
Dispersive Flies Optimisation

Mohammad Majid al-Rifaie
Department of Computing

Goldsmiths University of London

London SE14 6NW, United Kingdom

Email: m.majid@gold.ac.uk

Abstract—One of the main sources of inspiration for techniques
applicable to complex search space and optimisation problems
is nature. This paper proposes a new metaheuristic – Dispersive
Flies Optimisation or DFO – whose inspiration is beckoned from
the swarming behaviour of flies over food sources in nature.
The simplicity of the algorithm, which is the implementation
of one such paradigm for continuous optimisation, facilitates
the analysis of its behaviour. A series of experimental trials
confirms the promising performance of the optimiser over a set
of benchmarks, as well as its competitiveness when compared
against three other well-known population based algorithms
(Particle Swarm Optimisation, Differential Evolution algorithm
and Genetic Algorithm). The convergence-independent diversity
of DFO algorithm makes it a potentially suitable candidate for
dynamically changing environment. In addition to diversity, the
performance of the newly introduced algorithm is investigated
using the three performance measures of accuracy, efficiency and
reliability and its outperformance is demonstrated in the paper.

I. INTRODUCTION

T
HROUGHOUT the history nature has been an inexpli-

cable source of inspiration for scientists and researchers.

Observations, many of which made unintentionally, have been

triggering the inquisitive minds for hundreds of years. The

task of resolving problems and its often present nature in the

minds of scientists boosts the impact of these observations,

which in cases led to discoveries. Among others, researchers

in mathematics, physics and natural sciences have had their

fair share of ‘observations-leading-to-discoveries’.

Observing the magnificently choreographed movements of

birds, behaviour of ants foraging, convergence of honey bees in

search for food source and so forth has led several researchers

to propose (inspired vs. identical) models used to solve various

optimisation problems. Genetic Algorithm [1], Particle Swarm

Optimisation [2] and Ant Colony Optimisation [3] are only few

such techniques belonging to the broader category of swarm

intelligence; it investigates collective intelligence and aims at

modelling intelligence by looking at individuals in a social

context and monitoring their interactions with one another as

well as their interactions with the environment.

The work presented here aims at proposing a novel nature-

inspired algorithm based on the behaviours of flies hovering

over food sources. This model – Dispersive Flies Optimisation

or DFO – is first formulated mathematically and then a set of

experiments is conducted to examine its performance when

presented with various problems.

II. FLIES IN NATURE

Flies are insects of the order Diptera, which comprises

a large order, containing an estimated 240, 000 species of

mosquitoes, gnats, midges and others [4]. Flies exist in various

types each exhibiting distinctive behaviour in different envi-

ronments. What most flies have in common is their swarming

behaviour which depends on several factors.

Swarming have been described in [5] where a difference

of shape between low swarms over dung and high swarms

over other markers have been logged. High swarms fluctuated

in height; vertical movements of the swarms of Anopheles

franciscanus (Culicidae) are said to be correlated with female

presence at swarms [6]. Height change in mosquito swarm

induced by a clarinet note [7] and the human voice [8]

may have evolved as responses to the flight tone of female

mosquitoes [9].

Swarms of flies are associated with visual markers ranging

in size from cowpies and stones to church steeples [10]. The

criteria used by insects to select markers may be quite subtle;

it was noted in [11] that certain objects are used repeatedly

by the mosquito Aedes cataphylla while similar objects nearby

are neglected.

As explained in [12], various swarms of flies usually “flying

in relation to a more or less conspicuous element of the

landscape, a lakeshore, a road, a treetop, below the tip of a

branch, in an opening in the forest canopy, above a cow, an

outstanding leaf", and so on according to species (e.g. [13],

[14]). Depending on the species, the size of the swarm may

consist of a single individual or tens or thousands, related to a

discrete swarm marker; or even countless millions in the zonal

swarms of lake shores.

Several elements play a role in disturbing the swarms of

flies; for instance, the presence of a threat causes the swarms

to disperse, leaving their current marker; they return to the

marker immediately after the threat is over. However, during

this period if they discover another marker which matches their

criteria closer, they adopt the new marker.

III. DISPERSIVE FLIES OPTIMISATION

Dispersive Flies Optimisation (DFO) is an algorithm in-

spired by the swarming behaviour of flies hovering over food

sources. As detailed in section II, the swarming behaviour of

flies is determined by several factors and that the presence of

threat could disturb their convergence on the marker (or the
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optimum value). Therefore, having considered the formation

of the swarms over the marker, the breaking or weakening of

the swarms is also noted in the proposed algorithm.

In other words, the swarming behaviour of the flies, in

Dispersive Flies Optimisation, consist of two tightly connected

mechanisms, one is the formation of the swarms and the other

is its breaking or weakening. The algorithm and the math-

ematical formulation of the update equations are introduced

below.

The position vectors of the population are defined as:

~xt
i =

[

xt
i1, x

t
i2, ..., x

t
iD

]

, i = 1, 2, ...,NP (1)

where t is the current time step, D is the dimension of the

problem space and NP is the number of flies (population

size).

In the first generation, when t = 0, the ith vector’s jth

component is initialised as:

x0
id = xmin,d + r (xmax,d − xmin,d) (2)

where r is a random number drawn from a uniform distribution

on the unit interval U (0, 1); xmin and xmax are the lower and

upper initialisation bounds of the dth dimension, respectively.

Therefore, a population of flies are randomly initialised with

a position for each flies in the search space.

On each iteration, the components of the position vectors are

independently updated, taking into account the component’s

value, the corresponding value of the best neighbouring fly

(consider ring topology) with the best fitness, and the value

of the best fly in the whole swarm:

xt
id = xt−1

nb,d + U (0, 1)× (xt−1

sb,d − xt−1

id ) (3)

where xt−1

nb,d is the value of the neighbour’s best fly in the dth

dimension at time step t−1; xt−1

sb,d is the value of the swarm’s

best fly in the dth dimension at time step t− 1; and U (0, 1)
is the uniform distribution between 0 and 1.

The algorithm is characterised by two principle components:

a dynamic rule for updating flies position (assisted by a

social neighbouring network that informs this update), and

communication of the results of the best found fly to other

flies.

As stated earlier, the swarm is disturbed for various reasons;

one of the positive impacts of such disturbances is the dis-

placement of the disturbed flies which may lead to discovering

a better position. To consider this eventuality, an element of

stochasticity is introduced to the update process. Based on

this, individual components of flies’ position vectors are reset

if the random number, r, generated from a uniform distribution

on the unit interval U (0, 1) is less than the disturbance

threshold or dt. This guarantees a proportionate disturbance to

the otherwise permanent stagnation over a likely local minima.

Algorithm 1 summarises the DFO algorithm1.

The next section briefly presents three population-based

algorithms which will be used to compare the performance of

1The source code can be downloaded from the following page:
http://doc.gold.ac.uk/~map01mm/DFO/

Algorithm 1 Dispersive Flies Optimisation

1: while FE < 300, 000 do

2: for i = 1→ NP do

3: ~xi.fitness← f(~xi)
4: end for

5: sb← {sb, ∀ f(~xsb) = min (f(~x1), f(~x2), ..., f(~xNP))}
6: nb← {nb, ∀ f(~xnb) = min (f(~xleft), f(~xright))}
7: for i = 1→ NP do

8: for d = 1→ D do

9: τd ← xt−1

nb,d + U (0, 1)× (xt−1

sb,d − xt−1

id )
10: if (r < dt) then

11: τd ← xmin,d + r (xmax,d − xmin,d)
12: end if

13: end for

14: ~xi ← ~τ

15: end for

16: end while

DFO, and then the results of a series of experiments conducted

on DFO over a set of benchmark functions are reported.

IV. POPULATION-BASED ALGORITHMS

The three algorithms introduced briefly in this section are

variations of particle swarm optimisation (PSO), differential

evolution algorithm (DE) and genetic algorithm (GA). One of

the common features of these algorithms are the interactions

between their population (i.e. information sharing), with the

ultimate goal of finding the optima.

A. Particle Swarm Optimisation

Particle swarm optimisation (PSO) is population based op-

timization technique developed in 1995 by Kennedy and Eber-

hart [2]. It came about as a result of an attempt to graphically

simulate the choreography of fish schooling or birds flying

(e.g. pigeons, starlings, and shorebirds) in coordinated flocks

that show strong synchronisation in turning, initiation of flights

and landing, despite the fact that experimental researches to

find leaders in such flocks failed [15].

A swarm in PSO algorithm comprises of a number of

particles and each particle represents a point in a multi-

dimensional problem space. The position of each particle, ~x,

is thus dependent on the particle’s own experience and those

of its neighbours. Each particle has a memory, containing

the best position found so far during the course of the

optimisation, which is called personal best or ~p. Whereas the

best position so far found throughout the population, or the

local neighbourhood, is called neighbourhood best.

A standard particle swarm version, Clerc-Kennedy PSO

(PSO-CK) or constriction PSO defines the position of each

particle by adding a velocity to the current position. Here is

the equation for updating the velocity and position of each

particle:

vtid = χ
(

vt−1

id + c1r1
(

pid − xt−1

id

)

+ c2r2
(

gid − xt−1

id

))

(4)

xt
id = vtid + xt−1

id (5)
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where χ which is the constriction factor is set to 0.72984
which is reported to be be working well in general [16];

vt−1

id is the velocity of particle i in dimension d at time

step t − 1; c1,2 are the learning factors (also referred to as

acceleration constants) for personal best and neighbourhood

best respectively (they are constant); r1,2 are random numbers

adding stochasticity to the algorithm and they are drawn from

a uniform distribution on the unit interval U (0, 1); pid is the

personal best position of particle xi in dimension d; and gid is

neighbourhood best. In the experiments reported in this work,

local neighbourhood is used.

B. Differential Evolution Algorithm

Differential evolution (DE), an evolutionary algorithms

(EAs), is a simple global numerical optimiser over continuous

search spaces which was first introduced by Storn and Price

[17].

DE is a population based stochastic algorithm, proposed to

search for an optimum value in the feasible solution space. The

parameter vectors of the population are defined as follows:

~x
g
i =

[

x
g
i,1, x

g
i,2, ..., x

g
i,D

]

, i = 1, 2, ..., NP (6)

where g is the current generation, D is the dimension of the

problem space and NP is the population size. In the first

generation, (when g = 0), the ith vector’s jth component

could be initialised as:

x0
i,j = xmin,d + r (xmax,d − xmin,d) (7)

where r is a random number drawn from a uniform distribution

on the unit interval U (0, 1), and xmin, xmax are the lower

and upper bounds of the dth dimension, respectively. The

evolutionary process (mutation, crossover and selection) starts

after the initialisation of the population.

1) Mutation: At each generation g, the mutation operation

is applied to each member of the population x
g
i (target vector)

resulting in the corresponding vector v
g
i (mutant vector). In

this work, DE/best/1 variation of mutation approaches is used:

v
g
i = x

g
best + F

(

xg
r1
− xg

r2

)

(8)

where r1 and r2 are different from i and are distinct random

integers drawn from the range [1, NP ]; In generation g, the

vector with the best fitness value is x
g
best; and F is a positive

control parameter for constricting the difference vectors and

is set to 0.5.

2) Crossover: Crossover operation, improves population

diversity through exchanging some components of v
g
i (mutant

vector) with x
g
i (target vector) to generate u

g
i (trial vector).

This process is led as follows:

u
g
i,j =







v
g
i,j , if r ≤ CR or j = rd

x
g
i,j , otherwise

(9)

where r is a uniformly distributed random number drawn from

the unit interval U (0, 1), rd is randomly generated integer

from the range [1, D]; this value guarantees that at least one

component of the trial vector is different from the target vector.

The value of CR, which is another control parameter and is

set to 0.5, specifies the level of inheritance from v
g
i (mutant

vector).

3) Selection: The selection operation decides whether x
g
i

(target vector) or u
g
i (trial vector) would be able to to pass to

the next generation (g+1).In case of a minimisation problem,

the vector with a smaller fitness value is admitted to the next

generation:

x
g+1

i =







u
g
i , if f (ug

i ) ≤ f (xg
i )

x
g
i , otherwise

(10)

where f (x) is the fitness function.

C. Genetic Algorithm

In this work, we use a real-valued Genetic Algorithm

(GA) which has previously shown to work well on real-

world problems [18], [19]. The GA works in the following

way: the individuals are first randomly initialised and their

fitness is evaluated through an objective function. Afterwards,

in a iterative process, each individual has a probability of

being exposed to recombination or mutation (or both). These

probabilities are pc and pm respectively. The recombination

operator used is arithmetic crossover and the mutation operator

used is Cauchy mutation using an annealing scheme. At the

end, in order to comb out the least fit individual, tournament

selection [20] is utilised.

The reason behind using Cauchy mutation operator vs. the

well-known Gaussian mutation operator is the thick tails of

the Cauchy distribution that allows it to generate considerable

changes, more frequently, compared to the Gaussian distribu-

tion. The Cauchy distribution is defined by:

C (x, α, β) =
1

βπ

(

1 +
(

x−α
β

)2
) (11)

where α ≤ 0, β > 0, −∞ < x < ∞ (α and β are

parameters that affect the mean and spread of the distribution).

As specified in [19], all of the solution parameters are subject

to mutation and the variance is scaled with 0.1× the range of

the specific parameter in question.

In order to decrease the value of β as a function of the

elapsed number of generations t, an annealing scheme was

applied (α was set to 0):

β (t) =
1

1 + t
(12)

As for the arithmetic crossover, the offspring is generated

as a weighted mean of each gene of the two parents:

offspringi = r × parent1i + (1− r)× parent2i (13)

where offspringi is the i’th gene of the offspring, and parent1i

and parent2i refer to the i’th gene of the two parents, respec-

tively. The weight r is drawn from a uniform distribution on

the unit interval U (0, 1).
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In the experiments conducted in this paper, the probabilities

of crossover and mutation of the individuals is set to pc =
0.7 and pm = 0.9 respectively. The tournament size of the

tournament selection is set to two, and elitism with an elite

size of one is deployed to maintain the best found solution in

the population.

V. EXPERIMENTS

This section presents a set of experiment investigating the

performance of the newly introduced Dispersive Flies Opti-

misation (DFO) and discusses the results. Then, to understand

whether disturbance plays an important role in the optimisation

process, a control algorithm is presented DFO-c where no

disturbance is inflicted upon the population of flies.

Recognising the lose of diversity as a common issue in

all distribution based evolutionary optimisers (since dispersion

reduces with convergence), the impact of disturbance on

preserving the diversity of the population is also studied.

Additionally, an optimal value for disturbance threshold, dt, is

suggested. Afterwards the performance of DFO is compared

against few other well-known population-based algorithms,

namely Particle Swarm Optimisation (PSO), Differential Evo-

lution (DE) and Genetic Algorithm (GA).

A. Experiment Setup

The benchmarks used in the experiments (see Table I) are

divided in two sets, f1−14 and g1−14; more details about these

functions (e.g. global optima, mathematical formulas, etc.) are

reported in [16] and [21]. The first set, f1−14, have been used

by several authors [22], [16], [23] and it contains the three

classes of functions recommended by Yao et al. [24]: unimodal

and high dimensional, multimodal and high dimensional, and

low dimensional functions with few local minima. In order not

to initialise the flies on or near a region in the search space

known to have the global optimum, region scaling technique is

used [25], which makes sure the flies are initialised at a corner

of the search space where there are no optimal solutions.

The second test set, g1−14, are the first fourteen functions of

CEC 2005 test suite [21] and they present more challenging

features of the common functions from the aforementioned

test set (e.g. shifted by an arbitrary amount within the search

space and/or rotated). This set has also been used for many

researchers.

One hundred flies were used in the experiments and the

termination criterion for the experiments is set to reaching

300, 000 function evaluations (FEs). There are 50 Monte

Carlo simulations for each experiment and the results are

averaged over these independent simulations. Apart from the

disturbance threshold which is set to dt = 0.001, there are no

adjustable parameters in DFO’s update equation.

The aim of the experiments is to study and demonstrate the

qualities of the newly introduced algorithm as a population

based continuous optimiser. The behaviour of the DFO algo-

rithm is compared against its control counterpart and some

other population based algorithms (see Sections IV-A, IV-B

and IV-C).

B. Performance measures and statistical analysis

In order to conduct the statistical analysis measuring the

presence of any significant difference in the performance of

the algorithms, Wilcoxon 1× 1 non-parametric statistical test

is deployed. The performance measures used in this paper are

error, efficiency, reliability and diversity which are described

below.

Error is defined by the quality of the best agent in terms

of its closeness to the optimum position (if knowledge about

the optimum position is known a priori, which is the case

here). Another measure used is efficiency which is the number

of function evaluations before reaching a specified error, and

reliability is the percentage of trials where a specified error is

reached. These performance measures are defined as below:

ERROR = |f (~xg)− f (~xo)| (14)

EFFICIENCY =
1

n

n
∑

i=1

FEs (15)

RELIABILITY =
n

′

n
× 100 (16)

where ~xg is the best position found and ~xo is the position of

the known optimum solution; n is the number of trials in the

experiment and n
′

is the number of successful trials, FEs is the

number of function evaluations before reaching the specified

error, which in these experiments, set to 10−8.

In this work, diversity, which is the degree of convergence

and divergence, is defined as a measure to study the popula-

tion’s behaviour with regard to exploration and exploitation.

There are various approaches to measure diversity. The average

distance around the population centre is shown [26] to be a

robust measure in the presence of outliers and is defined as:

DIVERSITY =
1

NP

NP
∑

i=1

√

√

√

√

D
∑

j=1

(

x
j
i − x̄j

)2

(17)

x̄j =
1

NP

NP
∑

i=1

x
j
i (18)

where NP is the number of flies in the population, D is the

dimensionality of the problem, x
j
i is the value of dimension

j of agent i, and x̄j is the average value of dimension j over

all agents.

C. Performance of Dispersive Flies Optimisation

The error, efficiency and reliability results of DFO perfor-

mance over the benchmarks are reported in Table II. The first

five columns detail the error-related figures and the last column

highlights the median efficiency along with the reliability

(shown between brackets) of the algorithm in finding the

optima. The algorithm exhibits a promising performance in op-

timising the presented problem set where half the benchmarks

(f1−2,5−11 and g1−2,7,9) are optimised with the specified

accuracy. The figures in the table are expanded in the following

categories:
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TABLE I
BENCHMARK FUNCTIONS

Fn Name Class Dimension Feasible Bounds

f1 Sphere/Parabola Unimodal 30 (−100, 100)D

f2 Schwefel 1.2 Unimodal 30 (−100, 100)D

f3 Generalized Rosenbrock Multimodal 30 (−30, 30)D

f4 Generalized Schwefel 2.6 Multimodal 30 (−500, 500)D

f5 Generalized Rastrigin Multimodal 30 (−5.12, 5.12)D

f6 Ackley Multimodal 30 (−32, 32)D

f7 Generalized Griewank Multimodal 30 (−600, 600)D

f8 Penalized Function P8 Multimodal 30 (−50, 50)D

f9 Penalized Function P16 Multimodal 30 (−50, 50)D

f10 Six-hump Camel-back Low Dimensioal 2 (−5, 5)D

f11 Goldstein-Price Low Dimensioal 2 (−2, 2)D

f12 Shekel 5 Low Dimensioal 4 (0, 10)D

f13 Shekel 7 Low Dimensioal 4 (0, 10)D

f14 Shekel 10 Low Dimensioal 4 (0, 10)D

g1 Shifted Sphere Unimodal 30 (−100, 100)D

g2 Shifted Schwefel 1.2 Unimodal 30 (−100, 100)D

g3 Shifted Rotated High Conditioned Elliptic Unimodal 30 (−100, 100)D

g4 Shifted Schwefel 1.2 with Noise in Fitness Unimodal 30 (−100, 100)D

g5 Schwefel 2.6 with Global Optimum on Bounds Unimodal 30 (−100, 100)D

g6 Shifted Rosenbrock Multimodal 30 (−100, 100)D

g7 Shifted Rotated Griewank without Bounds Multimodal 30 (−600, 600)D

g8 Shifted Rotated Ackley with Global Optimum on Bounds Multimodal 30 (−32, 32)D

g9 Shifted Rastrigin Multimodal 30 (−5, 5)D

g10 Shifted Rotated Rastrigin Multimodal 30 (−5, 5)D

g11 Shifted Rotated Weierstrass Multimodal 30 (−0.5, 0.5)D

g12 Schwefel Problem 2.13 Multimodal 30 (−π, π)D

g13 Expanded Extended Griewank plus Rosenbrock Expanded 30 (−5, 5)D

g14 Shifted Rotated Expanded Scaffer Expanded 30 (−100, 100)D

1) Unimodal, high dimensional (f1,2, g1−5): The algorithm

optimises 57% of the benchmarks in this category; while both

functions in the first set are optimised (f1,2), only two out of

five benchmarks in the second and more challenging set are

optimised to the specified accuracy. All optimised benchmarks

achieve 100% success.
2) Low dimensional and few local minima (f10−14): In this

category, 40% of the benchmarks are optimised, with 100%
reliability for f10 and 32% for f11. However, none of the

Shekel functions (f12−14) are optimised; Shekel is known to

be a challenging function to optimise due to the presence of

several broad sub-optimal minima; also the proximity of a

small number of optima to the Shekel parameter ~ai is another

reason for the difficulty of optimising these set of functions.
3) Multimodal, high dimensional (f3−9, g6−14): The op-

timiser is able to optimise 50% of the benchmarks in this

category (f5−9 and g7,9), 71% of which achieve 100% success

rate (all except f7, g7 with 28% and 10% success rates

respectively). The optimiser exhibit a promising performance

when dealing with the difficult Rosenbrock functions (f3, g6),

reaching the error of 10−4 and 10−3 respectively. The algo-

rithm performs exceptionally well in optimising the infamous

Rastrigin functions, both common and shifted mode (i.e. f5

and g9), achieving 100% success rate; however it does show

weakness in the more challenging g10 rotated version.

The success of the optimiser in optimising the notorious

Rastrigin function in its common and shifted modes will be

discussed in the context of DFO’s dimension-to-dimension

disturbance mechanism induced by the algorithm.

In order to provide a better understanding of the behaviour

of the algorithm, in the next section, the disturbance is

discarded and the diversity of the algorithm is studied.

D. Diversity in DFO

Most swarm intelligence and evolutionary techniques com-

mence with exploration and, over time (i.e. function evalu-

ations or iterations), lean towards exploitation. Maintaining

the right balance between exploration and exploitation phases

has proved to be difficult. The absence of the aforementioned

balance leads to a weaker diversity when encountering a

local minimum and thus the common problem of pre-mature

convergence to a local minimum surfaces.

Similar to other swarm intelligence and evolutionary al-

gorithms, DFO commences with exploration and over time,

through its mechanism (i.e. gradual decrease in the dis-

tance between the members of the population and as such,
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TABLE II
DFO – DISPERSIVE FLIES OPTIMISATION

Min. Max. Median Mean StdDev Eff. (Rel.)

f1 6.46E-47 1.97E-40 1.75E-43 1.07E-41 3.49E-41 46850 (100%)

f2 2.24E-12 6.01E-10 6.46E-11 1.08E-10 1.26E-10 239850 (100%)

f3 1.74E-04 1.45E+01 3.65E-01 2.17E+00 3.62E+00 ∞ (0%)

f4 3.89E-07 5.05E-03 2.87E-05 2.49E-04 7.81E-04 ∞ (0%)

f5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 84850 (100%)

f6 2.84E-14 6.39E-14 3.91E-14 3.88E-14 6.49E-15 121200 (100%)

f7 0.00E+00 1.54E-01 1.85E-02 3.25E-02 3.74E-02 47450 (28%)

f8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50950 (100%)

f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 55550 (100%)

f10 0.00E+00 2.22E-16 0.00E+00 4.00E-17 8.62E-17 1700 (100%)

f11 0.00E+00 8.10E+01 8.10E+01 5.51E+01 3.82E+01 2100 (32%)

f12 5.05E+00 5.05E+00 5.05E+00 5.05E+00 0.00E+00 ∞ (0%)

f13 5.27E+00 5.27E+00 5.27E+00 5.27E+00 0.00E+00 ∞ (0%)

f14 5.36E+00 5.36E+00 5.36E+00 5.36E+00 0.00E+00 ∞ (0%)

g1 5.68E-14 2.27E-13 1.71E-13 1.49E-13 4.28E-14 45300 (100%)

g2 4.55E-12 9.78E-10 3.88E-11 1.03E-10 1.57E-10 234100 (100%)

g3 3.58E+05 3.22E+06 1.40E+06 1.38E+06 6.23E+05 ∞ (0%)

g4 1.40E+00 2.38E+02 2.18E+01 3.71E+01 4.74E+01 ∞ (0%)

g5 3.47E+03 1.82E+04 8.95E+03 9.26E+03 3.17E+03 ∞ (0%)

g6 1.66E-03 1.51E+02 3.06E+00 1.41E+01 3.05E+01 ∞ (0%)

g7 3.31E-11 2.64E-01 1.97E-02 2.93E-02 4.05E-02 236800 (10%)

g8 2.00E+01 2.02E+01 2.01E+01 2.01E+01 3.11E-02 ∞ (0%)

g9 1.14E-13 2.27E-13 1.71E-13 1.52E-13 3.71E-14 89450 (100%)

g10 1.29E+02 3.42E+02 2.34E+02 2.38E+02 5.62E+01 ∞ (0%)

g11 2.46E+01 4.02E+01 3.11E+01 3.12E+01 3.23E+00 ∞ (0%)

g12 9.73E+01 1.58E+04 2.34E+03 3.62E+03 3.51E+03 ∞ (0%)

g13 9.34E-01 2.01E+00 1.48E+00 1.48E+00 3.07E-01 ∞ (0%)

g14 1.23E+01 1.40E+01 1.35E+01 1.35E+01 3.69E-01 ∞ (0%)

each agent’s local and global best positions), moves towards

exploitation. However, having implemented the disturbance

threshold, a dose of diversity (i.e. dt) is introduced in the

population throughout the optimisation process, aiming to

enhance the diversity of the algorithm.

Figure 1 illustrates the convergence of the population to-

wards the optima and their diversities in three random trials

over three benchmarks (i.e. g1,7,9 chosen from the second set)

as examples from unimodal and multimodal functions. The

difference between the error and the diversity values demon-

strates the algorithm’s ability in exploration while converging

to the optima whose fitness reach as low as 10−13 in g1 and

g9.

Exploring the role of disturbance in increasing diversity,

a control algorithm is proposed (DFO-c) where there is no

disturbance (dt = 0) during the position update process.

The graphs in Fig. 2 illustrate the diversity of DFO-c

populations in randomly chosen trials over three sample bench-

marks (again g1,7,9). The graphs illustrate that the diversity of

the population in DFO-c is less than DFO, thus emphasising

the impact of disturbance in injecting diversity which in turn

facilitates the escape from local minima (e.g. as demonstrated

in case of the highly multimodal Rastrigin functions f5, g9).
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Fig. 1. DFO: diversity and error in g1,7,9.

Note the gradual shrinkage of diversity in g9 (≈ 10−13)

which is a clear indication of a premature convergence to a

local minima with very poor chance of escape.

In order to compare the performance of DFO and its control

counterpart, Table III presents the result of optimising the

benchmarks using DFO-c. Additionally, a statistical analysis

is conducted and the output is reported in Table IV where

the performance is compared using the three aforementioned

measures of error, efficiency and reliability (see Section V-B

for the definitions of the measures). The results show that in

89% of cases (where there is a significant difference between

the two algorithms), DFO is performing significantly better

than its control counterpart (DFO-c) which is stripped from the
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Fig. 2. DFO-c: diversity and error in g1,7,9.

diversity inducing disturbance. Furthermore, in all multimodal

functions (f3−9 and g6−12), whenever there is a statistically

significant difference between DFO and DFO-c, the former

demonstrates significant outperformance over the later.

Following on the results from measuring error, Table IV also

shows that in terms of efficiency and reliability measures, DFO

is 79% more efficient than its control counterpart, and 92%
more reliable.

E. Fine Tuning Disturbance Threshold

The role of disturbance in increasing the diversity of DFO

population is discussed earlier (Section V-D). Also, the im-

portance of disturbance is investigated on the optimisation

capability of DFO by introducing a control algorithm which

TABLE III
DFO-C – CONTROL DFO ALGORITHM

Min. Max. Median Mean StdDev Eff. (Rel.)

f1 1.44E-56 3.09E-36 1.27E-45 9.65E-38 4.55E-37 65400 (100%)

f2 7.29E-09 3.23E+01 1.28E-04 7.60E-01 4.60E+00 298200 (2%)

f3 5.27E-05 1.61E+02 5.08E+00 1.67E+01 3.08E+01 ∞ (0%)

f4 4.48E-09 3.20E+03 1.55E+03 1.40E+03 8.66E+02 141500 (2%)

f5 1.87E+02 4.17E+02 2.96E+02 2.94E+02 5.76E+01 ∞ (0%)

f6 1.97E+01 2.00E+01 1.98E+01 1.98E+01 5.24E-02 ∞ (0%)

f7 2.22E-16 6.00E+00 9.30E-02 3.51E-01 8.72E-01 64050 (8%)

f8 1.03E-32 3.30E+02 2.14E+00 2.35E+01 5.84E+01 132950 (24%)

f9 0.00E+00 1.57E+02 1.54E-01 5.35E+00 2.27E+01 176500 (30%)

f10 0.00E+00 2.22E-16 0.00E+00 7.99E-17 1.08E-16 1700 (100%)

f11 0.00E+00 8.10E+01 8.10E+01 5.99E+01 3.59E+01 2100 (26%)

f12 5.05E+00 5.05E+00 5.05E+00 5.05E+00 0.00E+00 ∞ (0%)

f13 5.27E+00 5.27E+00 5.27E+00 5.27E+00 0.00E+00 ∞ (0%)

f14 5.36E+00 5.36E+00 5.36E+00 5.36E+00 0.00E+00 ∞ (0%)

g1 5.68E-14 9.37E-05 1.14E-13 1.91E-06 1.33E-05 70600 (94%)

g2 1.68E-09 2.23E+01 1.23E-04 4.63E-01 3.14E+00 257700 (2%)

g3 2.18E+05 5.38E+06 1.67E+06 1.73E+06 9.39E+05 ∞ (0%)

g4 2.23E+02 1.74E+04 1.80E+03 2.91E+03 3.36E+03 ∞ (0%)

g5 5.79E+03 1.38E+04 8.50E+03 8.69E+03 2.00E+03 ∞ (0%)

g6 2.25E-04 9.53E+01 8.61E+00 1.68E+01 2.52E+01 ∞ (0%)

g7 3.01E-10 2.13E-01 3.02E-02 4.17E-02 4.41E-02 263900 (2%)

g8 2.00E+01 2.02E+01 2.00E+01 2.01E+01 3.89E-02 ∞ (0%)

g9 8.36E+01 2.64E+02 1.62E+02 1.64E+02 4.61E+01 ∞ (0%)

g10 1.22E+02 4.93E+02 2.69E+02 2.71E+02 7.69E+01 ∞ (0%)

g11 1.98E+01 4.11E+01 3.10E+01 3.13E+01 3.97E+00 ∞ (0%)

g12 2.32E+02 1.38E+04 3.04E+03 4.78E+03 3.88E+03 ∞ (0%)

g13 4.79E+00 3.56E+01 1.47E+01 1.58E+01 6.47E+00 ∞ (0%)

g14 1.28E+01 1.45E+01 1.36E+01 1.37E+01 3.38E-01 ∞ (0%)

lacks the disturbance mechanism and the results demonstrate

the positive impact of this mechanism.

The aim of this section is to recommend a value for the dis-

turbance threshold, dt. The range of disturbance probabilities

used in this experiment is between 1 to 10−9 and the values

were chosen according to:

dtn = 10−n, 0 ≤ n ≤ 9

Fig. 3 illustrates the performance of DFO using these dt

probabilities. Both set of benchmarks (i.e. f1−14 and g1−14)

have been used to find a suitable value for the disturbance

threshold. As the heat map highlights, the optimal range is

10−2 < dt < 10−4 and the overall recommended value of

dt = 10−3 is suggested as a good compromise.

F. Comparing DFO with other Population-Based Optimisers

Having presented the performance of the DFO algorithm

(taking into account the three performance measures of error,

efficiency and reliability, as well as the diversity of its pop-

ulation and the impact of disturbance on its behaviour), this

section focuses on contrasting the introduced algorithm with

few well-known optimisation algorithms. The three population
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TABLE IV
COMPARING DFO AND DFO-C PERFORMANCE

Based on Wilcoxon 1×1 Non-Parametric Statistical Test, if the error differ-
ence between each pair of algorithms is significant at the 5% level, the pairs
are marked. X–o shows DFO is significantly outperforming its counterpart
algorithm; and o–X shows that the algorithm compared to DFO is significantly
better than DFO. In terms of the efficiency and reliability measures, 1 – 0 (or
0 – 1) indicates that the left (or right) algorithm is more efficient/reliable. The
figures, n – m, in the last row present a count of the number of X’s or 1’s in
the respective columns.

DFO – DFO-c

Error Efficiency Reliability

f1 o – X 1 – 0 –

f2 X – o 1 – 0 1 – 0

f3 X – o – –

f4 X – o 0 – 1 0 – 1

f5 X – o 1 – 0 1 – 0

f6 X – o 1 – 0 1 – 0

f7 X – o 1 – 0 1 – 0

f8 X – o 1 – 0 1 – 0

f9 X – o 1 – 0 1 – 0

f10 o – X 0 – 1 –

f11 – 0 – 1 1 – 0

f12 – – –

f13 – – –

f14 – – –

g1 – 1 – 0 1 – 0

g2 X – o 1 – 0 1 – 0

g3 X – o – –

g4 X – o – –

g5 – – –

g6 – – –

g7 X – o 1 – 0 1 – 0

g8 – – –

g9 X – o 1 – 0 1 – 0

g10 X – o – –

g11 – – –

g12 – – –

g13 X – o – –

g14 X – o – –

16 – 2 11 – 3 11 – 1

algorithms deployed for this comparison are Differential Evo-

lution (DE), Particle Swarm Optimisation (PSO) and Genetic

Algorithm (GA). These algorithms are briefly described earlier

in Sections IV-A, IV-B and IV-C. Generic versions of each

algorithm are used against the generic version of Dispersive

Flies Optimisation. In this comparison, only the second and

the more challenging set of benchmarks, g1−14 are used.

Table V presents the optimising results of the aforementioned

algorithms, and as shown, the algorithms have optimised some

of the benchmark to the specified accuracy, 10−8. Table VI

shows the result of the statistical analysis comparing DFO with

the other three optimisers. Based on this comparison, whenever

there is a significant difference between the performance of

DFO and the other algorithms, DFO significantly outperforms

DE, PSO and GA in 66.67%, 58.33% and 85.71% of the cases,
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Fig. 3. Fine tuning disturbance threshold

TABLE V
DE (DIFFERENTIAL EVOLUTION), PSO (PARTICLE SWARM

OPTIMISATION) AND GA (GENETIC ALGORITHM)

DE PSO GA

Error Eff. (Rel.) Error Eff. (Rel.) Error Eff. (Rel.)

g1 1.38E-13 21500 (100%) 5.23E-14 656236 (100%) 5.04E-05 ∞ (0%)

g2 1.72E-07 ∞ (0%) 1.33E-01 ∞ (0%) 1.21E+04 ∞ (0%)

g3 9.65E+06 ∞ (0%) 1.52E+06 ∞ (0%) 1.47E+07 ∞ (0%)

g4 4.92E-01 ∞ (0%) 7.89E+03 ∞ (0%) 5.13E+04 ∞ (0%)

g5 2.34E+03 ∞ (0%) 5.04E+03 ∞ (0%) 2.09E+04 ∞ (0%)

g6 2.30E+00 265800 (12%) 2.16E+01 ∞ (0%) 7.23E+02 ∞ (0%)

g7 5.39E-01 ∞ (0%) 1.04E-02 279653 (10%) 5.48E+03 ∞ (0%)

g8 2.09E+01 ∞ (0%) 2.09E+01 ∞ (0%) 2.04E+01 ∞ (0%)

g9 3.47E+01 ∞ (0%) 9.59E+01 ∞ (0%) 2.20E+01 ∞ (0%)

g10 1.47E+02 ∞ (0%) 1.14E+02 ∞ (0%) 1.39E+02 ∞ (0%)

g11 3.65E+01 ∞ (0%) 3.00E+01 ∞ (0%) 1.17E+01 ∞ (0%)

g12 5.85E+05 ∞ (0%) 9.51E+03 ∞ (0%) 8.14E+03 ∞ (0%)

g13 5.70E+00 ∞ (0%) 5.35E+00 ∞ (0%) 2.70E+00 ∞ (0%)

g14 1.34E+01 ∞ (0%) 1.25E+01 ∞ (0%) 1.39E+01 ∞ (0%)

respectively. Table VII summaries the efficiency results of the

three optimisers with that of DFO; note that only the efficiency

of functions reaching the specified error is given. As shown in

the table, DFO, in the majority of cases, outperforms the other

algorithms. In other words, although, when compared with DE,

DFO only outperforms marginally (60%), it outperforms both

PSO and GA in all cases (100%). The reliability comparison

of DFO with the other optimisers is given in Table VIII. DFO

is shown to be the most reliable algorithm in this comparison.
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TABLE VI
COMPARING ERROR IN DFO WITH DE, PSO AND GA

Based on Wilcoxon 1×1 Non-Parametric Statistical Test, if the difference
between each pair of algorithms is significant at the 5% level, the pairs are
marked. X–o shows that the left algorithm is significantly better than the right
one; and o–X shows that the right one is significantly better than the left. n
– m in the row labeled Σ is a count of the number of X’s in the columns
above.

DFO - DE DFO - PSO DFO - GA

g1 – o – X X – o

g2 X – o X – o X – o

g3 X – o – X – o

g4 o – X X – o X – o

g5 o – X o – X X – o

g6 o – X X – o X – o

g7 X – o o – X X – o

g8 X – o X – o X – o

g9 X – o X – o X – o

g10 o – X o – X o – X

g11 X – o – o – X

g12 X – o X – o X – o

g13 X – o X – o X – o

g14 – o – X X – o
∑

8 – 4 7 – 5 12 – 2

TABLE VII
COMPARING EFFICIENCY IN DFO WITH DE, PSO AND GA

In this table, 1 – 0 (0 – 1) indicates that the left (right) algorithm is more
efficient. The figures, n – m, in the last row present a count of the number of
1’s in the respective columns. Note that non-applicable functions have been
removed from the table.

DFO - DE DFO - PSO DFO - GA

g1 0 – 1 1 – 0 1 – 0

g2 1 – 0 1 – 0 1 – 0

g6 0 – 1 – –

g7 1 – 0 1 – 0 1 – 0

g9 1 – 0 1 – 0 1 – 0
∑

3 – 2 4 – 0 4 – 0

TABLE VIII
COMPARING RELIABILITY IN DFO WITH DE, PSO AND GA

In this table, 1 – 0 (0 – 1) indicates that the left (right) algorithm is more
reliable. The figures, n – m, in the last row present a count of the number of
1’s in the respective columns. Note that non-applicable functions have been
removed from the table.

DFO - DE DFO - PSO DFO - GA

g2 1 – 0 1 – 0 1 – 0

g6 0 – 1 – –

g7 1 – 0 – 1 – 0

g9 1 – 0 1 – 0 1 – 0
∑

3 – 1 2 – 0 4 – 0
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Fig. 4. Diversity of the population in DFO, DE, PSO and GA over three
random trials in g1,7 and 9.

While DFO outperforms DE in 75% of cases, it show 100%
outperformance when compared with PSO and GA. In order

to compare the diversity of the DFO algorithm with the

other three optimisers, three benchmarks were chosen from

unimodal and multimodal categories (g1,7,9). The result of this

comparison is illustrated in Fig. 4. It is shown that DE has the

least diversity in both uni- and multimodal functions. On the

other hand, the diversity of the population in PSO decreases

as the population converges towards an optimum (see g1);

however, when convergence does not occur (e.g. in g7,9), PSO

maintain its high diversity throughout the optimisation process.

GA shows a similar pattern to that of PSO in multimodal

functions, which is the gradual diversity decrease over time;

however it maintains a higher diversity for the unimodal

function than PSO (perhaps attributable to the difference in

the fitness of the best positions found in both algorithms). In
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terms of DFO, diversity is less convergence-dependent and

more stable across all modalities.

VI. CONCLUSION

Dispersive Flies Optimisation (DFO), a simple numerical

optimiser over continuous search spaces, is a population based

stochastic algorithm, proposed to search for an optimum value

in the feasible solution space; despite its simplicity, the algo-

rithm’s competitiveness over an exemplar set of benchmark

functions is demonstrated.

As part of the study and in an experiment, a control

algorithm is proposed to investigate the behaviour of the

optimiser. In this experiment, the algorithm’s induced distur-

bance mechanism shows the ability to maintain a stable and

convergence-independent diversity throughout the optimisation

process. Additionally, a suitable value is recommended for

the disturbance threshold which is the only parameter in the

update equations to be optimised. This parameter controls the

level of diversity by injecting a component-wise disturbance

(or restart) in the flies, aiming to preserve a balance between

exploration and exploitation.

In addition to diversity, DFO’s performance has been in-

vestigated using three other performance measures (i.e. error,

efficiency and reliability). Using these measures, it is estab-

lished that the newly introduced algorithm, outperforms few

generic population based algorithms (i.e. differential evolution,

particle swarm optimisation and genetic algorithm) in all of

the aforementioned measures over the presented benchmarks.

In other words, DFO is more efficient and reliable in 84.62%
and 90% of the cases, respectively; furthermore, when there

exists a statistically significant difference, DFO converges to

better solutions in 71.05% of problem set.

A. Future Research

Much further research remains to be conducted on this

simple new concept and paradigm. Among the possible future

research are investigating the algorithm for an adaptive distur-

bance threshold, dt. Additionally, optimising multi-objective

real world problems is yet to be researched; this would be a

continuation of an earlier set of works on the deployment of

population-based algorithms for detecting metastasis in bone

scans and calcifications in mammographs [27]. At last, but

not least, given the demonstrated stable and convergence-

independent diversity of Dispersive Flies Optimisation (in the

context of the presented benchmarks), another exciting future

research is to investigate the performance of DFO in the

context of dynamic optimisation problems.
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