
 

 

 

 

������������ ����� �	�
�� �
� ��	

� ��
�
��� 	� ��

� 	��
��	�����

�	�
� ��� �	������� ������ �	�� ������
� 	� �������� 	���� ��
�

������
� ��� �	�
� ����� ��	�
� �
���������� ����
��� ��
� ��	�
�

�
���������� 
���	��� ��� ��
� ��� ������� �
 

���
��� !���

��

�������	��	

���
����
���
�
��	��������
	�
���������	
�������
��

 ������	��
��	��������	�������	��	
���	�����������
���
�	��
�

����	�� ���
��	�
�� 	� 
��� ��� ���
��	�
� ��� 
�����
���
�� ��
���"#�

$�����	
� �������
��� "����	�
� #�����
����
%� ��� 
�� ����

������

������
���������	��������
�&"'()(����
��	�
�*)+��*,+���
�

	
����	 
�	� 
������
��
��-.��$-�	����	
�.�
�����
��	�
%�	���	�

 
��� ���
��
�� ��	����	
� �����	������ 
� �����
���� /���

	
���������������
�
����
��	���0
���	���������
���������	������
��

����
��
����������	�����
��
�����
	�
���
���������	��1���0


����

	��� ��������
� ��
� �	�	� ��� ��
� 23�� #��
�� ������ ����� ���
�

�	��
�	���	
� �	
��
	������ �
� �	�� ������
� 
4	��
�� ��
� 	��

��

�

�
������
��� 
�����
	�������������� 
���
���������	������

��
� �
���
�� ������ ��� ��
� ��	�
�� ��
� 5������ ��� ��
� �������� 	����

	�
� �
�
��
�� ����� ��
��� �
���������� 	
��������� �
� �
	�
��

��
��
�� ����

� �����
�� � 
�� 
	��� 5����� ��	�� ���
�
��
�� ��� 	���

�
�����6
�� ��� ����� ��
��� ��
�
������ ����� �	�� �
� �	�� 
4��	��
��

�������
��	�
�
����	�
���	��0
����������������
��

�
���

I.� INTRODUCTION 

HIS paper presents an application made in LabVIEW 

which can control the robotic arm with stereo cameras. 

In the industrial environment most of the robots have no 

“eyes”, have no cameras, they just move following the 

previously learned paths and they make no decisions during 

execution of tasks. Their control software is simple, with no 

complications, most of the robots have clear paths with no 

obstacles and the engineers are always close to correct if a 

problem occurs [1]. 

As we maybe see in today’s factories the robotic arm are 

even separated in cages, so no obstacles can get in their way 

and no person can get close to the even accidentally. These 

rules of caging robotic arm were are made for user safety, 

because these robotic arms can really injure a human if he 

gets in their way. If you take a robotic arm programming 

class of one semester, you shall see that almost one semester 

you just learn the work protection and safety task and only 

after than you can get to the fun part, to really program the 

robotic arm. 

This is all good, but maybe this can’t go forever, there has 

to be a time when a robot and human can work together,  

 

without to always be aware that a robotic arm can hurt the 

operator. 

Here comes the computer vision in the robotic industry, 

which can change the way robots were controlled. 

Of course we know that computer vision was integrated in 

the robotic industry even a decade ago, but wasn’t so spread, 

and in the industrial robotic arms the cameras for detecting 

the robotic arm’s movement weren’t really used. Cameras 

were used only for object detection, but not to control the 

robotic arms itself. 

This way we can get rid of the cages in the industry for 

the robotic arms and if an operator or an obstacle gets in the 

way of the robotic arm, this can avoid it, or it can stop or 

recalculate it’s trajectory on the move. 

Another this is we can reduce service and maintenance 

time of a robotic arm, because we shall need even less 

calibration, because using cameras the arm can detect it’s 

position and can auto calibrate. 

Maybe this robotic arm detection with camera method is 

not very mature, but is a good start. Our idea is to combine 

all the robotic arm control algorithms together and not to 

replace an existing one. We can use the PTP (Point To 

Point) method to teach the trajectory to the robot, we can use 

the coordinate system conversion algorithms like the inverse 

and forward kinematics; we can use one camera for object 

detection and two or more cameras for the robotic arm 

position detections in space. 

II. PROBLEM FORMULATION 

We had the task quite clear. We had a Lynxmotion AL5 

type robotic arm, two webcams and a PC. We could use any 

programming environment; the idea was to make the job 

done. To create an application which can recognize the 

robotic arm in space using computer vision and control it 

according to its position using the RS;232 interface. 

We could use even other auxiliary object too, which could 

help us, but the important fact was to finish the job 

successfully. 

An idea was to try to find some sort o programming 

language which can incorporate all the necessary tasks, to be 

simple to use and to program, because in very complex 

T

7�

�)��&�������#���3�����
������"�
�
��3	�
�	��!	�
����

�	������

 Roland Szabó, Aurel Gontean 
Applied Electronics Department 

Faculty of Electronics and 

Telecommunications, 
“Politehnica” Univ. of Timi@oara 

Timi@oara, România 

roland.szabo@etc.upt.ro 

Position Papers of the 2013 Federated Conference on

Computer Science and Information Systems pp. 37–42

c© 2013, PTI 37



 

 

 

systems it helps no to do it in a very low level programming 

language, because this way we never finish the job. To be 

also user friendly, to have a string image recognition library 

built in, to have great execution speeds and to also have 

many communication interfaces built in to be able to control 

almost any robotic arm. 

III. PROBLEM SOLUTION 

We found the suitable programming language which can 

fulfill the requirements from the previous paragraph, this 

programming language is called: LabVIEW. 

LabVIEW made everything possible, like user friendly 

interface and user friendly graphical programming 

environment, NI vision Development Module which is a 

strong computer vision library, and a library for almost all 

the computer interfaces. We could accomplish everything in 

only one programming language and create a single 

application which can do the entire job. 

����������	
��
��
�������


Our idea was to recognize the robotic arm with the two 

webcams, but of course to recognize all the arm would be a 

more complicated job, so the best way is to recognize only 

key part of the object. Today every object recognition 

system recognizes only key characteristics of the object and 

upon these a decision is made to recognize the whole object. 

We placed some colored bottle stoppers on the joints of 

the robotic arm and we recognized these with color 

recognition algorithm. These joints were than united with 

straight lines and this way we had the skeleton of the whole 

robotic arm, which could be introduced in the PC. This 

method is used when athletes are tested by their 

performance; they have some luminous spots or colored 

spots placed on their joints and these spots are united and 

their movement is tested. This method also is used in 

computer games when animating characters. Sometimes the 

animation of the characters is made with the data introduced 

from real actors which have these spots on them to recognize 

their movements. We used the same principle to our robotic 

arm. Of course we can enhance the method by recognizing 

some key elements on the robotic arm, like some screws or 

bolts, this way we don’t have to place colored objects on 

them. 

After this we drew circles around each recognized joint, 

because the joints of the robot are exactly in the place where 

the motors are, so these circles are the paths where the 

robotic arm part can move around the center point, which is 

the specific motor. 

We drew tangents to the circles and parallels to the 

tangents, this way we created a 2D coordinate system. This 

drawing looked like a parallelogram, so our coordinate 

system is not orthogonal, but it’s still good for us. In this 

coordinate system can calculate the movement on 0Y and 0Z 

axes. The main information for us was the lengths of the 

sides of the parallelogram. To know them we used the 

following algorithm. First we drew the tangent to the circle 

as long as its radius, it is logic too that this tangent is 

orthogonal to the radius. We drew the two tangents of the 

two circles which had the same starting point, because on 

circles had the center in the base joint and the other in the 

elbow joint. We knew the target point too. We needed to 

compute two parallel lines with the tangents which pass 

through the target point. After this with the equation of the 

straight line we compute the intersections of one line which 

is parallel to the tangent and passes though the target point 

and the other line which has the length of the radius and it’s 

orthogonal to it. This we knew the exact size of the sides of 

the parallelogram. This is the first information; the other is 

the size of the radius of the circles, which is also known, so 

this way we have an orthogonal triangle, from where we 

could compute the angle which needs to move each motor 

with arctangent. From this angle we computed the robotic 

value, constructed the SCPI (Standard Commands for 

Programmable Instruments) command and sent it on the 

serial interface [3], [4]. 

For the movement in the 0X axis we used stereo distance 

calculation, where we used both of the cameras. We 

computed the distance to the object and the distance two the 

gripper, so we used the triangle geometric stereo distance 

algorithm twice, we computed their difference and that, from 

that the angle and from that the robotic value which was 

included in an SCPI command and sent to the robotic arm. 

So as we seen with these ideas the robotic arm can be moved 

in 3D, and 3 of its joints manipulated according to its 

recognized position by the camera. 

We needed to compute the robotic values from the angles, 

for this we came up with equation (1) [1], [2]. After this we 

concatenated these values into the SCPI (Standard 

Commands for Programmable Instruments) commands sent 

to the robotic arm on the RS;232 interface [5]. 

 

� � � �����	 
 �	 � ����� 
 ������	 
 �	  

� ��
 ������������������

(1) 

 

Where 2500 is the maximum and 500 is the minim robotic 

value and we know that the motors from the robot can make 

a 180º maximum movement. This means the following 

shown in equation (2) [1], [2]. 

 �	���
�������������������� (2) 

 

On Fig. 1 we can see the block diagram of the experiment. 

The image recognition algorithm is presented next. 

We first make a color threshold which can be done to and 

RGB (Red, Green and Blue) image or a HSV (Hue, 

Saturation and Value) image. This is done for each color, so 

four times for the blue, yellow red and green bottle stoppers. 

After this we remove the small particles to exclude false 

positives and noise. Finally we want to know the exact 

coordinate of the searched color, so we make a particle 

38 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, 2013



 

 

 

analysis and we search the center of the mass, which is the 

center of the searched color blob. After this we computer our 

lines and circles, we create our coordinate system, we 

overlay everything on the image, we construct the SCPI 

commands and send them thought the VISA driver to the 

robotic arm [3], [4]. 

 

Fig.  1 Block diagram of the experiment 

�����������	
��
���
����	���


On Fig. 2 we can see the overlay drawings on the 

acquisitioned image with webcam. 

The difference between vectors we calculate the following 

way. 

 �� � �� 
 �� (3) 

 � �  � 
  ! (4) 

 

 

Fig.  2 The overlay drawings on the robotic arm for the mathematical calculations 

 

The vector length we calculate with the following formula. "�" � #�� $  � (5) 

P0 

P1 

P4 

P5 

P7 

PT 

P6 

P2 

VISA Driver 

for RS;232 

SCPI 

Commands 

AL5A Robotic 

Arm 

	��
����
 �
�������

RS;232 

Logitech C270 

Webcams 

USB 

Color 

Threshold 

Particle 
Analysis – 

Center of 

Mass 

Mathematical 

Calculations 

Drawing Overlay 

on Image 

Remove 

Particle 
USB 

PC 

ROLAND SZABO, AUREL GONTEAN: FULL 3D ROBOTIC ARM CONTROL 39



 

 

 

We can compute the orthogonal vector in the following way. 

 ��%&���� � � (6) 

 �' �   (7) 

  ' � 
��%&����  (8) 

 �( � ��') 
 � * ��') $ �� (9) 

  ( � ��'+ 
 � * ��'+ $  � (10) 

 �, � � ') 
 � * � ') $ �� (11) 

  , � � '+ 
 � * � '+ $  � (12) 

 

The parallelogram is calculated the following way. 

 

%! �  , 
  ��, 
 �� (13) 

 

%� �  ( 
  ��( 
 �� (14) 

  � %� $ � (15) 

  � � %!�� $ � (16) 

  � %!� $  � 
%!�� (17) 

  - � %!�- $  � 
%!�� (18) 

  . � %��. $  � 
%��� (19) 

  - � %��- $  / 
%��/  (20) 

  . � %!�. $  / 
%!�/ (21) 

 %!�- 
%��- �  / 
%��/ 
  � $%!�� (22) 

 

�- � �%!�� 
%��/ $  / 
  ��%! 
%�  (23) 

  - � %!��- 
 ��� $  � (24) 

 %��. 
%!�. �  / 
%!�/ 
  � $%��� (25) 

 

�. � �%��� 
%!�/ $  / 
  ��%� 
%!  (26) 

  . � %���. 
 ��� $  � (27) 

 

The stereo distance calculation is done as shown on Fig. 3. 

 

Fig.  3 Stereo distance calculation algorithm 

 

�0��� � 1����2����%������&������2 (28) 

 

�0��� � �33���3����� (29) 

 

� � 4� 
 � (30) 

 �33��� � 5��6 
 ��75 (31) 

 3����� � 

� �33���
�0 84� 
 ����0 9 �2�����1����2����%������&������2:;

 (32) 

 �33��� � 5��6 
 ��75 (33) 

 

3�2���1�2���2�� � �0 <4� 
 ����0 =�33���3�����>? 

* ��%������&������2 

(34) 

 

The angle is calculated in the following way. 

 

� � ���	4 * ����0 =��20�2����20�@��1������20�@ > (35) 

 

The robotic values are calculated the following way. 

 

������������� � �� * ����������������������	  (36) 

 

The real world coordinates were converted to pixels with the 

following formulas. 

 @���A�2�������������2 � B��C� �����������������2 � �D�C� 1��0�2�� � �EF (37) 

 1��&�� ���A� � ��G�F�H���GDF � ��G���IIJ (38) 

a 

b 

factor 

o
ffset 

cam
era sep

aratio
n
 

distance 

40 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, 2013



 

 

 

 1����2����2�1��&�� �K&�����L � 

� �����M���1�1����2��K�%L H ��G���KIIJL�G�D�K�%L  
(39) 

 

�����������
�����������	��


The software was implemented in LabVIEW. 

We chose LabVIEW, because as we can see on Fig. 4 this 

software environment has very friendly and rich UI (User 

Interface). It has also the possibility to program almost any 

interface of the PC, like serial port (RS;232), USB, parallel 

port, Ethernet, IEEE;488 or GPIB (General Purpose 

Interface Bus), Bluetooth and IrDA (Infrared Data 

Association). It has the libraries in the base package, so no 

additional libraries are needed to control the previously 

enumerated computer interfaces [3], [4]. 

It has also a very strong computer vision library which 

can control almost any camera on FireWire (IEEE;1394), 

USB 2.0, Gigabit Ethernet (GigE Vision) or Camera Link 

[1]. 

It has many computer vision functions which smartly 

combined can create a string computer vision application. 

As we can see everything to control the robotic arm is 

integrated in one single application. 

We have first the serial port configuration for 

commanding the robotic arm on RS;232 interface. We have 

115200 baud rate, 8 data bits, no parity, 1 stop bit and no 

flow control. [1], [2] 

We have 4 buttons to make to communication possible on 

the serial interface between the PC and the robotic arm. The 

first button will place the SSC;32 servo control board from 

the robotic arm in remote mode and will read its version. 

This buttons after it’s pressed it will display the response in 

the indicator near it, we can see clearly that we have the 

SSC;32 board version 2.01. [1], [2] 

The Initialize Motor button will test all the digital port 

from the servo control board and the motors it’s self too. We 

have 32 digital port, but only 5 motors, from where in our 

application we use only 3 motors, but with this button we 

test all ports and all motors [1], [2]. 

With the All Servos 1500 we “wake” the robotic arm , we 

put it in the initial position which will look like the Greek 

capital gamma letter (Γ) [1], [2]. 

The move button will start the image acquisition and will 

overlay the lines and circles to the original images 

acquisitioned by the two webcams. It will also move the 

robotic arm in the desired position. 

We can see that we have also two drop down boxes to 

choose the webcams, this way we can change between 

webcams if we have more than two connected to the PC or 

we can change their order or switch the right webcam with 

the left one. 

In the middle we have the left and right images with the 

acquisitioned image of the robotic arm ant he overlays after 

the mathematical calculation. We have the color filtering for 

all for colors for left and for right. 

We have also 24 sliders for each color filtering to set the 

color thresholds. 

Finally we have the STOP button, because no LabVIEW 

application with loops should be left without it, this way we 

can get rid of problems like force quit and end task when we 

want to exit the application. 

IV. CONCLUSION 

As we could see we created a whole robotic arm control 

application all in one program. 

The system work surprisingly well, but we know that 

nothing is perfect. We think about enhancements of it, 

maybe to create it on text based programming language too 

or to port it to another operating system, because our system 

works now in Windows operating system and in LabVIEW 

programming language. 

We would also like to port it on an embedded hardware, 

this way the only solution could be and FPGA, maybe a 

Spartan;6 board like the Digilent ATLYS. 

After this we could create even a layout of the chip and 

create our own ASIC (Application;Specific Integrated 

Circuit), which does the robotic arm control. 

Maybe a best enhancement would be to extend to control 

of the number of joints, the best goal is to extend the number 

of controlled joints from 3 to 7, this way we can please even 

NASA’s 7 joint robotic arm from the ISS (International 

Space Station). 

The implementation solutions are endless, but the basic 

idea will stay the same, to use one or more cameras to detect 

the robotic arm’s position, not just to know it by “blind” 

calculations. 

REFERENCES 

[1] R. Szabó, I. Lie, “Automated Colored Object Sorting Application for 

Robotic Arms,” ��������	����
 ������	��
 ��
 ���
����	
�
 ���


����
�����	
��	���
������ . Tenth Edition, 2012, pp. 95–98. 
[2] R. Szabó, A. Gontean, I. Lie, “Smart Commanding of a Robotic Arm 

with Mouse and a Hexapod with Microcontroller,” !"��
��������	����


��������
�
��
����
������	��
���#$�% , 2012, pp. 476–481. 
[3] R. Szabó, A. Gontean, I. Lie, M. BăbăiŃă, “Comparison between 

Agilent and National Instruments Functional Test Systems,” "��


��������	����
 ������	��
 ��
 ������	����
 �������
 ���
 ��������	
�

����& , 2010, pp. 87–92. 

[4] A. Gontean, R. Szabó, I. Lie, “LabVIEW Powered Remote Lab,” !'��


��������	����
 ������	��
 ���
 $��	��
 ���
 ��
�������
 ��
 ���
����	
�

(�
�����
������� , 2009, pp 335–340. 

[5] ���)*+
,���
������. Available: http://www.lynxmotion.com/images/ 

data/ssc;32.pdf, last visited April 20, 2013. 
[6] Wong Guan Hao, Yap Yee Leck, Lim Chot Hun, “6;DOF PC;Based 

Robotic Arm (PC;ROBOARM) with efficient trajectory planning and 

speed control,” -��
 ��������	����
 ��������
�
 .�
 ��
������	
�

���.� , 2011, pp. 1–7. 

[7] Woosung Yang, Ji;Hun Bae, Yonghwan Oh, Nak Young Chong, 

Bum;Jae You, Sang;Rok Oh, “CPG based self;adapting multi;DOF 
robotic arm control,” ��������	����
��������
�
��
 ������	����
/�0���


���
�������
��/.� , 2010, pp. 4236–4243. 

[8] E. Oyama, T. Maeda, J.Q. Gan, E.M. Rosales, K.F. MacDorman, S. 
Tachi, A. Agah, “Inverse kinematics learning for robotic arms with 

fewer degrees of freedom by modular neural network systems,” 

ROLAND SZABO, AUREL GONTEAN: FULL 3D ROBOTIC ARM CONTROL 41



 

 

 

��������	����
��������
�
 ��
 ������	����
 /�0���
 ���
 �������
 ��/.� , 

2005, pp. 1791–1798. 
[9] N. Ahuja, U.S. Banerjee, V.A. Darbhe, T.N. Mapara, A.D. Matkar, 

R.K. Nirmal, S. Balagopalan, “Computer controlled robotic arm,” 

!1��
 ����
 ������	��
 ��
 ��������)�����
 ���	
��
 �������, 2003, 
pp. 361–366. 

[10] M.H. Liyanage, N. Krouglicof, R. Gosine, “Design and control of a 

high performance SCARA type robotic arm with rotary hydraulic 
actuators,” �����	��
 ��������
�
 ��
 ���
��	
��
 ���
 ��������


���	����	��
������ , 2009, pp. 827–832. 

[11] M. C. Mulder, S. R. Malladi, “A minimum effort control algorithm for 

a cooperating sensor driven intelligent multi;jointed robotic arm,” 
(��
���	���
��
 ���
*2��
 ����
��������
�
��
$�
	�	��
���
�������, 

vol. 2, pp. 1573–1578, 1991. 

[12] M. H. Liyanage, N. Krouglicof, R. Gosine, “High speed electro;
hydraulic actuator for a scara type robotic arm,” ��������	����


��������
�
��
������	����
/�0���
���
�������
��/.� , 2010, pp. 470–

476. 

 

 

Fig.  4 The robotic arm control application made in LabVIEW 
 

42 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, 2013


