


Abstract—The paper  considers  application  of  the  AVX
(Advanced  Vector  Extensions) technique  to  improve  the
performance of  the  PARFES  parallel finite  element solver,
intended for finite element analysis of large-scale problems of
structural  and solid  mechanics using  multi-core computers.
The basis for this paper was the fact that the  dgemm matrix
multiplication procedure implemented in the Intel MKL (Math
Kernel  Library) and ACML  (AMD  Core  Math  Library)
libraries, which  lays down  the foundations for achieving high
performance of  direct  methods for sparse matrices,  does not
provide for  satisfactory performance with the AMD Opteron
6276 processor,  Bulldozer  architecture, when  used  with  the
algorithm  required  for PARFES.  The  procedure presented
herein  significantly improves the performance of PARFES on
computers with  processors of  the  above  architecture,  while
maintaining  the  competitiveness  of  PARFES  with  the  Intel
MKL dgemm procedure on computers with Intel processors.

I. INTRODUCTION

HE PARFES  (Parallel  Finite  Element  Solver) is  a

sparse  direct method  for  solving  linear  equation  sets

with sparse symmetric matrices, which arise when the finite

element method is applied to structural and solid mechanics

problems, is presented in [7], [8]. The method is developed

to be used in FEA software focused on  multi-core shared

memory computers. PARFES supports core mode (CM) as

well as two out of core modes – OOC and OOC1. In the

core mode, the solver only utilizes random access memory

(RAM),  demonstrating  good  performance  and  speed  up

when the number of threads increases. If  the dimension of

the  problem exceeds  the  RAM  capacity,  the  method

switches to the OOC mode, in which disk storage is used,

and the amount of  I/O operations is minimal. Performance

and speed up deteriorate slightly compared to the CM. If the

amount  of RAM  is  not  sufficient  for the  OOC  mode,

PARFES  switches to  OOC1.  In  this mode, the number of

I/O operations is  greatly  increased;  however, the  RAM

amount  requirements  are  low. The performance and speed

up degrade  significantly,  but  this  method  allows  solving

problems  of  several  million  equations  using  desktop  and

laptop computers.

T

The  option  to  use disk memory  is  the  advantage  of

PARFES compared  to PARDISO (Parallel  Direct  Solver),

which is  described in  [16] and presented in  the  Intel MKL
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library  [11].  Although  PARDISO formally supports the

OOC mode, practice showed that in this mode, this method

is  considerably  inferior  both  to  PARFES,  and  the

multifrontal  method  where  small  tasks  are  concerned  [1],

[5], [10], and simply crashes when used for larger problems

[7], [15].

In  contrast  to  the multifrontal  method, PARFES

demonstrates significantly higher performance and speed up,

and smaller RAM requirements (in OOC1 mode) [7], [8].

This paper describes further development of PARFES for

the  use  with  Intel  AVX  instructions  [14] that  implement

computation  vectorization  elements  with  256-bit  registers,

allowing to perform four multiplications or four additions of

double type values in one CPU cycle.

It  was  discovered  that  the  dgemm matrix  multiplication

procedure as implemented in Intel MKL 11.0 [12] does not

provide  for  satisfactory  performance  of  PARFES  on  a

computer with a 16-core AMD Opteron 6276 CPU 2.3/3.2

GHz processor, Bulldozer architecture. For test 1: C = C −

A∙B, where A, B, C are 8 000 × 8 000 square matrices, the

performance  of  this  procedure  is  3  958  MFLOPS  with  a

single  thread  and  35  013 MFLOPS with  16  threads.  The

performance  of  the  same  procedure  as  implemented in

ACML  15.2.0  (AMD  Core  Math  Library)  [2]  is  14 203

MFLOPS and 94 852 MFLOPS respectively.

However, when solving test 2 (Fig. 1, 2) it was found that

the performance of  this algorithm degrades  (see  Table 1),

and the threads run in the OS kernel mode for a considerable

amount of time.

#pragma omp parallel for

for(ib=0; ib<Nb; ++ib)

{

ip = omp_get_thread_numb();

Cib = Cib − Aib∙B;

}

Fig.1 Algorithm for test 2

Matrices C and A have a block structure (Fig. 2), ip is the

thread number, and ib is the block number.  Inside the loop,

the single-treaded version of the dgemm procedure (ACML

[2]) is used. The arrows indicate the packing of data in the

respective matrices.
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Fig. 2 Structure of A, B, C matrices in test 2

Test  2 is  a  good  simulation  of  the  PARFES correction

procedure  [7],  [8], when the jb block-column (matrix  C) is

updated by the  kb block-column (matrix  A) located to the

left of the former.

Thus, it  was  decided  to develop  a  new  procedure,

microkern_8x4_AVX, which  would  allow achieving high

performance with processors that support AVX instructions

on the × 64 platform.

II.FACTORIZATION STAGE

A.Problem definition

Let us consider the direct method for solving linear equa-

tion sets.

KX=B , K=K
T

, X ={x i } , B={bi } , i∈ [1, nrhs ] ,  (1)

where  K is the symmetric sparse stiffness matrix;  X and B

are solution vectors  and right-hand parts for multiple load

cases; and  nrhs is the number of right-hand parts. The de-

composition is sought in the form of

K=L⋅S⋅L
T

,                                           (2)

where L is the lower triangular matrix and S is the sign diag-

onal that  summarizes the Cholesky decomposition method

into a class of  indefinite  matrices.  After  factorization (2),

forward substitution, diagonal scaling and back substitution

are carried out:

L⋅Y =B → Y

S⋅Z= Y → Z

LT⋅X =Z → X

 .                                      (3)

B.Sparse matrix analysis

First  of  all the adjacency graph for  nodes of  the finite

element model  is  reordered  to  reduce  the  number of

non-zero entries  in  the factorized stiffness  matrix.  The

number of non-zero entries and the non-zero structure of the

sparse lower triangular matrix L depend on the reordering

method used [3].

Each  node  of FE  model,  which  has  dof degrees  of

freedom, produces a dense submatrix with the dimensions

dof  ×  dof.  Therefore, the  physical formulation  of  the

problem leads to the division of the original  sparse matrix

into  dense submatrices of  relatively small dimensions. To

achieve high performance, we should enlarge the dimension

of these blocks, and do so in a way that provides for  the

minimal number of zero entries appearing as the result of

such procedure. To this end, we use the algorithm presented

in [8]. As a result, matrix L is divided into dense rectangular

blocks,  and  the  blocks  located on  the  main  diagonal are

filled  completely.  The  blocks  located  below  the  main

diagonal may be  filled either  completely  or  partially.

Memory is not allocated to empty blocks, and for  partially

filled blocks, only non-zero rows  are  taken  into

consideration (Fig. 3).

Fig.3. Block-column consisting of empty, partially and completely filled

blocks. The packing of data in column major storage is shown to the right.

A more detailed description of the method is provided in

[7], [8].

C.Numerical factorization

The algorithm used in this method of left-looking block

factorization for the CM mode is shown in Fig. 4, 5. 

Factorization is  performed in  a  loop going  over  jb

block-columns, the current block column jb is corrected by

the fully factored block columns located to the left (p.2). Nb

is the number of block-columns (p. 1, Fig. 5). 

To avoid a situation when two or more threads attempt to

modify the same block Aib,jb  in a jb block-column, all blocks

of  current  block  row are  mapped  to  the  same thread.  To

evenly  distribute  the  processor  load,  the  weight  of  each

block row is calculated (the number of non-zero elements in

this block-row), the block rows are sorted in the descending

weight  order,  and  then  mapped to the  threads  alternately;

with that,  the current  block row is assigned  to the thread

with the currently-minimal amount of computation.
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Fig. 4. Left-looking factorization of jb block-column. All block-columns

located to the left of jb (kb < jb) are fully factorized.

1. do jb=1,Nb
2. update of block-column jb 

prepare parallel tasks Q[ip] for update of 
block-column jb
#pragma omp parallel

while(Q[ip])
{Ljb,kb, Lib,kb, kb}  = (Q[ip]/{Ljb,kb, Lib,kb, kb})
Aib,jb = Aib,jb – Lib,kb∙Skb∙Ljb,kb

T

( kb∈Listk [ jb ] ; ib∈L
kb )

end while
end of parallel region

end of update
3. factoring of block-column jb

Ajb,jb = Ljb,jb∙Sjb∙Ljb,jb
T

#pragma omp parallel for   ( ib∈L
jb )

Ljb,jb∙Sjb∙Lib,jb
T = Aib,jb

T  →Lib,jb
T

end of factoring
4. prepare  List_k  for block-columns,  which  are  

located
to the right of block-column jb and will be updated 
by it

end do
Fig. 5. Looking-left block factorization algorithm

As a result, a queue of tasks Q[ip] is created for each  ip

thread,  ip = 0, 1, …, np-1, np is a number of threads. Each

queue  element  {Ljb,kb,  Lib,kb,  kb} contains  pointers  to  the

factorized matrix blocks Ljb,kb,  Lib,kb and the kb index of the

sign diagonal  block  Skb.  The  jb block-column is corrected

only  by  those  block-columns  that  have  non-zero  blocks

Ljb,kb
T  in the block row ib = jb (kb  ϵ List_k[jb]).

In the parallel region each thread runs a while loop going

over its own queue of tasks Q[ip] until it is exhausted.

The  nearest  element  is  popped  from  the  queue  and

immediately deleted: {Ljb,kb, Lib,kb, kb}  = (Q[ip]/{Ljb,kb, Lib,kb,

kb}).  Then,  the  task  Aib,jb = Aib,jb –  Lib,kb∙Skb∙Ljb,kb
T
 is  per-

formed. Conditions ib  ϵ Lkb and ib = ϵ Ljb mean that the ib

index  accepts  only those  values  that correspond  to  the

non-zero blocks in  the  kb  and   jb block-columns

respectively.

The details of this algorithm are presented in [7].

To ensure high performance, we can use the dgemm ma-

trix  multiplication  procedure,  or  the  microkern_8x4_AVX

procedure presented in this paper. 

When the  jb block-column is completely corrected, it is

factorized (p.3), and then the jb index is pushed to the List_k

block-column  list,  which  will  be  updated  by  the  jb

block-column at the next factorization steps (p. 4).

Therefore,  performance  at  the  numerical factorization

stage is mainly determined by the performance of the matrix

multiplication  procedure.  Test  2 (see  Fig.  1,  2) simulates

correction of the jb block-column by block-columns located

to the left of it. Therefore, this was the test mainly used to

test out the microkern_8x4_AVX procedure. Following [6],

we will refer to the procedure microkern_8x4_AVX, whose

code  is  written  based  on  the  AVX  instructions,  as

microkernel.

D.Microkernel microkern_8x4_AVX

The  proposed  approach uses  the  same idea as  in  the

development  of the  microkernel,  based  on  SSE2  [6],  [9],

[10].  To achieve  high  performance,  it  is  necessary to  use

cache blocking, register blocking, computing vectorization,

data  repacking  in  order  to  reduce  the  number  of  cache

misses, and to unroll the inner loop to maximize the use of

the processor pipelines. Since in the PARFES method, the

maximum dimension  of block lb is  120,  the  lb,  K,  N

dimensions do not exceed this value. Therefore, division of

matrices Aib,  B and  Cib into blocks (cache blocking) is not

required, and the dimension of TLB (translation look aside

buffer) will not be exceeded [6]. 

Modern processors supporting AVX have 256-bit  YMM

registers, and 16 registers are available on the ×64 platform.

Four  floating-point  double  precision  words  can  be  loaded

into each register, and four additions or four multiplications

are  carried  out  per  each  clock  of  processor.  The  register

blocking diagram for the ×64 platform is shown in Fig. 6.

The  result  is  stored in  8 registers intended for  the
elements of matrix  Cib. Two registers are used for elements
of matrix  Aib, one register – for elements of matrix  B and
one  register  is  required  to  store  the  intermediate
multiplication results. The block dimension is mr  × nr = 8 ×
4. When the inner loop runs,  the elements of matrices  Aib

and B are repacked to ensure their locations in neighboring
RAM addresses. This reduces the number of cache misses
and allocates the data in the cache extremely densely.  We
denote:  AA = repack(Aib), BB = repack(B), where Dest =
repack(Source) means  repacking  from  array  Source to
array Dest (Fig. 6, bottom). The elements of matrices Aib, B
and  Cib are  located  in  the  RAM  column-major  storage.
Prefetch  instructions  are  applied  to  hide  memory  system
latency.
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Fig. 6. Diagram of register blocking (top) and data repacking (bottom)

The AVX is used to accelerate the transmission of data

when matrices  Aib,  B are repacked into arrays  AA and  BB

respectively.  The  pseudo  code  presenting  the

microkern_8x4_AVX procedure is shown in Fig 7. 

1. Procedure Pack_BB: B = repack(BB) (fig. 6, bottom).

2. Procedure microkern_8x4_AVX:

Cib = beta∙Cib+alpha∙Aib∙B (in the future index ib is omit-

ted)

AA = repack(A)
for(j=0; j<N; j+=nr)

{

//pBB0 = BB+K*j;  //point to current 

//vertical pane of BB

for(i=0; i<lb; j+=mr)

{

pAA=AA+i*K; //point to current

//horizontal pane of AA

pC=C+ldc*j+i; //point to Cij, ldc =

//lb.

pBB = pBB0;

   //move Cij, Ci+1,j, … , Ci+7, j to cache 

   //untill CPU run internal loop

//move Ci,j+1, Ci+1,j+1, … , Ci+7, j+1 to cache 

//untill CPU run internal loop

_mm_prefetch((const char *)(pC+ldc),

_MM_HINT_T0);

_mm_prefetch((const char *)(pC+2*ldc),

_MM_HINT_T0);

c1 = _mm256_setzero_pd();  //c1 ← 0

...................................

c8 = _mm256_setzero_pd();  //c8 ← 0

for(k=0; k<K; k+=16)

{

_mm_prefetch((const char *)(pAA+mr), 

_MM_HINT_T0);

_mm_prefetch((const char *)(pBB+2*nr), 

_MM_HINT_T0);  

a0 = _mm256_load_pd(pAA);

a1 = _mm256_load_pd(pAA+4);

b0 = _mm256_broadcast_sd(pBB);

b1 = _mm256_broadcast_sd(pBB+1);

b2 = _mm256_broadcast_sd(pBB+2);

b3 = _mm256_broadcast_sd(pBB+3);

mul = _mm256_mul_pd(a0, b0);

c1  = _mm256_add_pd(c1, mul);

mul = _mm256_mul_pd(a1, b0);

c2  = _mm256_add_pd(c2, mul);

mul = _mm256_mul_pd(a0, b1);

c3  = _mm256_add_pd(c3, mul);

mul = _mm256_mul_pd(a1, b1);

c4  = _mm256_add_pd(c4, mul);

mul = _mm256_mul_pd(a0, b2);

c5  = _mm256_add_pd(c5, mul);

mul = _mm256_mul_pd(a1, b2);

c6  = _mm256_add_pd(c6, mul);

mul = _mm256_mul_pd(a0, b3);

c7  = _mm256_add_pd(c7, mul);

mul = _mm256_mul_pd(a1, b3);

c8  = _mm256_add_pd(c8, mul);

//and so on 15 times

pAA += 16*mr;

pBB += 16*nr;

}//end k loop

// put alpha*A*B to c1 – c8

mul =_mm256_set_pd(alpha,alpha,alpha,alpha);

c1  = _mm256_mul_pd(c1, mul);

c2  = _mm256_mul_pd(c2, mul);

c3  = _mm256_mul_pd(c3, mul);

c4  = _mm256_mul_pd(c4, mul);

c5  = _mm256_mul_pd(c5, mul);

c6  = _mm256_mul_pd(c6, mul);

c7  = _mm256_mul_pd(c7, mul);

c8  = _mm256_mul_pd(c8, mul);

if(beta)

{

//put alpha*AAi*BBj + beta*CCij to c1 – c8

b0  = _mm256_set_pd(beta,beta,beta,beta);

a0  = _mm256_loadu_pd(pC);

a1  = _mm256_loadu_pd(pC+4);

mul = _mm256_mul_pd(b0, a0);

c1  = _mm256_add_pd(c1, mul);

mul = _mm256_mul_pd(b0, a1);

c2  = _mm256_add_pd(c2, mul);

a0  = _mm256_loadu_pd(pC+ldc);

a1  = _mm256_loadu_pd(pC+ldc+4);

mul = _mm256_mul_pd(b0, a0);

c3  = _mm256_add_pd(c3, mul);

mul = _mm256_mul_pd(b0, a1);

c4  = _mm256_add_pd(c4, mul);

a0  = _mm256_loadu_pd(pC+2*ldc);

a1  = _mm256_loadu_pd(pC+2*ldc+4);

mul = _mm256_mul_pd(b0, a0);

c5  = _mm256_add_pd(c5, mul);

mul = _mm256_mul_pd(b0, a1);

c6  = _mm256_add_pd(c6, mul);

a0  = _mm256_loadu_pd(pC+3*ldc);

a1  = _mm256_loadu_pd(pC+3*ldc+4);

mul = _mm256_mul_pd(b0, a0);

c7  = _mm256_add_pd(c7, mul);

mul = _mm256_mul_pd(b0, a1);

c8 = _mm256_add_pd(c8, mul);

}//end if(beta)

//unload c1 – c8 to matrix C
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_mm256_storeu_pd(pC,    c1);

_mm256_storeu_pd(pC+4,  c2);

pC += ldc;

_mm256_storeu_pd(pC,    c3);

_mm256_storeu_pd(pC+4,  c4);

pC += ldc;

_mm256_storeu_pd(pC,    c5);

_mm256_storeu_pd(pC+4,  c6);

pC += ldc;

_mm256_storeu_pd(pC,    c7);

_mm256_storeu_pd(pC+4,  c8);

}//end i loop

}//end j loop

Fig. 7. microkern_8x4_AVX

Here,  for ease  of  understanding  the  basic  idea of  the

method, we consider only the case when M is a multiple of

mr, N multiple of nr, and K is a multiple of 16.  In the real

microkernel,  submatrices of dimension M1 × K and K × N1

are  extracted  from  matrices A and B, where M1 and N1

assume the greatest value with the following limitations: (M1

≤ M) ^ (M1 % mr) = 0, (N1 ≤ N) ^ (N1 % nr) = 0, where a%b

means that the remainder after the division of a by b is zero.

Therefore, matrices Aib, B are divided into blocks, in which

the largest submatrices are a multiple of  mr and  nr respec-

tively.  The YMM register blocking scheme (Fig.  6) is ap-

plied specifically for  these submatrices.  For the remaining

small submatrices, simpler multiplication methods are used.

Matrix B is repacked in a separate procedure, allowing us

to use it only once for each  kb block-column. To produce

register blocking, indexes i, j are increased by increments of

mr, nr correspondingly. The pointers pAA and pBB are set to

the beginning of the horizontal strip of matrix AA and the

vertical strip of BB (Fig. 6, 8), before loops with indexes i, j

are initiated. 

Fig. 8. Map of YMM register’s loading

Registers c1 through c8 are zeroed before the loop with

index k is started. The inner loop with index k is unrolled 16

times. The eight consecutive elements of array AA (the en-

tire column of horizontal strip – Fig. 6) are loaded into reg-

isters  a0,  a1  by  means  of  the  instruction

_mm256_load_pd(...).  Each  of  the  four  consecutive  ele-

ments of array  BB (the entire vertical strip row) is sent to

registers b0, b1, b2, b3 correspondingly, by means of the in-

struction  _mm256_broadcast_sd(...) (Fig. 7, 8). As a result,

the first  element from the vertical  strip row is found four

times in register b0, the second – four times in register b1,

etc.

The contents of register a0 are multiplied by the contents

of register b0, and the result  is placed into register mul –

instruction  mul = _mm256_mul_pd(a0,  b0).  Instruction

c1  = _mm256_add_pd  (c1,  mul) adds  up  the contents  of

registers c1 and mul, and sends the result into register c1.

Then, the  contents  of  register a1 are  multiplied  by  the

contents  of  register b0, and  the  result  is  added to  the

contents of register c2. The contents of registers a0, a1 are

multiplied by b1, and the results are added to the contents of

registers c3, c4, etc. respectively. At the end of the loop with

index k, registers c1 through c8 contain the fully computed

elements of the mr × nr block of matrix Cib, which constitute

the  result  of  multiplying  the  horizontal  strip  mr ×  K  of

matrix Aib, repacked into array AA, by the vertical strip K ×

nr of matrix B, repacked into array BB.

This result is multiplied by scalar factor alpha. If the beta

coefficient is non-zero, the 8 elements cij, ci+1,j, ..., ci+7,j are

loaded into registers a0, a1 by using _mm256_loadu_pd(...).

The elements of matrix  Aib are loaded  from array AA by

using  instruction _mm256_load_pd  (...), because  memory

for array AA is allocated with a 32 byte alignment. Memory

for matrix C is allocated without the 32 byte alignment, so

here we use the _mm256_loadu_pd (...).  The elements of

matrix C held in registers a0,  a1 are  multiplied by factor

beta and added to the contents of registers c1 and c2. Then,

eight elements from the  next column of  matrix Cib – ci,j+1,

ci+1,j+1,  ...,  ci+7,j+1  are  loaded  into  registers a0  and  a1,

multiplied  by  factor  beta,  and  added  to  the  contents  of

registers c3, c4, etc. Transition to the next column of matrix

Cib is made by offsetting ldc = lb of pC pointer. While the

current  iteration  is  running,  the  prefetch  instruction  is

applied to transmit the elements of matrix Cib from RAM to

the cache, as required for the next iteration of the loop with

index i.

As a result, registers c1 through c8 hold the accumulated

result  of alpha∙AAi*BBj+beta∙CCij, where AAi,  BBj  are,

respectively, the horizontal strip of  matrix Aib, determined

by the value of index i, and the vertical strip of matrix B,

defined  by  the value  of  index j,  and CCij –  the

corresponding block  of  matrix Cib.  Instructions

_mm256_storeu_pd  (...)  unload  data from  registers  c1

through c8 to the corresponding elements of matrix Cib.

III. NUMERICAL RESULTS

A. Test 2

The results of test 2, described in the introduction (Fig. 1,

2), have been obtained on two computers and are shown in

Table 1. 
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The  first  computer  has  a  16-core  AMD  Opteron  6276

CPU 2.3/3.2 GHz processor, 64 GB DDR3 RAM, and runs

Windows Server 2008 R2 Enterprise SP1, 64 bit. The sec-

ond computer  has  a 4-core  Intel  i7 2760QM CPU 2.4/3.5

GHz  processor,  8 GB DDR3 RAM, and runs Windows 7

Professional SP1, 64 bit.

For the ACML 15.2.0 procedure, column for computing

on 16 threads (the computer with AMD processor) contains

two  values:  the  first  (41 469  MFLOPS)  corresponds  to

solving the problem by parallelizing only within the dgemm

procedure,  using  its  multi-threaded  version;  while  the

second  (10 061  MFLOPS)  –  to  the  use  of  the

single-threaded  version  of  dgemm in  a  parallel  OpenMP

loop. The first value is used to estimate the top performance

of  the  AMD  Opteron  6276  CPU  for  this  test,  since  the

ACML  library  is  best  adapted  to  AMD  processors.  The

second value confirms that the  dgemm procedure from the

ACML library does not work properly in the mode required

by PARFES.

A comparison  of  the results (Table  1)  showed  that  the

proposed  microkern_8x4_AVX procedure  successfully

solved  this problem on the computer with AMD Opteron

6276 processor, as  well  as  on the  computer with Intel  i7

2760QM processor.

Next, we consider two real-life problems, taken from the
collection  of SCAD  Soft  –  a  Software  Company
(www.scadsoft.com)  developing  software  for  civil
engineering. SCAD is FEA software, which is widely used
in the CIS region and has a certificate of compliance to local
regulations.

I. Problem 1 

A  design  model  of  multistorey  building  contains

2  546 400  equations,  consists  of  triangular,  quadrilateral

shell finite elements, as well as spatial frame ones (Fig. 9).

The original stiffness matrix contains 27 927 845 nonzero

entries,  and  lower  triangular  factorized  matrix  –

1 124 085 204  nonzero  entries.  METIS  reordering  method

[13] has been used. 

The duration and performance of the factorization stage is

presented  in  Table  2.  As in  the  preceding  example,  the

dgemm procedure from the Intel MKL 11.0 library does not

achieve the desired performance on the computer with AMD

Opteron 6276  processor.  The  dgemm procedure from the

ACML library works  well  on a  single  thread,  but  when

PARFES implements  multithreading, the  procedure  is  not

performing  its  task.  The  microkern_8x4_AVX  procedure

proposed  in  this  paper  demonstrates  good  results  with  a

single  thread  as  well  as  during  multi-threading.  It  is

interesting to note that on a computer with Intel i7 2760QM

processor,  this  procedure was  not  inferior  to  the  dgemm

procedure from the Intel MKL 11.0 library.

B. Problem 2

A design model of soil-structure interaction problem con-

tains 2 989 476 equations (Fig. 10, 11) and consists of trian-

gular,  quadrilateral  shell finite elements,  as well  as spatial

frame and volumetric finite elements simulating the behav-

ior of the ground.

Fig. 9. Problem 1. Design model of multistorey building (2 546 400 equa-

tions).

This  problem  is  very  challenging  for  direct  methods,

because  the  soil  prism,  simulated  by  volumetric  finite

elements,  generates  a  relatively  dense  part  of  a  sparse

matrix.  Of  all  the methods  available  for reordering – the

minimum degree algorithm MMD [4], the nested dissection

method  ND  [3],  the  parallel  section method  [3] in

conjunction with the MMD – the most efficient method for

this task is METIS [13]. The number of nonzero elements in

original  matrix  is   68 196 176 and  in the lower triangular

matrix – 4 966 055 936 (37 GB).

The duration of the numerical factorization phase and the

performance obtained on the computer with AMD Opteron

6276 processor is  shown in Table 3.  The solution of  this

problem on the  computer with Intel i7 2760QM processor

and 8 GB of RAM was not effective due to the small amount

of  core  memory.  PARFES was  run  in the  OOC1  mode,

performing  a  large  number  of I/O  operations. For  this

reason, performance  analysis  of  the  matrix  multiplication

procedure is not applicable.

The suggested microkernel procedure is slightly inferior

to the dgemm procedure from the ACML 15.2.0 library on a

single thread, but greatly outperforms it on 16 threads. In all

cases,  the proposed  procedure is  faster  than the  dgemm

procedure from Intel MKL.
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TABLE 1. 

PERFORMANCE (MFLOPS) OF ALGORITHM C = C – A B·  FOR MATRICES M × N × K = 2 000 000 × 120 × 120 (A – MATRIX M × K, B – K ×

N,   C – M × N)

Procedure AMD Opteron 6276 CPU 2.3/3.2 GHz Intel i7 2760QM CPU 2.4/3.5 GHz

Single thread 16 threads Single thread 4 threads

dgemm MKL 11.0 2 377 24 945 17 921 40 563

dgemm ACML 15.2.0 6 837 41 469 / 10 061 – – 

microkern_8x4_AVX 6 373 50 571 17 582 41 025

TABLE 2. 

PROBLEM 1. DURATION (S) AND PERFORMANCE (MFLOPS) OF PARFES ON THE NUMERICAL FACTORIZATION STAGE (PROBLEM 1)

Procedure AMD Opteron 6276 CPU 2.3/3.2 GHz Intel i7 2760QM CPU 2.4/3.5 GHz

Single thread 16 threads Single thread 4 threads

Duration, s Perform. Duration, s Perform. Duration, s Perform. Duration, s Perform.

dgemm MKL 11.0 1 139 3 619 160 25 789 330 12 554 191 21 787

dgemm ACML 15.2.0 718 5 743 542 7 628 – – – – 

microkern_8x4_AVX 753 5 477 118 34 843 294 14 196 157 27 649

Fig. 10. Problem 2. Design model of soil-structure interaction problem 
(2,989,476 equations).

Fig. 11. The pile foundation (ground is hidden)

TABLE 3. 

PROBLEM 2. DURATION (S) AND PERFORMANCE (MFLOPS) OF PARFES ON THE NUMERICAL FACTORIZATION STAGE. COMPUTER WITH

AMD OPTERON 6276 PROCESSOR (PROBLEM 2)

Procedure Single thread 16 threads

Duration, s Performance, MFLOPS Duration, s Performance, MFLOPS

dgemm MKL 11.0 18 992 3 138 2 123 28 068

dgemm ACML 15.2.0 12 871 4 630 10 897 5 476

microkern_8x4_AVX 13 541 4 400 1 481 40 216
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The speed up with the increase in the number of proces-

sors is depicted in Fig. 12. 
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Fig. 12. Speed up with the increase in the number of threads. Ideal – the

ideal speed up, id_tb – the ideal speed up on processors with Turbo Core

support, PARFES – the real speed up.

The straight line of the “ideal” speed up passes through

the points {0, 0}, {1, 1}, {2, 2}, … . This means that if the

problem is solved using p threads, we would like to solve it

p times faster than when using one thread. The id_tb curve

approximates the ideal speed up for processors that support

the  Turbo Core mode – when a small number of cores is

loaded,  the  processor  increases  the  clock frequency,  and

when  the  number  of loaded cores increases,  reduces  the

frequency to the  nominal value of 2.3 GHz. This curve is

represented by a square parabola passing through the points

{0, 0}, {1, 1}, {16, 11.5}. The ordinate of the last point was

obtained as  16 × (minimum  clock  frequency of  the

processor) / (maximum clock frequency of the processor) =

16∙3.2/2.3 = 11.5.

When using up to 4 threads, the speed up of PARFES is

almost perfect.  We explain  the  anomaly at  p  =  5  by  the

features  of  the  Turbo  Core  control  on  this  processor,

because  testing  of  PARFES  on  computers  with  different

processors  [7],  [8] does  not  produce  such  behavior.  The

speed up of the method when p > 4 is stable up to p = 16,

although lower than for the id_tb curve.

IV. CONCLUSION

Developing the microkernel procedure, based on AVX, in

the parallel direct solver PARFES designed to solve prob-

lems of structural and solid mechanics that arise as a result

of applying the finite element method, significantly acceler-

ates matrix factorization on computers with AMD Opteron

6276  processor,  Bulldozer  architecture,  while  maintaining

high performance and competitiveness with the Intel MKL

dgemm procedure on computers with Intel processors.
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