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Abstract—The paper presents the application of various classi-
fication schemes for actuator fault diagnosis in industrial systems.
The main objective of this study is to compare either single
or meta-classification strategies that can be successfully used
as reasoning means in off-line as well as on-line diagnostic
expert systems. The applied research was conducted on the
assumption that only classic and well-practised classification
methods would be adopted. The comparison study was carried
out within the DAMADICS benchmark problem which provides
a popular framework for confronting different approaches in the
development of fault diagnosis systems.

I. INTRODUCTION

T
HE INCREASING complexity of recent industrial objects

makes the issue of fault diagnosis one of the most

important directions of research in modern automatic control

and robotics [1], [2], [3]. Technical systems and processes are

required to be safely and reliably operated due to the protection

of human life and health, the quality of the environment, as

well as the economic interests. It is possible to specify numer-

ous areas of interdependence of human and technical means,

where safety plays a key role, such as aircraft, spaceship,

automotive, power or chemical industry. The above mentioned

factors cause that new developments in control theory such

as passive and active fault-tolerant control approaches are

more often applied in these areas of the industry [4], [5],

[6]. A special attention is currently paid on the second type

of the advanced control methodologies, where fault diagnosis

methods hold a critical importance. The present state of the

art in the field of fault diagnosis shows the really need

for development of fault diagnosis expert systems. The goal

is to elaborate general-purposes systems with multi-domain

knowledge representations and multi-inference engines [7],

[8], [9]. Generally, the fault diagnosis can be divided into

three steps [10]: fault detection, fault isolation and fault iden-

tification. Moreover, each of them can be developed by means

of model-free (based on data), model-based and knowledge-

based approaches [4]. In this paper the first approach, where

experimental data are exploited was discussed. In this kind of

methods data that represents normal and faulty situations can

be obtained from historical databases or from simulators as

well as laboratory stands.

There are many types of classifiers available in the literature,

as well as different concepts are introduced [11]. Examples are

methods based on the similarity between objects in the feature

space, probabilistic methods or methods based on black box

models. Generally, the classification problems can be divided

into two groups including approaches of the machine learning

techniques: supervised learning and unsupervised learning.

In the paper, the authors concentrated the attention only on

methods belonging to the first group.

Currently, the information fusion and meta-classification

problems are recognized as the most important directions of

the research in the domain of supervised learning. The main

idea in this approach is the application of simple classifiers

working together to solve a problem with better results than

it can by means of single one or more complicated classifiers.

There are a lot of different kinds of information fusion

methods, but the most popular are majority voting, weighted

voting, boosting, AdaBoost [11]. On the other hand, meta-

classifiers are very often used for the same reason that its

efficiency is higher, than the efficiency of the best single

classifier [12].

The current research trends in developing machine learn-

ing methods are focused on ideas of improving the general

efficiency of different classification and meta-classification

methods. The main directions are concentrated on optimization

techniques which are used to tune relevant parameters of

the classical methods, e.g. with the use of evolutionary and

particle swarm algorithms [13], [14], [15], [16], [17], [18]. A

number of results included in the works show the benefits of

using these methods. In case of a task of fault detection and

isolation the key features of the signals in time or frequency

domains are most commonly used. Industrial actuators may be

characterized by a very high complexity which affects the large

number of measuring signals and their features. Therefore,

another approach aimed at improving the efficiency of the

classifier, and often also shortening the time of its learning, is

to remove irrelevant variables [19]. There are various methods

that can be used in this procedure, e.g. forward or backward

selection methods, as well as elimination methods based on
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statistical measures. Another group of methods are known as

fusion methods such as bagging, boosting, and development

of these concepts that is AdaBoost method [20], [21]. These

methods are often more effective than simple classifiers but

also show some drawbacks. Some advanced concepts were

developed to take advantage of positive aspects of classic

methods and to eliminate their limitations [22]. There are also

attempts to connect together several different methods such

as selection of relevant features and usage of boosting into

one algorithm [23]. Such approach may lead to the final result

that should be better than the results of the methods applied

separately.

The paper is organized as follows. In Section I a brief

introduction to the problem is given. Section II illustrates the

issue of fault diagnosis using the model-free fault detection

and isolation methodology. The next section deals with several

classification schemes that can be applied to develop fault

detection and isolation systems. A case study is included in

Section IV. This example shows the comparison research of

the classification schemes for creating fault diagnosis system

of the benchmark actuator [24] which were elaborated on the

basis of the activity of the DAMADICS (Development and

Application of Methods for Actuator Diagnosis in Industrial

Control Systems) Research Training Network funded by the

European Commission. The last section is focused on conclu-

sions.

II. MODEL-FREE FAULT DETECTION AND ISOLATION

One of the most often used model-free fault detection and

isolation methods is presented in Fig. 1. It can be seen,

that faults are detected and distinguished using primary and

redundant process variables. In this method two separated

classifiers must be created. The first classifier uses the subset

of process variables (U ′ ∪ Y ′) as its input and it is dedicated

for generating diagnostic signals (S), whereas the second one

has the same set of input variables but its task is to calculate

a fault signature (F ). This classifier is triggered in case when

the diagnostic signal indicates a fault scenario.

Fig. 1: A diagram of model-free fault detection and isolation

The algorithms corresponding to the diagram presented in

Fig. 1 can be designed using different classification meth-

ods [10], [4], [25]. Generally, it is possible to apply so-called

classical (e.g. decision trees, k-nearest neighbour, naive Bayes,

etc.) or soft computing approaches (e.g. neural networks,

bayesian networks, fuzzy systems, neuro-fuzzy systems, etc.).

The paper deals with the first group of the methods only.

III. MODEL-FREE FAULT DIAGNOSIS USING DIFFERENT

CLASSIFICATION SCHEMES

In the next part of the article, model-free fault detection and

isolation approaches with the use of different classification

schemes were described. As it was mentioned above, these

kinds of methods require data (process variables) correspond-

ing to regular (fault-free) and faulty states of the system. In

this section, different variants of three basic concepts with a

single classifier, meta-classifier and bank of classifiers were

applied in order to provide the fault detection and isolation

system that is directly based on the process variables.

A. Fault detection

The first concept of the fault detection was presented in

Fig. 2 and was elaborated basing on a single classifier, which

returns a diagnostic signal corresponding to fault or faultless

states of the device. In this method, the process variables were

converted by a moving window in order to compute scalar

features of the measuring signals. These values were used

as input of a single classifier, which generates directly the

diagnostic signal. The second detection method was presented

in Fig. 3. In this approach a series of two-state classifiers

was applied and their task was to determine the degree of

the belief for fault detection. The level of belief about faults

occurring was a numerical value from 0 to 1. The signal values

returned from each classifier were connected to the meta-

classifier as its input. The features of the process variables

were also connected to the meta-classifier, as the additional

input.

Fig. 2: A scheme of fault detection using the global classifier

Fig. 3: A scheme of fault detection using the set of various

classifiers and meta-classifier

The result of both methods was a diagnostic signal, which

indicated fault occurrence. When a classifier or a meta-
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classifier detects a fault, the second part of the fault diagnosis

system was run in order to isolate the faults.

B. Fault isolation

The first method of fault isolation was comparable to the

method that was proposed for the fault detection. It was

presented in Fig. 4. As one could see it was a single global

classifier. Its task was to determine a type of the fault.

Similarly to the previous method, in this case the process

variables were calculated in the moving window to obtain

scalar features of the measuring signals. The preprocessed

signals were connected to the input of a global classifier. This

classifier returns a fault signature.

Fig. 4: A scheme of fault isolation using the global classifier

The next fault isolation scheme was presented in Fig. 5. In

this approach a set of classifiers of different types was used

in order to calculate the degrees of beliefs that were related

to fault signatures. These values were given to the input of

the meta-classifier and the final decision (fault signature) was

obtained.

Fig. 5: A scheme of fault isolation using the set of different

classifiers and meta-classifier

The last concept of fault isolation was shown in Fig. 6. The

main idea was based on a bank of classifiers that were used

to calculate degrees of beliefs for specific faults and unknown

states of a device. In this case, M single classifiers must be

created for M faulty states. Each classifier was dedicated for

one state only (it was used for detection one fault solely). In

the next step, all available variables (features of the process

variables and outputs from base classifiers) are linked to a

single dataset. The prepared signals were sent to the input

of the meta-classifier which was employed to return the final

decision.

C. Used classifiers

The schemes of fault detection and isolation presented in

Sections III.A and III.B can be elaborated with use of basic

classification methods. The classification problem is possible

Fig. 6: A scheme of fault isolation using the set of local

classifiers (fault detectors) and meta-classifier

to be solved using many known approaches, however, in this

research the following methods were applied:

• k - nearest neighbour,

• naive Bayes,

• decision tree,

• rules inductions.

Each of these classifiers returns a label of a chosen class and

the degrees of belief for all predicted classes. The best solution

is when one of the class is characterised by the belief level

equal to 1 and the rest of them are equal to 0. It gives us

100% certainty that a new element should be classified as

this particular class. In the next subsections a more precise

description of the selected methods was given.

1) k - Nearest neighbour: This is one of the simplest clas-

sification techniques. The class label assigned to an example

is based on the similarity of this example to one or more

prototypes. Typically, the similarity is defined in a geometrical

sense using a certain distance. The smaller distance between

new object and classified element means the higher similarity

between new element and the class represented by the known

object. The classifier looks for one nearest neighbour, then

it is called 1NN or search for more nearest neighbours,

then decision is made by voting. In kNN method, different

types of distance measures can be used, e.g. Euclidean (1),

Manhattan (2) or Chebyshev (3) distances [26].

D(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)2 (1)

D(x, y) =
n
∑

i=1

|xi − yi| (2)

D(x, y) = max
i=1:n

(|xi − yi|) (3)

The level of confidence about a result of classification

depends on a value of k parameter. For k equal to 1, the

confidence level for the classification result is always equal to

1. For k greater then 1, when the final result is determined by

majority voting, the confidence level depends on the number

and types of classified elements in the considered group [27].
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2) Naive Bayes [28]: This is a simple probabilistic classi-

fication method which is based on bayesian theory. However

the naive Bayes classifier considers each of existing features

independently.

P (di|V1, · · · , Vn) =
P (V1, · · · , Vn|di)P (di)

P (V1, · · · , Vn)
(4)

Taking into account this assumption, the bayesian equation

(4) can be transformed to (5), where the denominator of the

equation is replaced by a constant C and the conditional

probability is calculated by the multiplication.

P (di|V1, · · · , Vn) = C · P (V1|di) · ... · P (Vn|di) · P (di) (5)

The degrees of beliefs for the classification results are equal

to probability values obtained from the bayesian equation.

3) Decision tree: This is the classifier based on the tree-

like graph created by nodes and connections between them,

where the end nodes are called leafs and the rest of them have

conditions. The result of a decision tree application depends on

a chosen leaf. In the algorithm different split evaluation criteria

(e.g. ratio gain in C4.5, information gain in ID3, the Gini

impurity measure in CART, etc.) can be used [29], [27]. The

confidence levels about the classification results are calculated

separately for all leafs of the tree during the learning process.

Sometimes, when learning data is very complex, the results

of the decision tree may be uncertain since some of the leafs

may be connected to more then one class. The class which

is described by more elements then others (in specific leaf) is

chosen as the main class for this leaf. The ratio between the

number of elements for available classes is used to calculate

the probability for each class in the leaf.

4) Rules induction: The method is based on Repeated

Incremental Pruning to Produce Error Reduction (RIPPER)

[30] algorithm. The confidence level is calculated in the same

way as in the decision tree method.

IV. VERIFICATION STUDIES

The proposed schemes of fault detection and isolation

were implemented using RapidMiner software. It is an open

source software created for solving data mining problems. The

verification studies were conducted on data generated using the

DAMADICS simulator [31] in order to investigate selected

classification schemes. The research problem was actuator

fault diagnosis.

A. Benchmark problem

DAMADICS was elaborated for scientists and engineers to

simplify the process of evaluating and comparing different

methods of fault detection and isolation for industrial systems.

In the literature there were available several papers where

case study results deal with this problem were presented [32],

[33], [34]. The numeric model is used to simulate an electro-

pneumatic valve (Fig. 7) which is a part of the production

line in Lublin sugar factory in Poland. The model was created

in MatLAB/Simulink R©software and was on a careful study

of the physical phenomena that gave the origin to faults in

Fig. 7: Structure of benchmark actuator system [24]

the actuator system. This simulator generated the following

signals of the process variables:

• CV - process control external signal,

• P1 - inlet pressures on valve,

• P2 - outlet pressures on valve,

• X - valve plug displacement,

• F - main pipeline flow rate,

• T - liquid temperature,

• f - standard diagnostic signal.

All of these signals are normalized to the range between

0 and 1. The DAMADICS simulator allows to choose only

one from nineteen available faults (due to this, only scenarios

with single faults were taken into account). A part of them is

considered only as incipient faults or as abrupt faults (there

are three sizes of abrupt faults: small, medium and big) and

some of them as both. In this paper the authors decided to

investigate only abrupt faults, such as:

• f1 - valve clogging,

• f2 - valve or valve seat sedimentation,

• f7 - medium evaporation or critical flow,

• f8 - twisted servo-motor stem,

• f10 - servomotor diaphragm perforation,

• f11 - servomotor spring fault,

• f12 - electro-pneumatic transducer fault,

• f13 - stem displacement sensor fault,

• f14 - pressure sensor fault,

• f15 - positioner spring fault,

• f16 - positioner supply pressure drop,

• f17 - unexpected pressure change across valve,

• f18 - fully or partly opened bypass valves,

• f19 - flow rate sensor fault.

The list does not have some faults, because the incipient faults

such as f3 - Valve or valve seat erosion or f4 - Increase of

valve friction were not considered. The verification tests were

performed basing on the process variables generated by the

DAMADICS simulator for fault-free and faulty scenarios.
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(a)

(b)

(c)

Fig. 8: Examples of data groups for specific methods

B. Data preparation

Collections of data for the training, testing and verification

of classifiers were prepared in such a way that the results of

classifiers were very similar to classifiers working in a real

environment. The process of learning (training and testing)

and verification for the applied classifiers was described in

this section.
1) Data for fault detection classifiers: Data preparation is

a very important part of the classifier learning process. The

dataset should be divided into two equal parts, where the first

part describes correctly working device (fault-free state) and

the second part corresponds to situation when fault occurs

(Fig. 8a). It was important to divide the prepared data again to

two separated groups (learning group and verification group).

For the meta-classifier the number of groups was extended to

four, because the first and the second groups were used in

the learning and verification process for the base classifier.

The other two groups were used for a meta-classifier. In

this approach, the size of the dataset for each group was

equal 10000 samples, where 5000 samples were prepared from

data without faults and rest of them contained data with all

considered faults.
2) Data for fault isolation classifiers: The data prepared

for the first two fault isolation methods (Fig. 2, 3) consists of

characteristic process values for all chosen faults (Fig. 8b). The

number of elements for each fault was the same for all sets.

For learning and verification process four independent groups

of data were prepared (like in fault detection methods, two

for base classifiers and two for meta-classifier). The dataset

for a single fault for one group contains approximately 600

samples, while the full dataset size is about 8000 samples. The

third method of fault isolation requires a different type of data.

The initial classifier needs data, where a half of the elements

describes an actuator device working with one specific fault

and the rest of the elements describe the device working with

the other faults (Fig. 8c). In this case, a classifier can generate

a two-state signal where the first state defines one specific

fault and the other ones are correlated with unknown faults.

The size of the dataset in this approach is similar as in case

for the method of fault detection. The size of the dataset for

the considered fault is equal to 5000 samples and it is equal

to the rest of a dataset which contains samples corresponding

to other faults.

C. Statistical analysis

Linear correlation and mutual information analysis were

used for choosing relevant process variables and a proper

value of the width of a moving window function. In the

analysis, all of available process variables were compared

between themselves for different device status (e.g. device

without faults and with a chosen fault). The results of these

tests showed very strong correlations between states F8, F14

and F0. A group of useful process signals was prepared on

the basis of results of these tests. Most of the process signals

had very difficult character for model-free fault detection and

isolation methods. Therefore, the authors decided to apply

scalar features of the process variables. Among all available

functions in RapidMiner software, four of them were tested:

moving average, moving median, maximal value, minimal

value.

The scalar features were computed using a moving window

of 100 samples width. Such the width value was assumed on

the basis of frequency of the harmonic control signal of the

valve which was equal to 0, 01 Hz. The authors also studied

other values of the window width, however, expected effects in

increasing of the efficiencies of the models were not observed.

In Fig. 9 exemplary process variables and their features as the

time function are plotted. Figures 9a, 9b and 9c show time

series of measured signals X, F, P2 for fault F17, whereas

figure 9d presents the change in the temperature signal T1 as

a result of the fault F7. The sudden change of this signal and

its scalar features can be observed at around 800 second when

the fault F7 starts affecting the process.

D. Classification schemes implementation

The RapidMiner R©software allows to create data mining

processes with the use of a visual programming language. This

tool gives the opportunity for developing different classifica-

tion schemes using so-called drag and drop methodology. In

this way the classification processes can be viewed as dataflow

graphs (Fig. 10).

Fig. 10a presents the scheme of learning and verification

processes using four different classifiers. In the first step,

the data is red from CSV files by means of Read CSV

blocks. Next, the learning dataset from the first step is sent to

validation blocks, where the learning and evaluation processes

for each classifiers is run. The output of these blocks is

the ready-to-use classifier, which is applied in Apply model

block using another dataset read in Read CSV (2) block. In

the Performance block, the process of classifier evaluation

is again carried out, but the data are completely different

than those in the learning process. Write Model blocks are
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(a)

(b)

Fig. 10: Selected examples of RapidMiner processes

used in order to write the models into files, because these

classifiers are necessary during the process of meta-classifier

learning. This scheme can be employed for creating single and

meta classifiers. Although, there is a small difference between

these two cases in the manner of pre-processing input data.

Figure 10b illustrates the process that is applied to generate

either learning or verification datasets for meta-classifiers. The

data for meta-classifiers is forwarded to their inputs. These

samples are totally different from those used at the learning

and verification stage of the base classifiers. Read Model

blocks are employed for reading models of base classifiers.

The results of these classifiers are degrees of belief for faultless

and faulty states of the actuator. In order to use the data in

the next part of the classification process, the pre-processing

operations must be done in the Execute Script blocks. In the

last phase of the process relevant information generated by

base classifiers is put together in the form of a coherent dataset

which is written in the other file.

E. Results of verification studies

The learning process for the whole set of applied classifiers

was conducted using the X-validation method. At firs the case

study tests were carried out to choose the most important

parameters for X-validation method. The described schemes

of fault detection and isolation were examined with all types

of classifiers.

1) Results of fault detection: In the first concept of fault

detection (see Fig. 2) four single classifiers were compared.

In each table the following notation was assumed: kNN - k-

nearest neighbours, NB - Naive Bayes, DT - Decision Tree,

RI - Rule Induction. The letter M before each label (kNN,

NB, etc.) means meta-version of a classifier, for example, the
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TABLE I: Results of fault detection for global classifiers and meta-classifiers

All F0 F1 F2 F7 F8 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19

kNN 0,869 0,987
0,752

0,791 1,000 1,000 0,005 0,946 1,000 0,889 1,000 0,003 0,771 0,451 1,000 1,000 1,000

NB 0,857 1,000
0,717

0,667 1,000 1,000 0,000 0,637 1,000 1,000 1,000 0,000 1,000 0,333 1,000 1,000 1,000

DT 0,864 0,947
0,783

0,836 1,000 1,000 0,007 0,991 1,000 1,000 1,000 0,007 1,000 0,429 1,000 1,000 1,000

RI 0,864 0,958
0,772

0,964 1,000 0,787 0,029 1,000 1,000 1,000 1,000 0,030 1,000 0,602 1,000 1,000 1,000

MkNN 0,867 0,959
0,776

1,000 1,000 1,000 0,007 1,000 1,000 1,000 1,000 0,007 1,000 0,450 1,000 1,000 1,000

MNB 0,876 0,989
0,764

1,000 1,000 1,000 0,000 1,000 1,000 1,000 1,000 0,000 1,000 0,334 1,000 1,000 1,000

MDT 0,871 0,935
0,809

1,000 1,000 1,000 0,086 1,000 1,000 1,000 1,000 0,086 1,000 0,667 1,000 1,000 1,000

MRI 0,869 0,952
0,788

1,000 1,000 1,000 0,086 1,000 1,000 1,000 1,000 0,086 1,000 0,425 1,000 1,000 1,000

(a)

(b)

(c)

(d)

Fig. 9: Examples of process variables and their features

label MNB denotes a meta-classifier which is based on a naive

Bayes classifier.

Table I shows results of two concepts of fault detection

realized by schema presented in Fig. 2 and 3. The effec-

tiveness of the classifiers is given in columns. The column

indicated as “All” includes the general efficiency calculated

on the basis of the confusion matrix which was generated

after the classifier verification process. The next column (F0)

includes the efficiency obtained for faultless states. The rest

of the columns (F1-F19) show the efficiency of fault detection

for all considered faults, separately. Above these columns the

general result of the efficiency of fault detection is presented.

Rows from 1 to 4 show results for single classifiers, whereas

the next four rows show results for considered meta-classifiers.

2) Results of fault isolation: The results of comparison of

the first fault isolation method (Fig. 4) are included in Tab. II.

The same types of classifiers were used. The column indicated

as “All” includes values of the global efficiency for single

classifiers of different types. The rest of the columns show

information about the efficiency of fault isolation for each

scenario.

The second method presented in Fig. 5 use four classifiers

as in the previous method but the outputs of these classifiers

are connected to a meta-classifier. The results obtained for

the meta-classifier are compared in Tab. III. Tab. IV presents

the general efficiency of single classifiers (rows from 1 to 4)

and meta-classifiers (rows from 5 to 8) for the fault isolation

process.

TABLE IV: Comparison between all methods of fault detec-

tion for the learning and verification stages

Learning and testing stage Verification stage
kNN 0,988 0,844
NB 0,722 0,661
DT 0,176 0,177
RI 0,989 0,808

MkNN 0,990 0,837
MNB 0,860 0,835
MDT 0,890 0,777
MRI 0,982 0,812

The last method of fault isolation (Fig. 6) is based on series

of single classifiers, where each classifier is used for detecting

a single fault. The first task of the verification process was to

choose a single classifier (from four available) for the fault
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TABLE II: Results of fault isolation for global classifiers

All F1 F2 F7 F8 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19
kNN 0,844 1,000 1,000 1,000 0,516 1,000 1,000 1,000 0,876 0,007 1,000 0,829 1,000 1,000 1,000

NB 0,661 0,667 1,000 1,000 0,347 0,333 1,000 0,669 0,153 0,608 1,000 0,383 1,000 1,000 1,000

DT 0,177 1,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
RI 0,808 0,885 1,000 1,000 0,443 0,947 0,754 1,000 0,822 0,003 1,000 0,917 1,000 1,000 0,893

TABLE III: Results of fault isolation for meta-classifiers

All F1 F2 F7 F8 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19
MkNN 0,835 1,000 1,000 1,000 0,672 1,000 1,000 1,000 1,000 0,086 1,000 0,708 1,000 0,668 1,000

MNB 0,802 1,000 1,000 1,000 0,729 1,000 1,000 1,000 1,000 0,253 1,000 0,362 1,000 0,416 1,000

MDT 0,777 1,000 1,000 1,000 0,175 1,000 1,000 1,000 0,540 1,000 1,000 0,391 1,000 0,369 1,000

MRI 0,812 1,000 1,000 1,000 0,621 1,000 1,000 1,000 1,000 0,339 1,000 0,578 1,000 0,326 1,000

detection purpose. To solve this problem the authors tested all

classifiers for all available faults. The results are presented in

Tab. V. The values included in the table present the general

efficiency of each classifier. The bolded values are related to

the classifiers which were chosen as the basic classifiers for

the meta-classifier.

In the next step of the method the meta-classifier is used.

Its inputs are connected to the outputs of basic classifiers

(the degrees of the belief for single fault detection). The

main task of this meta-classifier is to compute the final result.

Table VI presents results of different types of classifiers which

are presented in the same form as in the second method

of fault isolation (Tab. III). In the first column indicated as

“All” there are included values of the general efficiency of the

meta-classifiers. In the next columns the efficiency values of

single fault isolation obtained by means of meta-classifiers are

included.

3) Discussion of the results: The comparison of two

schemes of the fault detection (Fig. 2 and 3) as well as different

types of classifiers (kNN, NB, DT, RI) showed that results

which were obtained using these schemes were very similar

to each other. Moreover, the comparison between the same

classifiers and other methods showed that the meta-classifier

was characterized by the highest fault detection efficiency at

the expense of the fault-free state. Both methods revealed the

some problems with detection of faults F8 and F14, because

these faults were very strong correlated with faultless state.

The best meta-classifier returned more accurate results then

the best single classifier, but the difference between them

was too small to conclude that this meta-classifier could be

better than the second one. The last three methods concerned

fault isolation without taking into account a faultless scenario.

In the first method (Fig. 4) the global single classifier was

used in order to qualify the current fault class of the device.

The results of tested classifiers were different, e.g. the global

efficiency of DT was 0.177 and the second one (sorted by

their efficiency values) was 0.661. Decision tree was able

to recognize fault F7. However, value 1.000 for fault F1

indicated 100% efficiency of detection fault F1, but on the

other hand the rest of faults were also recognized by this

classifier as fault F1. The next classifier (NB) had better

results than a decision tree algorithm. The last two classifiers

showed a similar global efficiency. The k-Nearest Neighbour

classifier (kNN) provided the best basic efficiency for most

of single faults. The exception was fault F16 which was

better recognized by the rule induction classifier (RI) and

fault F14 which was better detected by the Naive Bayes (NB).

The results obtained for the second scheme of fault isolation

(Fig. 5), which was based on the meta-classifier were more

similar to each other than in the first case (Fig. 4). There was

a group of faults which were very easy to isolate by all meta-

classifiers (F1, F2, F7, F10, F11, F12, F15, F17, F19). The

general level of the efficiency in this method was increased

significantly in some cases. But the comparison between the

best single classifier and the best meta-classifier showed that

in the second case, the global efficiency was worse. The more

careful analysis of the results for these two classifiers showed

that most of the best meta-classifier results were better than

the results of the best single classifier. Some exceptions were

faults F16 and F18. In the second case deterioration was very

sizeable and it was the main reason of the worse result for

this classifier. The third scheme of fault isolation (Fig. 6)

was divided into two parts. The first part was dealt with the

selection of the basic classifiers, applied to isolate a single

fault. After the analysis of the results presented in Table V

the authors nominated the classifiers for single fault detection.

These classifiers were chosen on the basis of general results.

In case more than one classifier had the same efficiency value

(more classifiers with the efficiency equal to 1, 000 for the

fault at the same time) the authors pointed out a classifier

with more stable results in the time domain. The previous

analysis showed that this type of classifiers carried with it

the increase of the efficiency of the meta-classifier. In the

second part different types of meta-classifiers were compared.

The final results of this method showed that the difference

between the efficiency of specific fault isolation for a single

meta-classifier was sizeable. Also the difference for the global

efficiency among all met-classifiers was sizeable. The best

result was obtained for the decision tree (0.840) and it was

comparable with a case of the best efficiency level for the

single global classifier (k-nearest neighbours: 0.844) in the

first method (Fig. 4). The meta-classifier based on the naive

Bayes method demonstrated the smallest efficiency for this

approach.
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TABLE V: Comparison results of base classifiers for fault isolation of single faults

F1 F2 F7 F8 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19
kNN 1,000 1,000 1,000 0,930 0,992 0,999 0,986 0,981 0,899 1,000 0,908 1,000 1,000 1,000

NB 0,643 1,000 1,000 0,904 0,696 0,974 0,894 0,934 0,904 1,000 0,709 1,000 0,934 0,845
DT 1,000 0,987 1,000 0,880 0,889 0,999 0,987 0,913 0,743 1,000 0,853 1,000 0,960 0,987
RI 0,947 1,000 1,000 0,879 0,954 0,987 0,999 0,949 0,905 1,000 0,875 1,000 0,973 1,000

TABLE VI: Results of fault isolation for meta-classifiers with a bank of classifiers for isolating single faults

All F1 F2 F7 F8 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19
MkNN 0,824 1,000 1,000 1,000 0,517 0,870 1,000 1,000 1,000 0,010 1,000 0,825 1,000 0,777 1,000

MNB 0,359 1,000 1,000 1,000 0,578 1,000 0,472 0,000 0,000 0,000 1,000 0,000 1,000 0,000 0,000
MDT 0,840 1,000 1,000 1,000 0,328 0,889 1,000 1,000 0,889 0,847 0,000 0,459 0,000 0,777 1,000

MRI 0,748 1,000 1,000 1,000 0,718 0,718 0,914 0,000 1,000 0,086 1,000 0,595 1,000 0,777 1,000

V. CONCLUSION

In the paper the application of selected classification

schemes for fault diagnosis of the actuator systems was pre-

sented. The main purpose of the paper was to compare single

and meta-classification strategies that could be successfully

used as reasoning approaches in off-line as well as on-line

diagnostic expert systems. The research was realized basing

on the classical and well-practised classification methods. The

comparison study was carried out within the DAMADICS

benchmark problem. The classification schemes were imple-

mented in RapidMiner software which is a well-known open

source system for data mining and knowledge discovery. The

particular results of the fault detection study showed that

for simple industrial actuators it is possible to apply simple

classification schemes without the necessity of using more

advanced methods which are based on meta-classifiers. Signif-

icant differences can be observed in case of the results that are

related to fault isolation schemes. The best evaluation results

obtained from the three classification methods are ranged from

0.835 to 0.844. It should be stated that it is possible to observe

some important differences in outcomes obtained using simple

classification methods in the first fault isolation scheme (see

Fig. 4) and similar results in the second one (see Fig. 5). The

third concept (see Fig. 6) leads to the varied results of the

classification process. The merits in the case of using meta-

classifier (the second method applied according to Fig. 5) can

be seen for several faults, especially when compared this to the

best single classifier. The last scheme (see Fig. 6) is the most

complicated and there is the need to test various classifiers and

to have additional learning datasets. Moreover, in this scheme

the general efficiency of fault isolation is close to the result

achieved by means of the single classifier.

In this study, the authors used a confusion matrix in order

to evaluate fault diagnosis systems that were created applying

different classification schemes. Nevertheless, this measure can

be directly compared with false and true detection/isolation

rates proposed by the authors of the DAMADICS simula-

tor [24]. The results of fault detection and isolation using

single or meta-classification strategies that were achieved in

this study are comparable to even more advanced methods

described in the literature [35], [36]. Furthermore, in this study

the whole set of potential faults were investigated, whereas

in the related papers only selected states were taken into

consideration.

Overall, the application of single or meta-classification

strategies allows to create effective as well as relatively

less-complicated computational fault detection and isolation

systems that can be successfully employed for on-line and

off-line fault diagnosis of industrial actuators.
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[29] A. Lile, “Analyzing e-learning systems using educational data

mining techniques,” Mediterranean Journal of Social Sciences,
vol. 2, no. 3, pp. 403–419, 2011. [Online]. Available: http:
//dx.doi.org/10.5901/mjss.2011.v2n3p403

[30] W. W. Cohen, “Fast effective rule induction,” in Twelfth International

Conference on Machine Learning, 1995.
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