

Abstract—The paper considers application of the AVX
(Advanced Vector Extensions) technique to improve the
performance of the PARFES parallel finite element solver,
intended for finite element analysis of large-scale problems of
structural and solid mechanics using multi-core computers.
The basis for this paper was the fact that the dgemm matrix
multiplication procedure implemented in the Intel MKL (Math
Kernel Library) and ACML (AMD Core Math Library)
libraries, which lays down the foundations for achieving high
performance of direct methods for sparse matrices, does not
provide for satisfactory performance with the AMD Opteron
6276 processor, Bulldozer architecture, when used with the
algorithm required for PARFES. The procedure presented
herein significantly improves the performance of PARFES on
computers with processors of the above architecture, while
maintaining the competitiveness of PARFES with the Intel
MKL dgemm procedure on computers with Intel processors.

I. INTRODUCTION

HE PARFES (Parallel Finite Element Solver) is a

sparse direct method for solving linear equation sets

with sparse symmetric matrices, which arise when the finite

element method is applied to structural and solid mechanics

problems, is presented in [7], [8]. The method is developed

to be used in FEA software focused on multi-core shared

memory computers. PARFES supports core mode (CM) as

well as two out of core modes – OOC and OOC1. In the

core mode, the solver only utilizes random access memory

(RAM), demonstrating good performance and speed up

when the number of threads increases. If the dimension of

the problem exceeds the RAM capacity, the method

switches to the OOC mode, in which disk storage is used,

and the amount of I/O operations is minimal. Performance

and speed up deteriorate slightly compared to the CM. If the

amount of RAM is not sufficient for the OOC mode,

PARFES switches to OOC1. In this mode, the number of

I/O operations is greatly increased; however, the RAM

amount requirements are low. The performance and speed

up degrade significantly, but this method allows solving

problems of several million equations using desktop and

laptop computers.

T

The option to use disk memory is the advantage of

PARFES compared to PARDISO (Parallel Direct Solver),

which is described in [16] and presented in the Intel MKL

This work was supported by Narodowy Centrum Nauki on the basis of
decision DEC-2011/01/B/ST6/00674.

library [11]. Although PARDISO formally supports the

OOC mode, practice showed that in this mode, this method

is considerably inferior both to PARFES, and the

multifrontal method where small tasks are concerned [1],

[5], [10], and simply crashes when used for larger problems

[7], [15].

In contrast to the multifrontal method, PARFES

demonstrates significantly higher performance and speed up,

and smaller RAM requirements (in OOC1 mode) [7], [8].

This paper describes further development of PARFES for

the use with Intel AVX instructions [14] that implement

computation vectorization elements with 256-bit registers,

allowing to perform four multiplications or four additions of

double type values in one CPU cycle.

It was discovered that the dgemm matrix multiplication

procedure as implemented in Intel MKL 11.0 [12] does not

provide for satisfactory performance of PARFES on a

computer with a 16-core AMD Opteron 6276 CPU 2.3/3.2

GHz processor, Bulldozer architecture. For test 1: C = C −

A∙B, where A, B, C are 8 000 × 8 000 square matrices, the

performance of this procedure is 3 958 MFLOPS with a

single thread and 35 013 MFLOPS with 16 threads. The

performance of the same procedure as implemented in

ACML 15.2.0 (AMD Core Math Library) [2] is 14 203

MFLOPS and 94 852 MFLOPS respectively.

However, when solving test 2 (Fig. 1, 2) it was found that

the performance of this algorithm degrades (see Table 1),

and the threads run in the OS kernel mode for a considerable

amount of time.

#pragma omp parallel for

for(ib=0; ib<Nb; ++ib)

{

ip = omp_get_thread_numb();

Cib = Cib − Aib∙B;

}

Fig.1 Algorithm for test 2

Matrices C and A have a block structure (Fig. 2), ip is the

thread number, and ib is the block number. Inside the loop,

the single-treaded version of the dgemm procedure (ACML

[2]) is used. The arrows indicate the packing of data in the

respective matrices.

Application of AVX (Advanced Vector Extensions) for Improved
Performance of the PARFES – Finite Element Parallel Direct Solver

Sergiy Fialko
Tadeusz Kościuszko Cracow University of Technology

ul. Warszawska 24 St., 31-155 Kraków, Poland
Email: sfialko@poczta.onet.pl

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 447–454

978-1-4673-4471-5/$25.00 c© 2013, IEEE 447

Fig. 2 Structure of A, B, C matrices in test 2

Test 2 is a good simulation of the PARFES correction

procedure [7], [8], when the jb block-column (matrix C) is

updated by the kb block-column (matrix A) located to the

left of the former.

Thus, it was decided to develop a new procedure,

microkern_8x4_AVX, which would allow achieving high

performance with processors that support AVX instructions

on the × 64 platform.

II.FACTORIZATION STAGE

A.Problem definition

Let us consider the direct method for solving linear equa-

tion sets.

KX=B , K=K
T

, X ={x i } , B={bi } , i∈ [1, nrhs] , (1)

where K is the symmetric sparse stiffness matrix; X and B

are solution vectors and right-hand parts for multiple load

cases; and nrhs is the number of right-hand parts. The de-

composition is sought in the form of

K=L⋅S⋅L
T

, (2)

where L is the lower triangular matrix and S is the sign diag-

onal that summarizes the Cholesky decomposition method

into a class of indefinite matrices. After factorization (2),

forward substitution, diagonal scaling and back substitution

are carried out:

L⋅Y =B → Y

S⋅Z= Y → Z

LT⋅X =Z → X

 . (3)

B.Sparse matrix analysis

First of all the adjacency graph for nodes of the finite

element model is reordered to reduce the number of

non-zero entries in the factorized stiffness matrix. The

number of non-zero entries and the non-zero structure of the

sparse lower triangular matrix L depend on the reordering

method used [3].

Each node of FE model, which has dof degrees of

freedom, produces a dense submatrix with the dimensions

dof × dof. Therefore, the physical formulation of the

problem leads to the division of the original sparse matrix

into dense submatrices of relatively small dimensions. To

achieve high performance, we should enlarge the dimension

of these blocks, and do so in a way that provides for the

minimal number of zero entries appearing as the result of

such procedure. To this end, we use the algorithm presented

in [8]. As a result, matrix L is divided into dense rectangular

blocks, and the blocks located on the main diagonal are

filled completely. The blocks located below the main

diagonal may be filled either completely or partially.

Memory is not allocated to empty blocks, and for partially

filled blocks, only non-zero rows are taken into

consideration (Fig. 3).

Fig.3. Block-column consisting of empty, partially and completely filled

blocks. The packing of data in column major storage is shown to the right.

A more detailed description of the method is provided in

[7], [8].

C.Numerical factorization

The algorithm used in this method of left-looking block

factorization for the CM mode is shown in Fig. 4, 5.

Factorization is performed in a loop going over jb

block-columns, the current block column jb is corrected by

the fully factored block columns located to the left (p.2). Nb

is the number of block-columns (p. 1, Fig. 5).

To avoid a situation when two or more threads attempt to

modify the same block Aib,jb in a jb block-column, all blocks

of current block row are mapped to the same thread. To

evenly distribute the processor load, the weight of each

block row is calculated (the number of non-zero elements in

this block-row), the block rows are sorted in the descending

weight order, and then mapped to the threads alternately;

with that, the current block row is assigned to the thread

with the currently-minimal amount of computation.

448 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 4. Left-looking factorization of jb block-column. All block-columns

located to the left of jb (kb < jb) are fully factorized.

1. do jb=1,Nb
2. update of block-column jb

prepare parallel tasks Q[ip] for update of
block-column jb
#pragma omp parallel

while(Q[ip])
{Ljb,kb, Lib,kb, kb} = (Q[ip]/{Ljb,kb, Lib,kb, kb})
Aib,jb = Aib,jb – Lib,kb∙Skb∙Ljb,kb

T

(kb∈Listk [jb] ; ib∈L
kb)

end while
end of parallel region

end of update
3. factoring of block-column jb

Ajb,jb = Ljb,jb∙Sjb∙Ljb,jb
T

#pragma omp parallel for (ib∈L
jb)

Ljb,jb∙Sjb∙Lib,jb
T = Aib,jb

T →Lib,jb
T

end of factoring
4. prepare List_k for block-columns, which are

located
to the right of block-column jb and will be updated
by it

end do
Fig. 5. Looking-left block factorization algorithm

As a result, a queue of tasks Q[ip] is created for each ip

thread, ip = 0, 1, …, np-1, np is a number of threads. Each

queue element {Ljb,kb, Lib,kb, kb} contains pointers to the

factorized matrix blocks Ljb,kb, Lib,kb and the kb index of the

sign diagonal block Skb. The jb block-column is corrected

only by those block-columns that have non-zero blocks

Ljb,kb
T in the block row ib = jb (kb ϵ List_k[jb]).

In the parallel region each thread runs a while loop going

over its own queue of tasks Q[ip] until it is exhausted.

The nearest element is popped from the queue and

immediately deleted: {Ljb,kb, Lib,kb, kb} = (Q[ip]/{Ljb,kb, Lib,kb,

kb}). Then, the task Aib,jb = Aib,jb – Lib,kb∙Skb∙Ljb,kb
T
 is per-

formed. Conditions ib ϵ Lkb and ib = ϵ Ljb mean that the ib

index accepts only those values that correspond to the

non-zero blocks in the kb and jb block-columns

respectively.

The details of this algorithm are presented in [7].

To ensure high performance, we can use the dgemm ma-

trix multiplication procedure, or the microkern_8x4_AVX

procedure presented in this paper.

When the jb block-column is completely corrected, it is

factorized (p.3), and then the jb index is pushed to the List_k

block-column list, which will be updated by the jb

block-column at the next factorization steps (p. 4).

Therefore, performance at the numerical factorization

stage is mainly determined by the performance of the matrix

multiplication procedure. Test 2 (see Fig. 1, 2) simulates

correction of the jb block-column by block-columns located

to the left of it. Therefore, this was the test mainly used to

test out the microkern_8x4_AVX procedure. Following [6],

we will refer to the procedure microkern_8x4_AVX, whose

code is written based on the AVX instructions, as

microkernel.

D.Microkernel microkern_8x4_AVX

The proposed approach uses the same idea as in the

development of the microkernel, based on SSE2 [6], [9],

[10]. To achieve high performance, it is necessary to use

cache blocking, register blocking, computing vectorization,

data repacking in order to reduce the number of cache

misses, and to unroll the inner loop to maximize the use of

the processor pipelines. Since in the PARFES method, the

maximum dimension of block lb is 120, the lb, K, N

dimensions do not exceed this value. Therefore, division of

matrices Aib, B and Cib into blocks (cache blocking) is not

required, and the dimension of TLB (translation look aside

buffer) will not be exceeded [6].

Modern processors supporting AVX have 256-bit YMM

registers, and 16 registers are available on the ×64 platform.

Four floating-point double precision words can be loaded

into each register, and four additions or four multiplications

are carried out per each clock of processor. The register

blocking diagram for the ×64 platform is shown in Fig. 6.

The result is stored in 8 registers intended for the
elements of matrix Cib. Two registers are used for elements
of matrix Aib, one register – for elements of matrix B and
one register is required to store the intermediate
multiplication results. The block dimension is mr × nr = 8 ×
4. When the inner loop runs, the elements of matrices Aib

and B are repacked to ensure their locations in neighboring
RAM addresses. This reduces the number of cache misses
and allocates the data in the cache extremely densely. We
denote: AA = repack(Aib), BB = repack(B), where Dest =
repack(Source) means repacking from array Source to
array Dest (Fig. 6, bottom). The elements of matrices Aib, B
and Cib are located in the RAM column-major storage.
Prefetch instructions are applied to hide memory system
latency.

SERGIY FIALKO: APPLICATION OF AVX (ADVANCED VECTOR EXTENSIONS) FOR IMPROVED PERFORMANCE OF THE PARFES 449

Fig. 6. Diagram of register blocking (top) and data repacking (bottom)

The AVX is used to accelerate the transmission of data

when matrices Aib, B are repacked into arrays AA and BB

respectively. The pseudo code presenting the

microkern_8x4_AVX procedure is shown in Fig 7.

1. Procedure Pack_BB: B = repack(BB) (fig. 6, bottom).

2. Procedure microkern_8x4_AVX:

Cib = beta∙Cib+alpha∙Aib∙B (in the future index ib is omit-

ted)

AA = repack(A)
for(j=0; j<N; j+=nr)

{

//pBB0 = BB+K*j; //point to current

//vertical pane of BB

for(i=0; i<lb; j+=mr)

{

pAA=AA+i*K; //point to current

//horizontal pane of AA

pC=C+ldc*j+i; //point to Cij, ldc =

//lb.

pBB = pBB0;

 //move Cij, Ci+1,j, … , Ci+7, j to cache

 //untill CPU run internal loop

//move Ci,j+1, Ci+1,j+1, … , Ci+7, j+1 to cache

//untill CPU run internal loop

_mm_prefetch((const char *)(pC+ldc),

_MM_HINT_T0);

_mm_prefetch((const char *)(pC+2*ldc),

_MM_HINT_T0);

c1 = _mm256_setzero_pd(); //c1 ← 0

...................................

c8 = _mm256_setzero_pd(); //c8 ← 0

for(k=0; k<K; k+=16)

{

_mm_prefetch((const char *)(pAA+mr),

_MM_HINT_T0);

_mm_prefetch((const char *)(pBB+2*nr),

_MM_HINT_T0);

a0 = _mm256_load_pd(pAA);

a1 = _mm256_load_pd(pAA+4);

b0 = _mm256_broadcast_sd(pBB);

b1 = _mm256_broadcast_sd(pBB+1);

b2 = _mm256_broadcast_sd(pBB+2);

b3 = _mm256_broadcast_sd(pBB+3);

mul = _mm256_mul_pd(a0, b0);

c1 = _mm256_add_pd(c1, mul);

mul = _mm256_mul_pd(a1, b0);

c2 = _mm256_add_pd(c2, mul);

mul = _mm256_mul_pd(a0, b1);

c3 = _mm256_add_pd(c3, mul);

mul = _mm256_mul_pd(a1, b1);

c4 = _mm256_add_pd(c4, mul);

mul = _mm256_mul_pd(a0, b2);

c5 = _mm256_add_pd(c5, mul);

mul = _mm256_mul_pd(a1, b2);

c6 = _mm256_add_pd(c6, mul);

mul = _mm256_mul_pd(a0, b3);

c7 = _mm256_add_pd(c7, mul);

mul = _mm256_mul_pd(a1, b3);

c8 = _mm256_add_pd(c8, mul);

//and so on 15 times

pAA += 16*mr;

pBB += 16*nr;

}//end k loop

// put alpha*A*B to c1 – c8

mul =_mm256_set_pd(alpha,alpha,alpha,alpha);

c1 = _mm256_mul_pd(c1, mul);

c2 = _mm256_mul_pd(c2, mul);

c3 = _mm256_mul_pd(c3, mul);

c4 = _mm256_mul_pd(c4, mul);

c5 = _mm256_mul_pd(c5, mul);

c6 = _mm256_mul_pd(c6, mul);

c7 = _mm256_mul_pd(c7, mul);

c8 = _mm256_mul_pd(c8, mul);

if(beta)

{

//put alpha*AAi*BBj + beta*CCij to c1 – c8

b0 = _mm256_set_pd(beta,beta,beta,beta);

a0 = _mm256_loadu_pd(pC);

a1 = _mm256_loadu_pd(pC+4);

mul = _mm256_mul_pd(b0, a0);

c1 = _mm256_add_pd(c1, mul);

mul = _mm256_mul_pd(b0, a1);

c2 = _mm256_add_pd(c2, mul);

a0 = _mm256_loadu_pd(pC+ldc);

a1 = _mm256_loadu_pd(pC+ldc+4);

mul = _mm256_mul_pd(b0, a0);

c3 = _mm256_add_pd(c3, mul);

mul = _mm256_mul_pd(b0, a1);

c4 = _mm256_add_pd(c4, mul);

a0 = _mm256_loadu_pd(pC+2*ldc);

a1 = _mm256_loadu_pd(pC+2*ldc+4);

mul = _mm256_mul_pd(b0, a0);

c5 = _mm256_add_pd(c5, mul);

mul = _mm256_mul_pd(b0, a1);

c6 = _mm256_add_pd(c6, mul);

a0 = _mm256_loadu_pd(pC+3*ldc);

a1 = _mm256_loadu_pd(pC+3*ldc+4);

mul = _mm256_mul_pd(b0, a0);

c7 = _mm256_add_pd(c7, mul);

mul = _mm256_mul_pd(b0, a1);

c8 = _mm256_add_pd(c8, mul);

}//end if(beta)

//unload c1 – c8 to matrix C

450 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

_mm256_storeu_pd(pC, c1);

_mm256_storeu_pd(pC+4, c2);

pC += ldc;

_mm256_storeu_pd(pC, c3);

_mm256_storeu_pd(pC+4, c4);

pC += ldc;

_mm256_storeu_pd(pC, c5);

_mm256_storeu_pd(pC+4, c6);

pC += ldc;

_mm256_storeu_pd(pC, c7);

_mm256_storeu_pd(pC+4, c8);

}//end i loop

}//end j loop

Fig. 7. microkern_8x4_AVX

Here, for ease of understanding the basic idea of the

method, we consider only the case when M is a multiple of

mr, N multiple of nr, and K is a multiple of 16. In the real

microkernel, submatrices of dimension M1 × K and K × N1

are extracted from matrices A and B, where M1 and N1

assume the greatest value with the following limitations: (M1

≤ M) ^ (M1 % mr) = 0, (N1 ≤ N) ^ (N1 % nr) = 0, where a%b

means that the remainder after the division of a by b is zero.

Therefore, matrices Aib, B are divided into blocks, in which

the largest submatrices are a multiple of mr and nr respec-

tively. The YMM register blocking scheme (Fig. 6) is ap-

plied specifically for these submatrices. For the remaining

small submatrices, simpler multiplication methods are used.

Matrix B is repacked in a separate procedure, allowing us

to use it only once for each kb block-column. To produce

register blocking, indexes i, j are increased by increments of

mr, nr correspondingly. The pointers pAA and pBB are set to

the beginning of the horizontal strip of matrix AA and the

vertical strip of BB (Fig. 6, 8), before loops with indexes i, j

are initiated.

Fig. 8. Map of YMM register’s loading

Registers c1 through c8 are zeroed before the loop with

index k is started. The inner loop with index k is unrolled 16

times. The eight consecutive elements of array AA (the en-

tire column of horizontal strip – Fig. 6) are loaded into reg-

isters a0, a1 by means of the instruction

_mm256_load_pd(...). Each of the four consecutive ele-

ments of array BB (the entire vertical strip row) is sent to

registers b0, b1, b2, b3 correspondingly, by means of the in-

struction _mm256_broadcast_sd(...) (Fig. 7, 8). As a result,

the first element from the vertical strip row is found four

times in register b0, the second – four times in register b1,

etc.

The contents of register a0 are multiplied by the contents

of register b0, and the result is placed into register mul –

instruction mul = _mm256_mul_pd(a0, b0). Instruction

c1 = _mm256_add_pd (c1, mul) adds up the contents of

registers c1 and mul, and sends the result into register c1.

Then, the contents of register a1 are multiplied by the

contents of register b0, and the result is added to the

contents of register c2. The contents of registers a0, a1 are

multiplied by b1, and the results are added to the contents of

registers c3, c4, etc. respectively. At the end of the loop with

index k, registers c1 through c8 contain the fully computed

elements of the mr × nr block of matrix Cib, which constitute

the result of multiplying the horizontal strip mr × K of

matrix Aib, repacked into array AA, by the vertical strip K ×

nr of matrix B, repacked into array BB.

This result is multiplied by scalar factor alpha. If the beta

coefficient is non-zero, the 8 elements cij, ci+1,j, ..., ci+7,j are

loaded into registers a0, a1 by using _mm256_loadu_pd(...).

The elements of matrix Aib are loaded from array AA by

using instruction _mm256_load_pd (...), because memory

for array AA is allocated with a 32 byte alignment. Memory

for matrix C is allocated without the 32 byte alignment, so

here we use the _mm256_loadu_pd (...). The elements of

matrix C held in registers a0, a1 are multiplied by factor

beta and added to the contents of registers c1 and c2. Then,

eight elements from the next column of matrix Cib – ci,j+1,

ci+1,j+1, ..., ci+7,j+1 are loaded into registers a0 and a1,

multiplied by factor beta, and added to the contents of

registers c3, c4, etc. Transition to the next column of matrix

Cib is made by offsetting ldc = lb of pC pointer. While the

current iteration is running, the prefetch instruction is

applied to transmit the elements of matrix Cib from RAM to

the cache, as required for the next iteration of the loop with

index i.

As a result, registers c1 through c8 hold the accumulated

result of alpha∙AAi*BBj+beta∙CCij, where AAi, BBj are,

respectively, the horizontal strip of matrix Aib, determined

by the value of index i, and the vertical strip of matrix B,

defined by the value of index j, and CCij – the

corresponding block of matrix Cib. Instructions

_mm256_storeu_pd (...) unload data from registers c1

through c8 to the corresponding elements of matrix Cib.

III. NUMERICAL RESULTS

A. Test 2

The results of test 2, described in the introduction (Fig. 1,

2), have been obtained on two computers and are shown in

Table 1.

SERGIY FIALKO: APPLICATION OF AVX (ADVANCED VECTOR EXTENSIONS) FOR IMPROVED PERFORMANCE OF THE PARFES 451

The first computer has a 16-core AMD Opteron 6276

CPU 2.3/3.2 GHz processor, 64 GB DDR3 RAM, and runs

Windows Server 2008 R2 Enterprise SP1, 64 bit. The sec-

ond computer has a 4-core Intel i7 2760QM CPU 2.4/3.5

GHz processor, 8 GB DDR3 RAM, and runs Windows 7

Professional SP1, 64 bit.

For the ACML 15.2.0 procedure, column for computing

on 16 threads (the computer with AMD processor) contains

two values: the first (41 469 MFLOPS) corresponds to

solving the problem by parallelizing only within the dgemm

procedure, using its multi-threaded version; while the

second (10 061 MFLOPS) – to the use of the

single-threaded version of dgemm in a parallel OpenMP

loop. The first value is used to estimate the top performance

of the AMD Opteron 6276 CPU for this test, since the

ACML library is best adapted to AMD processors. The

second value confirms that the dgemm procedure from the

ACML library does not work properly in the mode required

by PARFES.

A comparison of the results (Table 1) showed that the

proposed microkern_8x4_AVX procedure successfully

solved this problem on the computer with AMD Opteron

6276 processor, as well as on the computer with Intel i7

2760QM processor.

Next, we consider two real-life problems, taken from the
collection of SCAD Soft – a Software Company
(www.scadsoft.com) developing software for civil
engineering. SCAD is FEA software, which is widely used
in the CIS region and has a certificate of compliance to local
regulations.

I. Problem 1

A design model of multistorey building contains

2 546 400 equations, consists of triangular, quadrilateral

shell finite elements, as well as spatial frame ones (Fig. 9).

The original stiffness matrix contains 27 927 845 nonzero

entries, and lower triangular factorized matrix –

1 124 085 204 nonzero entries. METIS reordering method

[13] has been used.

The duration and performance of the factorization stage is

presented in Table 2. As in the preceding example, the

dgemm procedure from the Intel MKL 11.0 library does not

achieve the desired performance on the computer with AMD

Opteron 6276 processor. The dgemm procedure from the

ACML library works well on a single thread, but when

PARFES implements multithreading, the procedure is not

performing its task. The microkern_8x4_AVX procedure

proposed in this paper demonstrates good results with a

single thread as well as during multi-threading. It is

interesting to note that on a computer with Intel i7 2760QM

processor, this procedure was not inferior to the dgemm

procedure from the Intel MKL 11.0 library.

B. Problem 2

A design model of soil-structure interaction problem con-

tains 2 989 476 equations (Fig. 10, 11) and consists of trian-

gular, quadrilateral shell finite elements, as well as spatial

frame and volumetric finite elements simulating the behav-

ior of the ground.

Fig. 9. Problem 1. Design model of multistorey building (2 546 400 equa-

tions).

This problem is very challenging for direct methods,

because the soil prism, simulated by volumetric finite

elements, generates a relatively dense part of a sparse

matrix. Of all the methods available for reordering – the

minimum degree algorithm MMD [4], the nested dissection

method ND [3], the parallel section method [3] in

conjunction with the MMD – the most efficient method for

this task is METIS [13]. The number of nonzero elements in

original matrix is 68 196 176 and in the lower triangular

matrix – 4 966 055 936 (37 GB).

The duration of the numerical factorization phase and the

performance obtained on the computer with AMD Opteron

6276 processor is shown in Table 3. The solution of this

problem on the computer with Intel i7 2760QM processor

and 8 GB of RAM was not effective due to the small amount

of core memory. PARFES was run in the OOC1 mode,

performing a large number of I/O operations. For this

reason, performance analysis of the matrix multiplication

procedure is not applicable.

The suggested microkernel procedure is slightly inferior

to the dgemm procedure from the ACML 15.2.0 library on a

single thread, but greatly outperforms it on 16 threads. In all

cases, the proposed procedure is faster than the dgemm

procedure from Intel MKL.

452 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

TABLE 1.

PERFORMANCE (MFLOPS) OF ALGORITHM C = C – A B· FOR MATRICES M × N × K = 2 000 000 × 120 × 120 (A – MATRIX M × K, B – K ×

N, C – M × N)

Procedure AMD Opteron 6276 CPU 2.3/3.2 GHz Intel i7 2760QM CPU 2.4/3.5 GHz

Single thread 16 threads Single thread 4 threads

dgemm MKL 11.0 2 377 24 945 17 921 40 563

dgemm ACML 15.2.0 6 837 41 469 / 10 061 – –

microkern_8x4_AVX 6 373 50 571 17 582 41 025

TABLE 2.

PROBLEM 1. DURATION (S) AND PERFORMANCE (MFLOPS) OF PARFES ON THE NUMERICAL FACTORIZATION STAGE (PROBLEM 1)

Procedure AMD Opteron 6276 CPU 2.3/3.2 GHz Intel i7 2760QM CPU 2.4/3.5 GHz

Single thread 16 threads Single thread 4 threads

Duration, s Perform. Duration, s Perform. Duration, s Perform. Duration, s Perform.

dgemm MKL 11.0 1 139 3 619 160 25 789 330 12 554 191 21 787

dgemm ACML 15.2.0 718 5 743 542 7 628 – – – –

microkern_8x4_AVX 753 5 477 118 34 843 294 14 196 157 27 649

Fig. 10. Problem 2. Design model of soil-structure interaction problem
(2,989,476 equations).

Fig. 11. The pile foundation (ground is hidden)

TABLE 3.

PROBLEM 2. DURATION (S) AND PERFORMANCE (MFLOPS) OF PARFES ON THE NUMERICAL FACTORIZATION STAGE. COMPUTER WITH

AMD OPTERON 6276 PROCESSOR (PROBLEM 2)

Procedure Single thread 16 threads

Duration, s Performance, MFLOPS Duration, s Performance, MFLOPS

dgemm MKL 11.0 18 992 3 138 2 123 28 068

dgemm ACML 15.2.0 12 871 4 630 10 897 5 476

microkern_8x4_AVX 13 541 4 400 1 481 40 216

SERGIY FIALKO: APPLICATION OF AVX (ADVANCED VECTOR EXTENSIONS) FOR IMPROVED PERFORMANCE OF THE PARFES 453

The speed up with the increase in the number of proces-

sors is depicted in Fig. 12.

0 4 8 12 16
0

4

8

12

16

ideal

id_tb

PARFES

number of processors p

S
p
=

T
1

/T
p

Fig. 12. Speed up with the increase in the number of threads. Ideal – the

ideal speed up, id_tb – the ideal speed up on processors with Turbo Core

support, PARFES – the real speed up.

The straight line of the “ideal” speed up passes through

the points {0, 0}, {1, 1}, {2, 2}, … . This means that if the

problem is solved using p threads, we would like to solve it

p times faster than when using one thread. The id_tb curve

approximates the ideal speed up for processors that support

the Turbo Core mode – when a small number of cores is

loaded, the processor increases the clock frequency, and

when the number of loaded cores increases, reduces the

frequency to the nominal value of 2.3 GHz. This curve is

represented by a square parabola passing through the points

{0, 0}, {1, 1}, {16, 11.5}. The ordinate of the last point was

obtained as 16 × (minimum clock frequency of the

processor) / (maximum clock frequency of the processor) =

16∙3.2/2.3 = 11.5.

When using up to 4 threads, the speed up of PARFES is

almost perfect. We explain the anomaly at p = 5 by the

features of the Turbo Core control on this processor,

because testing of PARFES on computers with different

processors [7], [8] does not produce such behavior. The

speed up of the method when p > 4 is stable up to p = 16,

although lower than for the id_tb curve.

IV. CONCLUSION

Developing the microkernel procedure, based on AVX, in

the parallel direct solver PARFES designed to solve prob-

lems of structural and solid mechanics that arise as a result

of applying the finite element method, significantly acceler-

ates matrix factorization on computers with AMD Opteron

6276 processor, Bulldozer architecture, while maintaining

high performance and competitiveness with the Intel MKL

dgemm procedure on computers with Intel processors.

REFERENCES

[1] P. R Amestoy, I. S Duff, and J. Y L’Excellent, "Multifrontal parallel
distributed symmetric and unsymmetric solvers," Comput. Meth. Appl.
Mech. Eng., vol. 184, pp 501–520, 2000.

[2] ACML 15.2.0. URL: http://developer.amd.com/tools/
cpu-development/amd-core-math-library-acml/ (accessed 17.11.2012).

[3] A. George and J. W. H. Liu, Computer solution of sparse positive
definite systems. New Jersey : Prentice-Hall, Inc. Englewood Cliffs,
1981.

[4] A. George and J. W. H. Liu, "The Evolution of the Minimum Degree
Ordering Algorithm," SIAM Rev, vol. 31, pp. 1–19, March, 1989.

[5] N. I. M Gould, Y. Hu and J. A. Scott, “A numerical evaluation of
sparse direct solvers for the solution of large sparse, symmetric linear
systems of equations,” Technical report RAL-TR-2005-005,
Rutherford Appleton Laboratory, 2005.

[6] K. Goto and R. A. Van De Geijn, “Anatomy of High-Performance
Matrix Multiplication,” ACM Transactions on Mathematical Software,
vol. 34 (3), pp. 1–25, 2008.

[7] S. Fialko, “PARFES: A method for solving finite element linear
equations on multi-core computers,” Advances in Engineering
software, vol. 40, 12, pp. 1256 – 1265, 2010.

[8] S. Fialko, “Parallel Finite Element Solver for Multi-Core Computers”,
Federated Conference on Computer Science and Information Systems,
September 9–12, 2012, Wrocław, Poland. IEEE Xplore Digital
Library, 978-83-60810-51-4, IEEE Catalog Number CFP1285N-USB,
pp. 1 – 8. URL: http://proceedings.fedcsis.org/2012/pliks/101.pdf .

[9] S. Fialko, “The block substructure multifrontal method for solution of
large finite element equation sets,” Technical Transactions, 1-NP,
issue 8, pp. 175 – 188, 2009.

[10] S. Fialko, The direct methods for solution of the linear equation sets
in modern FEM software. Moscow: SCAD SOFT, 2009 (in Russian).

[11] Intel® Math Kernel Library Reference Manual. Document Number:
630813-029US. URL:
http://www.intel.com/software/products/mkl/docs/WebHelp/mkl.htm.

[12] Intel MKL 11.0 release notes. URL:
http://software.intel.com/en-us/articles/intel-mkl-110-release-notes/
(accessed 17.11.2012).

[13] G. Karypis and V. Kumar, “METIS: Unstructured Graph Partitioning
and Sparse Matrix Ordering System,”. Technical report, Department
of Computer Science, University of Minnesota, Minneapolis, 1995.

[14] Optimize for Intel® AVX Using Intel® Math Kernel Library's Basic
Linear Algebra Subprograms (BLAS) with DGEMM Routine. URL:
http://software.intel.com/en-us/articles/optimize-for-intel-avx-using-in
tel-math-kernel-librarys-basic-linear-algebra-subprograms-blas-with-d
gemm-routine/ (accessed 19.11.2011).

[15] D. Pardo, Myung Jin Nam, Carlos Torres-Verdín, Michael G.
Hoversten and Iñaki Garay, “Simulation of marine controlled source
electromagnetic measurements using a parallel Fourier hp-finite
element method,” Comput. Geosci., vol. 15, pp. 53–67, 2011.

[16] O. Schenk, K. Gartner, ”Two-level dynamic scheduling in PARDISO:
Improved scalability on shared memory multiprocessing systems,”
Parallel Computing, vol. 28, pp. 187–197, 2002.

454 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

