
 

 

 

 

 

Abstract—In this paper the problem of edge detection with 

subpixel accuracy is considered. In particular, the precise 

detection of significantly blurred edges is regarded. A new 

method for subpixel edge detection is introduced. The method 

attempts to reconstruct image gradient function at the edge 

using the Gaussian function. The results of subpixel edge 

detection in the artificially created and the real images obtained 

by the introduced approach are presented and compared with 

the results of previously proposed methods. In particular, the 

moment based methods, the gravity center method and the 

parabola fitting method are considered in the comparison. The 

presented results prove the robustness of the introduced 

approach against the averaging and the Gaussian blur. 

Additionally, the comparison shows, that the introduced 

approach outperforms the existing state-of-art methods for 

subpixel edge detection. 

I. INTRODUCTION 

DGE detection is the problem of crucial importance in 

image processing. Edges define location and geometric 

features of objects present in the scene. Therefore, in a 

typical vision system, edge detection is performed during 

low level processing and provides information for operations 

performed in the following stages, such as quantitative 

analysis, target recognition or image coding etc. 

Recently, the requirements for edge detection accuracy 

rapidly increase. Satellite remote sensing, telemetry, 

photogrammetry, medical image analysis, industrial 

inspection, geometrical measurement and other applications 

where accuracy is at premium require precision of tenths or 

even hundredths of pixel. 

The traditional, well-established methods for edge 

detection such as gradient operators (Sobel, Prewitt, 

Roberts), Canny edge detector, operator LoG etc. all belong 

to pixel level. Therefore, they are mostly insufficient for 

practical applications of modern machine vision. Due to their 

low precision of edge location and extracted wider edges, 

these approaches more and more often have difficulties in 

meeting the actual accuracy requirements of vision systems. 

Therefore, the development of subpixel techniques for edge 

detection has become one of the hotspots of the current 
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research in image processing. Some work has already been 

done on this problem. However, the major methods for 

subpixel edge detection are still to be developed. It should be 

also underlined that while there has been substantial work 

performed on the detection of clear and well defined edges at 

subpixel accuracy, a little has been done on the subpixel 

edge detection in low contrast images containing blurred, 

noisy and unsharp edges [1][2]. 

This paper presents a new method which is a step forward 

through introducing subpixel analysis into edge detection. In 

particular, it considers precise edge detection of significantly 

blurred edges. As the already proposed methods deal mostly 

with sharp, regular and well defined edges the introduced 

approach can be considered like a novelty. 

This paper is organized as follows. Firstly, in Section 2 

background on subpixel edge detection is given. Then, in 

Section 3 the proposed method for subpixel edge detection is 

introduced. Section 4 presents results of the new algorithm 

obtained for synthetic images. Resistance of the method to 

Gaussian blur and averaging is tested. Next, in Section 5 

results of edge detection obtained for real images are shown. 

Finally, Section 6 concludes the paper. 

II. BACKGROUND ON SUBPIXEL EDGE DETECTION 

The main idea behind subpixel edge detection is to divide 

pixel into classes by determining edge location inside 

a pixel. Such approach is fundamentally different to the 

classical image processing where pixel is the basic and 

indivisible image component which is fully qualified to one 

class. 

Subpixel edge detection is a challenging task. The discrete 

structure of a pixel grid causes irreversible loss in image 

intensities, influences shape of the objects present in the 

image and reduces edge information. Therefore, edge 

position inside a pixel can only be estimated with some 

probability. 

The need of edge detection at subpixel level was firstly 

mentioned by the researchers in the late 70’s [3]. Since then 

the issue of image processing with subpixel accuracy gained 

an interest of scientists and several approaches to this 

problem were proposed. Recently, methods for subpixel 

edge detection can be qualified into three main groups: 
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1) curve fitting methods; 

2) moment based methods; 

3) reconstructive methods. 

They are briefly characterized in the following 

subsections. 

A. Curve fitting methods 

Curve fitting methods determine subpixel edges by fitting 

various curves into edge points determined with a pixel 

accuracy. Firstly, for edge detection at pixel level the 

traditional edge detectors are used. Then, fitting is performed 

in an image plane in order to obtain continuous border. 

This methodology was used by Yao and Ju [4] who fitted 

cubic splines into spatial data points provided by Canny 

operator or by Breder [5] who applied B-spline interpolation. 

Similar approach was also proposed by Kisiworo [6] who 

used deformable models to obtain subpixel edge position. 

The accuracy of subpixel edge obtained using curve fitting 

methods is strongly limited by the accuracy of edge detection 

at pixel level. These methods are also sensitive to badly 

defined edge points which can deform the resulting shape of 

the object. Therefore, curve fitting methods yields 

reasonable results only in applications where shape of the 

object is known a priori and edge is accurately located at 

pixel. 

B. Moment based methods 

Moment based approaches determine edge position by 

relating image moments into parameters of subpixel edge. 

Methods which use image intensity moments (regarding only 

pixel intensities) and spatial moments (regarding both pixel 

intensities and spatial information about pixel neighborhood) 

have been proposed. 

History of the moment based approaches dates back to 

80’s when Machuca and Gilbert [7] proposed the first 

method using image moments to determine edge position. 

The method integrates region containing  the edge in order to 

determine  its position using moments found within the 

integrated region. The moments are defined based on 

properties of vector from the given pixel to the gravity center 

of a pixel square neighborhood. Although Machuca and 

Gilbert’s method has no ability to determine edge with 

subpixel accuracy it was an inspiration for the following 

approaches to the considered problem. 

Tabatabai and Mitchell [8] proposed a method for 

subpixel edge detection which fits three intensity moments 

into the ideal step edge. In their approach the ideal edge is 

defined as sequence of one intensity followed by the 

sequence of the second intensity. The moments are defined 

as a sum of pixel intensity powers and do not consider any 

spatial information. The main drawback to this method is 

that it determines edges only in non-decreasing or non-

increasing intensity sequences. 

Geometric moment approach developed by Lyvers [9] fits 

moments into 2D model of an ideal edge. This model is 

described by four parameters which indicate subpixel edge 

position.  The relation between the parameters of an ideal 

edge and image moments is established; then edge subpixel 

position is determined. This procedure requires evaluation of 

six moments by convolving an image with circular masks. As 

a result, the method is computationally complex. 

Additionally, geometrical moments proposed by Lyvers are 

not orthogonal, what makes the method lacks optimality in 

information redundancy. Approach proposed by Ghosal and 

Mehrotra [10] eliminates this weakness by fitting orthogonal 

Zernike moments into Lyvers’ edge model. Additionally, the 
complexity of the method is decreased as only three masks 

are required. Zernike moments have difficulty in describing 

small objects, however they are most commonly applied for 

subpixel edge detection. Recently, Bin [11] put forward 

orthogonal Fourier-Mellin moments (OFMM) proposed by 

Sheng and Shen [12] into the Lyvers’ edge model. However, 
determination of subpixel edge position using OFMMs 

requires application of seven circular masks what causes 

complexity of the method. 

The main drawback to moment-based approaches is lack 

of clear criteria for classifying pixels as edge or non-edge. 

Moreover, they produce response (i.e. parameters of 

subpixel edge) for every set of pixels containing change in 

image intensity and work properly only in a close 

neighborhood of the edge pixel. Therefore in the current 

form they can mostly be used to refine position of the 

properly defined coarse edges. 

C. Reconstructive methods 

Reconstructive approaches to subpixel edge detection 

attempt to restore continuous information about an edge 

from the discrete intensity sample values. These sample 

values are provided by the traditional methods to edge 

detection such as Sobel, Canny or LoG. Next, different 

interpolation, approximation and extrapolation techniques 

are applied. 

The continuous image information can be reconstructed 

independently in the vertical and the horizontal direction or 

simultaneously in both directions. In the first case one 

dimensional image intensity functions are retrieved in every 

direction and the  final result is a superposition of results 

obtained in each direction. For reconstruction performed in 

all directions simultaneously two-dimensional function is 

found. In both cases the coordinates of the characteristic 

points of the reconstructed image function (i.e. local 

extremes, zero crossings, inflection points, etc.) indicate 

edge position with subpixel accuracy. In order to diminish 

the complexity of edge detection, image intensity function is 

often reconstructed in some neighborhood of a coarse 

border. Therefore, firstly, standard feature selection is 

applied in order to determine the coarse edge. Then this 

location is refined to subpixel level by adapting local feature 

pattern in the closest neighborhood. 

The reconstructive approaches to subpixel edge detection 

can be divided into following groups: 
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1. methods reconstructing image intensity function [13] 

which determine subpixel edge position based on 

properties of function modeling image intensity at the 

edge; these methods however are in minority, due to 

lack of characteristic points of image intensity function 

at the edge; 

2. methods reconstructing image first derivative function 

[14], [15] which retrieve image gradient function at the 

edge based on gradient sample values provided by 

operators like Sobel, Prewitt [14] or Canny [15] - most 

commonly second order polynomial is fitted into 

gradient sample values in a small (3 - 5 pixels) 

neighborhood; several approaches using wavelet 

transform instead of image first derivative have also 

been proposed [19], [20]; 

3. methods reconstructing image second derivative 

function [16]–[18] which reconstruct continuous image  

2nd derivative function at the edge based on sample 

values provided by operator LoG; most commonly 

image derivative function is linearly interpolated in the 

neighborhood where the 2nd  image derivative function 

changes its sign [16], [17] then coordinates of the zero-

crossings of the reconstructed derivative function 

determine edge position with subpixel accuracy. 

D. Other methods 

There are also several subpixel edge detection methods 

which do not meet the classification presented in the 

previous subsections. One of them is approach used by 

Stanke [23] or Ji [24] where  subpixel edge position is 

indicated by center of gravity of a gradient peak. Bie and Liu 

[25] applied quad-tree decomposition to divide pixels into 

subpixels while Kisworo [6] determined subpixel edge using 

image energy computed based on image intensities and their 

Hilbert transform. Some methods based on curvelets 

[21][22] have also been proposed.  

Regarding the classification presented in the preceding 

subsections, the method introduced in this paper is a 

combination of reconstructive and curve fitting methods. 

More detailed description of the method is given in the 

following part of this paper. 

III. THE PROPOSED METHOD 

The proposed method attempts to retrieve continuous edge 

information at the edge from the discrete image data. 

Reconstruction is performed only in the neighborhood of the 

edge. Therefore, the method starts from defining the coarse 

edge location. Then edge position is refined to subpixel 

level. Finally, continuous edge is obtained via cubic spline 

interpolation. The detailed description of the above 

mentioned steps is given in the following subsections. 

A. Coarse edge determination 

For the coarse edge determination Sobel gradient masks 

are applied. Input image L is convolved with the horizontal 

hx and the vertical hy gradient masks in accordance with 

Equation (1). 

    22
LhLhL yx   (1) 

where   denotes convolution. The gradient image L  is 

next thresholded with a global threshold T. The value of T is 

determined using ISODATA algorithm [26]. The applied 

threshold selection method is an iterative approach which 

starts from assigning an arbitrary initial threshold. Then 

mean intensities of pixels above the initial threshold and 

below the initial threshold are computed and the new 

threshold is obtained as their average. The procedure is 

repeated based upon a new threshold as long as the threshold 

value changes. 

When value of  T is determined thresholding is performed 

in accordance with Equation (2). The operation produces 

binary image corresponding with the region of the highest 

gradient. 

 




TLfor

TLfor
xL

0

1
)('  (2) 

Finally, the coarse edge is obtained as a result of 

skeletisation performed on the binary image )(' xL in 

accordance with Equation (3) [27]. 

     HnHLnHLL N

n  ''''0    (3) 

where: H denotes structuring element (see Fig. 1),  and  denote erosion and dilation respectively,   denotes 

morphological opening and: 

 N = max{n|  ')(' nHxL Ø} (4) 
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 (6) 

Equation (3) is iterated until the convergence with the 

structuring elements shown in Figure 1 and all their 90° 

rotations. 

 

0 0 0   X 0 0 

X 1 X   1 1 0 

1 1 1   X 1 X 

Fig.  1 Structuring elements used for skeletisation. 

 

Successive steps of the coarse border determination in a 

sample image are presented in Figure 2. Particularly, 

Figure 2a presents input image. In Figure 2b gradient image 

is shown. The result of global ISODATA thresholding is 

presented in Figure 2c. Finally, Figure 2d presents the coarse 

border. 
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B. Refining edge to subpixel level 

In this step of the algorithm, reconstruction of gradient 

profile at the edge is performed. Gaussian function given by 

Equation (7) is fitted along the normal direction of edges 

into a gradient sample values provided by Sobel operator. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2.  Successive steps of coarse border determination; (a) input 

image; (b) gradient image; (c) image after ISODATA thresholding; (d) 

coarse edge. 

 

 

 
2

2

2)( 
 x

Aexf  (7) 

where f(x) denotes gradient value at location x. The fitting is 

performed in a neighbourhood of every pixel from the coarse 

edge. It’s linear neighbourhood in the gradient direction (the 
horizontal or the vertical) is considered. Several pixels on 

each side of the coarse edge are used. 

The main idea of the proposed method is presented in 

Figure 3. In particular, in Figure 3a direction of a linear 

neighbourhoods used for gradient reconstruction are 

indicated. Figure 3b explains the idea of Gaussian function 

fitting along the normal direction of the edge. The figure 

presents 3D surface plot where gradient intensity is 

represented as a third dimension. 

 

 

Fig. 3. The main idea of the proposed method; (a) direction of linear 

neighborhoods used for gradient reconstruction; (b) an idea of 

Gaussian function fitting along the normal direction of the edge 

presented in 3D surface plot. 

 

Parameters of the Gaussian function fitted into a gradient 

sample values determine properties of the edge. Specifically:  

 σ - describes a blur level of the edge; 

 A - corresponds with gradient maximum value at the edge; 

 μ - determines subpixel position of  the edge pixel. 

An example Gaussian function fitted into the discrete 

gradient sample values in a neighbourhood of pixel at 

location x=27 is presented in Figure 4. Empty circles 

correspond with gradient sample values shown under the 

graph. The coordinate μ of the maximum of the 

approximating Gaussian function indicates the edge location 

with subpixel accuracy. 

 

Fig. 4. Gaussian function fitted into gradient sample values. 

 

Parameters of the Gaussian function are obtained via 

multidimensional unconstrained nonlinear minimization 

using Nelder-Mead algorithm [28]. This is an effective and 

computationally compact, simplex based method for finding 

a local minimum of a function of several variables. The 

algorithm works iteratively and uses only function values, 

without any derivative information. Each iteration of the 

simplex-based direct search begins with a simplex (i.e. a 

generalized triangle in n dimensions), specified by its ns+1 

vertices and the associated function values. One or more test 

points are computed, along with their function values, and 

the iteration terminates with bounded level sets. 

The initial estimates for the fitting are as follows: 

 for A – the maximum gradient value in the current 

neighbourhood; 

 for μ – x coordinate of the central pixel in the regarded 

neighbourhood in case of the horizontal fitting and y 

coordinate of the central pixel in the regarded 

neighbourhood in case of the vertical fitting; 

 for σ – size of a neighbourhood used for gradient 

function reconstruction. 

C. Edge linking 

In the last step of the algorithm edge linking is performed. 

It aims at obtaining continuous border from the subpixel 

positions of the coarse edge points determined in the 

previous step. 
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Firstly, the coarse edge is represented by means of chain 

code i.e. connected sequence of straight line segments of a 

specified length and direction; 8-connectivity segments are 

considered [29]. Despite the information about the 

succeeding pixel, each node of the chain contains 

information about the corresponding subpixel position.  

Next, Cubic spline interpolation is performed over the 

subpixel positions corresponding with the consecutive pixels 

in the chain code in accordance with Equation (8). 

 )()( xFxF i  (8) 

where: x[xi, xi+1], xp’0=x0<x1<…<xn-1<xn=xp’k and:       iiiiiiii dxxcxxbxxaxF  23
)(  (9) 
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''

0   ni xFxF  (12) 

IV. TESTS ON SIMULATED DATA 

Firstly, the proposed method for subpixel edge detection 

was tested on the simulated data to verify if it works 

correctly. Specifically, the robustness of the method against 

the Gaussian blur and the averaging was investigated. In 

order to present robustness of Gaussian function in 

determining blurred edge position, the third step of the 

algorithm (i.e. edge linking) was not performed on the 

presented results. 

Geometrically created 8-bit grayscale image of a circle 

was used to test the performance of the proposed approach. 

The circle of radius 50 pixels was centered at the position 

(75.0, 75.0). The intensity of the background was 52 while 

the intensity of the circle was 255. 

The assessment of edge detection quality was made by 

means of: 

 coordinates of the determined circle center; 

 an average radius of the determined circle; 

 standard deviation of the radius of the determined 

circle. 

Coordinates of the circle center were defined as a center 

of gravity of the determined subpixel edge points and 

computed in accordance with the Equation (13). 
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 (13) 

where k is number of subpixel edge points and xi, yi denote 

coordinates of i-th subpixel edge point. Radius was defined 

as an average distance of subpixel edge points from the real 

circle center (i.e. (75.0, 75.0)). This is expressed by 

Equation (14). 

      k

i

ii yx
k

r
1

22
7575

1
 (14) 

The test image was distorted by: 

 Gaussian filter of an increasing radius (from 1 to 10); 

 an average filter of an increasing size (from 1 to 10). 

Results provided by the proposed method (series: gauss) 

were compared with the previously proposed approaches to 

subpixel edge detection, such as: 

 Tabatabai and Mitchell’s method [8] (series: 

tabatabai); 

 Zernike moments approach [10] (series: zm); 

 parabola fitting approach [14][15] (series: par); 

  Original image 
Tabatabai & 

Mitchell 
Gravity center Parabola fitting Zernike moments Proposed method 
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Fig. 5. Results of edge detection at sub-pixel level in images distorted by Gaussian blur. 
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 gravity center approach [23][24] (series: gc). 

In all the cases the neighborhood equal to the diameter of 

the filter used to distort the image was regarded while 

determining edge position.    

The results of edge detection in images distorted by the 

Gaussian blur are presented in Figures 5 and 6. Specifically, 

Figure 5 shows edges obtained with subpixel accuracy 

rounded to the closest pixel. Method used for edge detection 

is indicated above each column. Radius of the Gaussian filter 

used for blurring is given at the beginning of each row. 

Figure 6 presents the comparison of edge detection results 

at subpixel level. Specifically, Figure 6a shows the error of 

circle center determination in function of radius of Gaussian 

filter used for blurring. The error is expressed by means of 

Euclidean distance between the real and the determined (in 

accordance with Eq. (13) ) circle center. Figure 6b presents 

the error of circle radius determination in function of radius 

of Gaussian filter used for blurring. The error is expressed by 

means of the difference in length between the real and the 

determined (in accordance with Eq. (14)) radius. Finally, 

Figure 6c presents standard deviation of the circle radius in 

function of radius of Gaussian filter used for blurring.  

Results of edge detection in images distorted by an 

average filter are presented in Figures 7 and 8. As 

previously, Figure 7 shows edges obtained with subpixel 

accuracy rounded to the closest pixel while Figure 8 presents 

comparison of edge detection results at subpixel level. The 

error of circle center (Fig. 8a), the error of radius (Fig. 8b) 

and the standard deviation of radius (Fig. 8c) are presented 

in function of size of an average filter used for blurring. 

The results presented in Figures 5-9 prove the robustness 

of the proposed method against the Gaussian blur and the 

averaging.  

Firstly, based on visual assessment (Fig. 5, Fig. 7), it 

should be underlined that only the proposed Gaussian fitting 

approach produces continuous and regular edges for a wide 

range of blur corruption. This is in the case of both: the 

Gaussian blur and the averaging for all regarded dimensions 

of filter used for image corruption. The other regarded 

approaches to subpixel edge detection produce continuous 

and regular edges only for low level of blur. With increasing 

blur, increases irregularity and discontinuity of the 

determined edge. This is also proved by graphs on Figures 

6c and 8c showing standard deviations of the determined 

radius in function of radius of blurring filter. 

Considering the comparison at subpixel level (Fig. 6, 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Results of edge detection at sub-pixel level in images distorted by Gaussian filter. 
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Fig. 7. Results of edge detection at sub-pixel level in images distorted by an average filter. 
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Fig. 8) it is clear that the best results are provided by the 

proposed method. In the case of Gaussian, blur the error of 

circle center determination is similar for all tested methods 

(see Fig. 8a). However, the smallest errors of an average 

radius provide the Gaussian fitting approach and Tabatabai 

and Mitchell's method (see Fig. 8b). Having in mind 

irregularity of edges provided by the second method, 

Gaussian fitting approach is superior in the case of Gaussian 

blur corruption. In the case of averaging, the error of an 

average radius provided by the proposed method is indeed 

higher than the error of Tabatabai and Mitchell's method, 

however, due to a very high standard deviation of radius of 

the latter method again Gaussian fitting approach can be 

regarded superior. 

It should be also underlined, that Zernike moments 

approach fails when applied to blurred images (by both: 

Gaussian blur and averaging) - specifically for high level of 

blur the method produces the most irregular and 

discontinuous edges from all tested methods. Parabola fitting 

approach yields reasonable results for low and medium level 

of blur corruption, but for very blurry images the method has 

some problems with stability and produces edge points 

which significantly outstand from the border. Gravity center 

approach is always stable and for low level of blur produces 

continuous edges. However for increasing blur the method 

changes object shape. It can be observed that for large blur 

the determined edges become squarer.  

Here, it should be concluded, that results obtained for the 

synthetic images prove correctness of the introduced method, 

its robustness against blurred edges and its superiority over 

other approaches to subpixel edge detection. 

V. TESTS ON REAL DATA 

In the next step, the tests on real images were performed 

in order to define the scope of applicability of the introduced 

method for subpixel edge detection. Specifically, images of 

heat-emitting specimens of metals and alloys obtained from 

the computerized system for high temperature measurements 

of surface properties [30][31] were considered. Due to the 

intense thermal radiation, usage of gas protective atmosphere 

and application of infrared filters the images are 

characterized by low contrast and blurred edges. Sample 

images obtained from the regarded system are shown in 

Figure 9. They present specimens of: copper at 853°C (Fig. 

9a), steel at 797°C (Fig. 9b), copper at 1265°C (Fig. 9c) and 

steel at 1104°C (Fig. 9d). 
Results of subpixel edge detection in sample images from 

Figure 9 are presented in Figure 10. Ten pixels at each side 

of the coarse edge pixel was regarded while refining edge 

position. Edges provided by the proposed approach are 

compared with results provided by other approaches. 

Specifically, the coarse edges are presented in the first row. 

The second row shows results of refining edge position using 

the proposed Gaussian fitting approach. The following rows 

presents edges provided by the gravity center approach, the 

parabola fitting approach, the Zernike moments approach 

and Tabatabai and Mitchell’s method respectively. The 

results are rounded to the closest pixel. Interesting regions of 

specimen border are highlighted by red rectangles and 

magnified. In order to present robustness of the Gaussian 

function in determining blurred edge position, the third step 

of the algorithm (i.e. edge linking) was not performed on the 

presented results.  

 
(a) 

 
(b) 

 
(c) 

 

  

Fig. 8. Results of edge detection at sub-pixel level in images distorted by an average filter. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

 

Fig. 9. Sample images of heat-emitting specimens of metals and alloys; (a) copper, 853°C; (b) steel, 797°C;  (c) copper, 1265°C;                          
(d) steel, 1104°C. 
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Results shown in Figure 10 clearly show, that the 

proposed method significantly improves quality of edge 

detection in images of heat-emitting specimens of metals and 

alloys and outperforms other regarded approaches. 

Firstly, it should be underlined that Zernike moments 

approach and Tabatabai and Mitchell’s method fail when 
applied to the images of heat-emitting specimens. Subpixel 

edge provided by Zernike moments approach is at pixel level 

identical with the coarse edge. At subpixel level the 

differences between the coarse and the refined edge are 

negligible. In the case of the considered class of images 

Tabatabai and Mitchell’s method becomes unstable and 
provides jagged, discontinuous, irregular and ambiguous 

edges what is unacceptable. Also parabola fitting approach 

has some problems with the continuity and the stability as it 

determines subpixel position of singular edge points visibly 

outstanding from the edge location. It is especially in the 

case when the supposed edge position is not in the center of 

the neighborhood of the coarse edge regarded while refining 

its position. 

Both: the gravity center approach and the proposed 

Gaussian fitting approach are stable and provide continuous 

edges. However, the gravity center approach is sensitive to 

blur - it has problems in describing corners and rounds them 

off. In the examples shown in Figure 10 it is especially 

visible in contact of specimen, base and background or in 

case of image of steel at 797°C (Fig. 9b).  Moreover, the 

gravity center approach tends to move border from the object 

when big neighborhood is used while refining the edge 

position.  

The most significant increase in edge detection accuracy 

can be observed when the proposed Gaussian fitting 
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Fig. 10. Results of subpixel edge detection in images of heat-emitting specimens of metals and alloys. The original images are shown in 

Figure 9. Method used for edge detection is indicated at the beginning of each row. 
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approach is used. Subpixel edges produced by the introduced 

method are regular. Moreover, they are continuous what 

diminishes number of edge information to be guessed during 

edge linking and makes the results more unequivocal. 

Additionally, improved edge fits closely specimen shape. 

Corners are sharp and well defined. This makes the method 

adequate for the considered class of images.     

VI. CONCLUSIONS 

In this paper problem of edge detection at subpixel level 

was considered. Specifically, precise edge detection in 

blurred images was regarded. The reconstructive method for 

subpixel edge detection was introduced. The method firstly 

determines the coarse edge using Sobel gradient masks, 

thresholding and skeletisation. Then it attempts to 

reconstruct continuous image gradient function at the coarse 

edge using Gaussian function. Position of the maximum of 

the reconstructing Gaussian function indicates edge position 

with subpixel accuracy.  

The correctness and robustness of the method was proven 

by tests performed on geometrically created synthetic images 

under a wide range of blur corruption. Obtained results 

clearly show that the proposed method significantly 

improves quality of edge detection. The refined edges are 

continuous and much more regular than those provided by 

the previously proposed approaches to subpixel edge 

detection. The more blurred is the edge, the difference is 

more significant. The advantage of the Gaussian function 

based method can be seen both: in accuracy and the stability 

of the obtained subpixel edge position. 

Tests performed on the real images obtained from the high 

temperature industrial vision system proved that the 

introduced method can be particularly useful in case of low 

contrast images with blurred and unsharp edges. In 

consequence it can be successfully applied in a wide 

spectrum of machine vision applications where accuracy is at 

premium. 
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