is odd,”
Computer, vol. 46, no. 3, pp. 90–93, 2013.

[3] R. Friese, T. Brinks, C. Oliver, H. J. Siegel, and A. A. Maciejewski, “An-
alyzing the trade-offs between minimizing makespan and minimizing
energy consumption in a heterogeneous resource allocation problem,”
in INFOCOMP, The Second International Conference on Advanced

Communications and Computation, 2012, pp. 81–89.
[4] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
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