
Using parameter optimization to calibrate a model
of user interaction

Tommy Baumann∗, Bernd Pfitzinger‡§ , Dragan Macos†, Thomas Jestädt‡
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Abstract—Simulation models of real-world distributed systems
depend both on the accuracy of the underlying model and the
interaction between user and system. The user interaction is
typically modeled as stochastic process depending on parameters
and distributions describing the actual usage. Accurate data
is often not available and (manual) assumptions are necessary.
Taking an existing large-scale simulation model of the German
tolling system we discuss the use of a genetic optimization
algorithm for calibrating the simulation model.

I. INTRODUCTION

D ISTRIBUTED software-intensive systems become a part

of everyday life. The engineering and operations of these

systems is not yet well established: Most techniques in use fo-

cus on standalone systems [1] and even there successful imple-

mentations are not guaranteed [2]. Instead of the engineering

aspects one can rather argue [3] that the integration of sub-

systems into a functioning system-of-systems becomes a core

strategic business capability. Whether it is the engineering,

integration or the subsequent operation of a highly automated

software-intensive system – many dynamic aspects depend on

its usage and often unknown user behavior.

Taking the example of the German automatic toll system

for heavy goods vehicles (HGVs) – a typical example of

a modern toll system based on global navigation satellite

systems (GNSS) [4] – we complement the system operations

and system design through simulations [5]. Having a detailed,

realistic simulation model at hand it is possible to predict the

upcoming operational behavior (e.g. for fleet-wide updates)

even for systems under design e.g. when a different system

architecture is proposed. In both scenarios simulation results

yield numerical results to support decisions and to reduce the

risk inherent in any software development process. Particularly

in the latter case simulation models help to explore different

solutions and to create exact specifications right from the start

of a software development project.

“Good models are essential for communication among

project teams and to assure architectural soundness” [6]. Yet

the emphasis on communication (even in more formal methods

as UML [6]) creates a source for misunderstandings and

errors through the inexact verbalization of the requirements.

To reduce the ambiguity we use executable models, i.e.

implement the requirements in a model that can compiled and

executed [7]. From the very beginning this allows verifying
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Fig. 1. High-level system design of a GNSS-based electronic tolling system
and its dependency on the user interaction (driving patterns).

the system requirements by comparing the simulation results

with the expected behavior. As the development of the system

progresses the simulation models can progress as well (to give

an accurate model at the level of abstraction available at that

time) or remain at a reasonable level of detail sufficient e.g.

to simulate the overall system dynamics. In the case of the

German toll system we have established a simulation model

of the automatic tolling process and used it both to predict

the operational behavior of the existing system [8] and to aid

the software development process to better scope proposed

changes (e.g. [5]).

In the next section we introduce the simulation model of the

German toll system. To get an executable system we need two

models: A model of the technical system and a model of the

user interaction. At present not much is known about the user

interaction (due to technical restrictions and data protection

regulation) and we started with a simple model that can be

parametrized to fit the observed dynamic behavior of the toll

system. Section IV uses a genetic algorithm (introduced as a

separate model in section III) to find a set of parameters that

best reproduces the actual system dynamics. The initial results

are given in section V followed by a brief summary.

II. SIMULATION MODEL OF THE GERMAN TOLL SYSTEM

Starting with an existing model of the German toll system

and a simple model of the user interaction [8] we take data

observed in the real-world system to measure the accuracy of

the simulation model. This section gives a brief overview of

two models necessary to reproduce the dynamic behavior of

the German toll system. In addition we need to address the
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Fig. 2. The existing models for the driving patterns and the toll system are
complemented by a dataset of the known dynamic behavior of the toll system.
Adding a fitness functions allows comparing the simulation results with the
observed data and the use of a genetic algorithm (again as a model) to choose
the right parametrization.

term “accuracy” to define the appropriate in our context more

clearly.

A. System model

The main model from the perspective of system operations

or engineering is of course the model describing the (technical)

toll system (Fig. 2). It is a discrete event simulation model

of the German automatic toll system encompassing a fleet

of almost 800 000 HGVs, each with an on-board unit and

access to the central system via a mobile data network. The

major processes at time scales of 1 second and above are

included in the model (and some at considerably shorter time

scales) including the network connection with their respective

bandwidths and latencies (but not modeled on the level of

the TCP/IP protocol). Simulating at a scale of 1:1 we do

not introduce ambiguities due to scaling (especially since

the system under consideration is in parts highly non-linear)

but have achieve a high simulation speed. Looking at fleet-

wide updates taking more than a month the model itself

works with typical time scales of one second. All in all the

typical simulation performance after a number of performance

improvements [9] gives execution times of less than 10 hours

for the simulating the whole fleet over half a year.

The model has been verified through software inspection

[10] and validated through the comparison with the data

observed in the real-world system. At present the biggest

source of uncertainty is introduced by the driving patterns (our

model of the user interaction).

B. “Driving patterns”: A model of the user interaction

The model of the toll system depends on the external

stimulus of the user interaction. With an emphasis on the fleet-

wide propagation of updates we started with a simple model

describing only the temporal behavior (fig. 3): The points in

time when an HGV is powered on (or off) and when a toll

event is created. Since we do not yet include any geographic

information the toll events correspond to the HGV driving

0
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Fig. 3. The user interaction is modeled as the points in time where power-
cycles or toll events are registered for a given HGV.

distance of 4.2 km (the average length of a toll segment) at

an average speed of ≈ 80 km/h.

To achieve a realistic update behavior (taking several weeks

to reach the whole fleet) we start with a probability distribution

of “active weeks”, i.e. the probability that a given HGV is

powered-on (at least once) in N of M weeks and take data

observed in the actual system and existing HGV-fleets used for

testing (typically covering several hundred to a few thousand

HGVs). This is in turn followed by probability distributions

determining the number of “active days” within a week, the

number and duration of power cycles per day and the time

during the day when power-cycles take place (for details

see [8]). The driving patterns are (manually) calibrated to

reproduce the update behavior observed in the real-world

system – i.e. looking at time scales of several weeks taking

one sample per day.

However, in reality not much is known about the user

interaction. Apart from small test fleets no data is available

on the power-cycles of the HGVs (even the average speed is

not known): Most often the data is not collected and even if

data is available data protection regulation often prohibits its

use [11]. Looking at the simulation results in more detail it

is very difficult to manually adjust the parametrization as to

reproduce the intra-day dynamic system behavior (see fig. 4).

To make matters worse, some processes are deliberately made

strongly non-linear (e.g. to favor updates during the night-time

or to protect the central system when it is operating close to

the specification limit).
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Fig. 4. Example of the simulation results (green line) in comparison to the
observed data (red line) of the hourly update rate.
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Fig. 5. MSArchitect model using the genetic algorithm to optimize the user interaction (driving patterns) model.

C. Measuring accuracy

To overcome these difficulties we started to let an optimiza-

tion algorithm adjust the parameters to improve the simulation

results. Keeping in mind the mantra “good enough” [12] we

need to look at the context in which the simulation results are

used:

• Updates take several weeks to propagate across the whole

fleet. A comparison of the daily data is sufficient to

measure the quality of the simulation results.

• Utilization of servers or data networks changes rapidly

and a time resolution of an hour or less needs to be taken

into account.

With the emphasis on fleet-wide updates we compute the fit-

ness as rms-deviation using one data point per day. Depending

on the use case this may include the one or several components

that are updated: geo and tariff data and the OBU software.

For the purpose of this article we take the OBU software as

the only input to the fitness function and compute the rms-

deviation only for the first weeks after the start of a software

update. Only the first weeks of an update are influenced by

the system simulation model (and its parametrization of the

update rate), very soon the HGV activity is the limiting factor

(i.e. a substantial part of the HGV fleet connects only rarely

to the central system either because the HGV is constantly

powered off or in a foreign country).

III. SIMULATION MODEL TO OPTIMIZE THE DRIVING

PATTERNS

The limited knowledge of the actual user interaction (as

mentioned above) combined with the difficulty of setting the

parameters of the user interaction manually necessitates the

use of an automatic optimization algorithm to calibrate the

model with the data available. Consequently the model of the

German toll system is connected to an optimization algorithm

(see Fig. 2). To separate these tasks we introduce a second

optimization model responsible for the optimization of the

driving patterns (user interaction). Using a genetic algorithm

the model iterates automatically over different parametrization

improve the simulation results for the model of the German

toll system.

To that extent the existing model of the German toll system

needed only minor modifications: Any parameters intended

for optimization were implemented as explicit parameters at

the top-level of the model and exported to the optimization

model. The existing models generating the driving patterns

and simulating the tolling system are now integrated into

one model and followed by a fitness function evaluating the

deviation between the simulation results and real-world data

(typically of the progress of fleet-wide updates computed as

the rms of the daily version status).

The idea of using a separate model controlling the optimiza-

tion process, including structural and parameter modifications

as well as evaluation of the model to be optimized, is a basic

concept of Simulation-Driven Design [7]: There it is called

Executable System Design Process, defined as an automated

series of design steps, which alter the Executable System Spec-

ifications (in our case the model to be optimized) in a formal,

consistent, and self-contained manner to enable processing

[13]. Three base types of components are differentiated:

• Execution components are responsible for the execution

of the whole, of the parts or of abstractions of the

embedded executable system specification as well as

execution of associated systems.

• Control components implement the evaluation of con-

straints, rules and objective functions to control the

execution of process components.

• Generator components generate, transform and extend

executable models to comply with different purposes,

abstraction levels, parameterizations and structural archi-

tectures.

Looking at the simulation model used for optimizing the

driving patterns (Fig. 5) we recognize all three types of compo-
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nents: Starting with the block instance GeneticAlgorithm

we recognize a generator component responsible for genera-

tion of individuals with different genomes. The genome repre-

sents a parametrization of the toll system in the form of a pa-

rameter vector and is sufficient to execute the model of the toll

system for the given individual. The value of each parameter is

bound to a defined range and granularity (i.e. a bit representa-

tion of the value) – at present the parameters are the number of

active weeks of domestic and foreign trucks (see section II). In

the next step GeneticAlgorithm sends the representation

of the individual via its output port and connection to the block

instance SetupSimulation responsible for the preparation

of the toll system model. SetupSimulation (obviously a

generator component) creates the necessary environment e.g.

the directory structure for simulation in- and output including

the parameters and any necessary configuration files. In addi-

tion SetupSimulation checks the available resources and

chooses the number of simulations to be executed in parallel

(depending on the number of CPU cores available and the

population size). However, the final setup of a simulation run is

delegated to another generator component (MissionSetup).

It generates a mission descriptor data structure, containing

the command line parameters to setup and execute a sim-

ulation run. This data structure is in turn sent to the first

execution component (RemoteStart) to execute the model

on a specific CPU core. While the simulation run is ongo-

ing two further execution components (RemoteIsActive

and Failure) observe the simulation run and inform

the subsequent block instances SetupSimulation and

EvaluationFunction when the simulation run has fin-

ished: SetupSimulation prepares a new simulation run if

necessary an EvaluationFunction evaluates the simula-

tion results with respect to the fitness function (see section

IV). Since block instance EvaluationFunction decides

about continuing the optimization loop or not it is a control

component.

IV. APPLIED OPTIMIZATION ALGORITHM

To solve our optimization problem we decided to use a

genetic algorithm. The straight-forward implementation of a

parallelized genetic algorithm was the main reason to choose

this optimization algorithm. A genetic algorithm is a search

algorithm for optimization purposes based on the mechanics

of natural selection and natural genetics. Genetic algorithms

are able to avoid getting stuck in a local optimum in the

search space, can be used in high-dimensional search spaces

and are trivially parallelized (“embarrassingly parallel”, [14]).

They belong to the group of so called meta heuristics – search

methods for approximate solutions [15].

Fig. 6 gives the generic flow chart of the genetic algorithm

used: At the beginning an initial population of a fixed size

is generated either randomly or using previously available

individuals. To limit the search space we choose the parame-

ters to be within pre-defined intervals. Next the fitness of all

individuals in the population is computed (step 2 in Fig. 6) to

yield the ’parent population’. In the third step the algorithm
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Fig. 6. General sequence of action of the genetic algorithm used (based on
[16, 17]).

randomly selects two sets of parents in a tournament selection

to choose those two parent individuals with the best fitness

value.

Once two parent individuals are selected one child indi-

vidual is created using uniform crossover without mutation

(step 4 in Fig. 6). For crossover we select one part of the

genome of the first parent individual and the complementary

part from the second parent individual. In order to do this

a crossover point is chosen randomly. At present we are not

using mutation where parts of the genome of an individual

are changed randomly to increase population diversity. From

the perspective of optimization theory this method is used to

overcome local optima [18] – which is implemented in our

case by enforcing a minimum variance within the population

(step 6 in Fig. 6).

When the child population is fully populated the optimiza-

tion model starts to evaluate the fitness function by executing

simulation runs of the toll system model (as described above).

When the evaluation is finished the algorithm checks the

genetic variance [19] inherent within the child population (step

5 in Fig. 6). If the variance becomes too small a part of the

population is replaced by new randomly generated individuals

(step 7 in Fig. 6) otherwise the child population replaces the

parent population (step 8 in Fig. 6) and the optimization run

continues until the target criteria are met (step 9 in Fig. 6). In

addition we use step 6 to check whether the optimization run

finds better solutions and again replace part of the population

if the results did not improve within 6 generations.

In our case we use fairly small populations with 765

individuals i.e. at a scale of 1:1000 and a genome of 32

parameters each expressing the probability for an HGV of
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Fig. 7. Fitness of the best individual per generation over the optimization
run.

being active (with at least one power cycle) a certain number

of weeks within a 15 week period (once for German HGVs and

foreign ones). The optimization algorithm starts with a given

probability distribution based on historical data from the real-

world system (or a previous optimization run). In the next step

the fitness function (also called target or evaluation function)

is evaluated to quantify the fitness of each individual. Since

the evaluation of each individual is independent the algorithm

is trivially parallel and we send each computation via the

Remote component to a different CPU node (see section III)

for execution, i.e. the model of the German toll system with

the parameterization given by the individual is executed for

each individual in parallel.

As an example we take a fleet-wide software update that was

rolled out in spring 2012. Using fleet-wide timing parameters

the roll-out was configured to spread over 6 weeks where

a single update needed less than 10 minutes to download

under optimal conditions. To achieve a reasonable number of

function evaluations in the optimization we run the simulation

model at a scale of 1:1000 resulting in an execution time

of less than one minute for the time period of interest – 4

weeks before the start of the update and the first 10 weeks

of the update. The simulation model itself is not modified

from previous versions [5] and each instance works within

its own subdirectory to read and write intermediate results

as necessary. At the end of each simulation run the fitness

function is evaluated expressing the quality of each individual

as the square deviation between the simulated and the real

world update roll-out curve (see section V).

V. OPTIMIZATION RESULTS

For the purpose of this discussion we choose a software

update in 2012. Without access to the optimization algorithm

the simulation model was parametrized using statistical data

from the real-world system and subsequent minor manual ad-

justments. In comparison we give the results after performing

an optimization run with the simulation model at a scale of
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Fig. 8. Simulation results for a fleet-wide software update before and after
optimization (red line: data observed in the real-world system, black line
before optimization and green line after optimization).

1:1000, a population size of 64 and some 400 generations.

Fig. 7 gives the evolution of the fittest individual per

generation. The fitness gradually improves over run-time but

from generation to generation it can give worse results since

the algorithm creates a completely new population for each

generation without keeping the best individual around.

Looking at the results (Fig. 8) the optimized driving patterns

perform considerably better during the main update phase. The

real-world system is configured to give an almost constant rate

of updates during the first weeks (red line in Fig. 8) where

the OBUs decide randomly when to download the update

according to fleet-wide timing parameters. After a few weeks

the update rate is determined mostly by those OBUs that are

rarely active within the German mobile data networks and

no longer depends on the download parameters. So far the

previously existing user interaction model typically produces

too many updates during the 2nd and 3rd week (black line in

Fig. 8) even though the model uses statistical data gathered in

the real-world system on Toll Collect test fleets.

To emphasize the time period where the algorithms of the

toll system determine the download rate rather than rarely

visiting HGVs we compute the fitness function only for the

initial 6 weeks. This results in a marked improvement of the

simulation results (green line in Fig. 8) for the time period

shown. However, since the long-term activity pattern was in

this case not subjected to optimization the optimized driving

patterns give somewhat worse results for longer time periods

(not shown). Taking the deviation from the data observed (Fig.

9) the improvement during the first two weeks of the software

update are obvious.

Optimizing the probability distribution for the weekly activ-

ity pattern quickly improved the simulation results. However,

deviations are still visible even when using a coarse time

resolution of one day : Typically at the end of the workweek

the difference is biggest and changes its sign with the coming

week. This suggests that at least further parameters need
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Fig. 9. Difference (in cumulated downloads) between the data observed in the
real-world system and both simulation runs (black line before optimization,
green line after optimization).

systematic optimization or even a different underlying model

to create the driving patterns.

VI. SUMMARY

Taking the example of the German automatic toll system

we have discussed the challenge to model the user interaction.

Even with a simple model many parameters (e.g. probability

distributions) need to be adjusted so as to achieve “good

enough” simulation results. The use of a genetic algorithm

simplifies the optimization i.e. adjusts the parameters as good

as possible starting from the limited data available. The sheer

number of parameters available poses a significant challenge

even to a parallelized genetic algorithm. To us this suggests

that the model of the user interaction is not yet expressed in the

right way. In addition, “good enough” models depend on the

context. In our example, a better model of the user interaction

is needed to reproduce the intra-day behavior – e.g. to use the

simulation to monitor everyday operations of the toll system.
Looking back at fig. 2 this article discussed the recently

added model of a genetic algorithm. In future work the model

of the user interaction should be split in two parts: A generic,

domain-independent model of stochastic processes and its

domain-specific application to generate driving patterns.
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driven design of the German toll system – profiling simulation per-
formance. In 2013 Federated Conference on Computer Science and

Information Systems (FedCSIS), pages 923–926. IEEE, 2013. ISBN
978-1-4673-4471-5.

[10] M. E. Fagan. Design and code inspections to reduce errors in program
development. IBM Systems Journal, 15(3):182–211, 1976. doi: 10.1147/
sj.153.0182.

[11] Reinhard Fraenkel and Volker Hammer. Keine Mautdaten für Ermit-
tlungsverfahren. Datenschutz und Datensicherheit – DuD, 30(8):497–
500, 2006. doi: 10.1007/s11623-006-0259-2.

[12] Dave Thomas and Andy Hunt. The Pragmatic Programmer: From

Journeyman to Master. Addison-Wesley Professional, 1999. ISBN 978-
0201616224.

[13] Tommy Baumann. Automatisierung der frühen Entwurfsphasen ver-
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