
 

 

 

 

 

Abstract—In this article we describe two alternative order-

preserving encryption schemes. First scheme is based on 

arithmetic coding and the second scheme uses sequence of 

matrices for data encrypting. In the beginning of this paper we 

briefly describe previous related work published in recent time. 

Then we propose alternative variants of OPE and consider 

them in details. We examine drawbacks of these schemes and 

suggest possible ways of their improvement. Finally we present 

statistical results of implemented prototypes and discuss 

further work.   

I. INTRODUCTION 

ecurity is a fundamental issue solved by DBMS and 

cloud service designers. Using cryptographic algorithms 

to store confidential data in encrypted from isn't always the 

best solution. In case of relational (SQL) database it is 

impossible to process encrypted data on DBMS side. 

Generally two options are possible. The first one is to 

decrypt and process data on client side, which leads to 

significant traffic increase between DBMS and application 

due to general inability to single out the necessary data. 

Second option is to decrypt data on DBMS side, which is 

unsafe in case DBMS or cloud service isn't reliable. 

The research speculates on ability to use special types of 

encrypting, which allow not only to safely store data, but 

also to perform a set of operations on it. Particularly, the 

research concerns order-preserving cryptosystems. 

Definition (order-preserving function). Let  be sets with 

given order relation on each set. Function 

BAF :  

is said to preserve order if  

).()(),( yFxFAyxyx   

Encryption based on using such functions is called order-

preserving encryption (OPE). Assume there is a set of 

unique plaintexts .121 ,,,  iip
pppppP  The 

corresponding encrypted values are represented as  

.,,, 121  iic
cccccC   Such encryption enables subset 
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of SQL operations on encrypted data including, e.g. 

selection of encrypted values intervals.  

II. RELATED WORK 

In the last 10 years several scientific papers has published, 

which introduced different schemes of order-preserving 

encryption.  

A. OPE based on pseudo-random number generator 

One of the first approaches, represented in the research [1], 

suggests that integer number  is encrypted as follows: 

 p

j

jRc

0

,  

 

where jR is jth number generated by reliable pseudo-random 

generator. The drawbacks of this scheme are the memory 

footprint of encrypted values and possible overflow, 

resulting from calculation of ciphertexts for large plaintexts 

while working with built-in types. There is also the 

complexity of adding new plaintexts: for adding ip  where 

1 ii ppp  we need to re-encrypt values ., ijp j    

That’s why this method is ineffective for big numbers 

and, in some cases, the encryption result can be predicted. 

For instance, suppose  average distribution of numbers, 

generated by the pseudo-random number generator. For 

uniform distribution on the interval  Max1 ,
2

1 Max , 

then xxf )(  will approximate encryption function. 

B. OPE based on polynomial functions 

In research [2] a sequence of strictly increasing polynomial 

functions is used for encrypting integer values. These 

polynomials may be of first or second order. The secret key 

is polynomial coefficients. Sequence of polynomials is 

applied to initial number in a way that one function's output 

value is another function's input value.  Decryption is done 

by applying inverse functions in reverse order. Sometimes it 

might be impossible to find the inverse function for a 

specific polynomial. Authors suggest using simple 

polynomials caxxf
b )(  as they all have inverse 
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functions .)( b

a

cx
xf

  Besides, maximum degree of such 

polynomials, according to the authors, does not exceed 2, 

and a set of possible coefficients – {1…32}. In this case 

decryption is a lot more complicated than encryption due to 

square root operation. As built-in integer types are 

implemented with fixed length, inevitable overflow errors 

appear. In this work authors suggest using logarithmic 

functions .log)( 2 cxxf   This implies working with non-

integer types, therefore accuracy errors should be 

considered. To avoid accuracy and overflow errors this 

scheme requires rather complex selection of parameters. 

C. Research by R. Agrawal, J. Kiernan, R. Srikant, and Y. 

Xu 

Research [3] speculates on encryption of data from subset 

of integers, authors also think it possible to use non-integer 

types represented as integers of the same size. This method 

encrypts data so that ciphertexts follow a certain distribution 

selected by the user. In order to generate encryption function 

they use all data that needs to be encrypted (if the database 

doesn't contain records, administrator has to add several 

possible records) and the list of possible sample 

distributions. Key is generated from all these samples. 

Besides, in order to simulate distribution data has to be split 

into buckets, in which linear interpolation is used. One of the 

main drawbacks is that the time of key generation time is 

linear in the size of database. And if the key has already 

been generated with adding of new records it might need to 

be regenerated along with re-encryption of data.  

D. Research by A. Boldyreva  N. Chenette, Y. Lee and A. 

O'Neill 

A. Boldyreva in [5], [6] shows the connection between 

OPE schemes and hypergeometric (HG) и and negative 
hypergeometric (NHG) distributions. The connection allows 

to simulate OPE scheme through HG or NHG generator. 

There are effective algorithms of accurate random value 

generation of these distributions. One of order-preserving 

encryption features is that range of encryption function is 

always larger than input argument set (two different 

numbers can’t be encrypted to the same numbers). Suppose 

encryption function maps a set  M1  to a set  N1 , 

.MN   In order to encrypt the set of numbers  M1  we 

need M random numbers from the set  N1 . Let us 

denote the set of these numbers by .MN  They have to be 

ordered and associated correspondingly with initial numbers. 

I.e. function   MNMf 1: maps the ith element of the 

set  M1  to the ith element of the set .MN  Since we don't 

know, how many plaintexts have to be encrypted, we cannot 

determine the size of the set  N1 . Authors offer to 

generate the next element of the ordered set MN only when 

it is necessary for ciphertext generation. This approach is 

called lazily sampling the function. 

Let m  be a plaintext from the set  M1 , g  – a function, 

generating the set  N1 , x – number of elements selected 

into the set MN after y steps. The number x  is characterized 

by the hypergeometric distribution. Encryption starts with 

entire domain  M1  and range  N1 . Let 
2

)max(N
y   

be a range gap. With a certain key and initial parameters the 

number x  can be calculated. If ,mx  we need to consider 

the points of the domain greater x and y, and less than or 

equal to x and less than or equal to y in case of .mx   As a 

result we get admissible set of ciphertexts. 

E. Alternative OPE schemes 

In our research we consider other ideas, which OPE can 

be based on. We propose two alternative OPE schemes, 

research problems of overflow and computational accuracy 

and try to increase cryptographic strength of schemes.  

III. OPE SCHEME BASED ON ARITHMETIC CODING  

This scheme builds a representation of integer in a 

suitable form. Representation preserves the order, so we can 

talk about order-preserving mapping. Suppose we consider 

positive integers requiring for their representation not more 

than n  bits. Each number c is mapped to a bit string 

),,,( 21 naaab  where 1a  is MSB. Let us define the 

order-preserving mapping .f  We assume that the string 

defines certain real number ).1,0[s  The simplest way to 

define it:  

.
2

1

2

1

2

1
221 nnaaas    

In other words .
2n

c
s   

Let us seek a different representation of the number s. To 

do it let us use ideas associated with arithmetic coding. The 

equation: 

02)(  cxxG
n         (1) 

has only one solution on the interval ).1,0[  In case of 

bisection method of solving the equation (1) we get the 

number s after n steps. The main idea of arithmetic coding is 

that segments can be split into parts arbitrarily. In this case 

approximate solution of equation (1) can be found in fewer 

steps. That allows us to achieve compression of data while 

using arithmetic coding. 

Let us describe the process of segments splitting. 

Suppose, ,,
qp

q

qp

p

   where p, q are random 

natural numbers. Obviously, .1   Let us split segment 

)1;0[ into two parts .1,,,0 








 qp

p

qp

p
 After that, if 

,0



 qp

p
G we choose 




 qp

p
,0  and produce 0. In 
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case of ,0



 qp

p
G  we choose 




 1,
qp

p
 and produce 

1. Let us denote the segment we chose by  ., 11 ba  

New segment splits into parts in the ratio .:  According 

to the sign of  )(xG  in the point, one of the segments is 

selected. Let us denote it by  ., 22 ba  Proceeding by 

induction, we compute the interval  ., nn ba  Its length is 

,rnr  where r  is number of zeros in b. By construction of 

,, Qbb nn  so it can be expanded in powers of 
2

1
up to m 

degree, where m is the smallest integer satisfying  

.
2

1 rnr

m

   

That condition may also be written as   22 log)(log rnrm   

or 

qrn

prqpn
q

qp
rn

p

qp
r

qp

q
rn

qp

p
rm

2

222

222

log)(

log)(loglog)(

loglog)(log





 

Therefore, we can calculate m, if we know .,, b  For 

universality we need m estimation not to depend on r value. 

E.g, we can require condition ).(log2 qpnm   Let us 

approximate nb  with bit string  .,,,)( 21 nbf    

Obviously, this transformation preserves order. 

General conclusion, which is using adaptive arithmetic 

coding, is to use different ratio on each step, when 

approximating the solution of equation (1). It allows making 

cryptosystem cryptographically stronger. 

VI. KEY GENERATION 

Key is set of ratios, which segments are divided in. 

Suppose current segment is split in a ratio ii qp : on ith step. 

To be able to decrypt the cipher for n-bit number, the length 

of the segment obtained after decryption should be less than  

.
2

1
n

 Maximum segment length, which can be obtained as a 

result of decrypting is .
),max( 

i ii

ii

qp

qp
Consequently, the 

key generation algorithm has the following form: 

1. Choose random ratio ii qp : . 

2. Check the condition 

.
2

1),max( 
i

n
ii

ii

qp

qp
 

If condition is satisfied, go to step 3, otherwise – to 1. 

3. Complete key generation. 

V. ENCRYPTION 

Suppose we need to encrypt Num ℕ. On each algorithm 

iteration the interval  ii ba ,  is considered, where 

.1,0 00  ba Let us examine the ith iteration of the 

algorithm. 

Current segment   11,  ii ba  is divided in a ratio ii qp : . 

Let point  11,  ii bas  separate it, i.e. 

.
)( 11

1
ii

iii
i

qp

pab
as 

  If ,
2n

Num
s   then the output is 0, 

.,1 sbaa iii    Otherwise the output is 1, ., 1 iii bbsa  

It can be seen, that  iin
ba

Num
i ,

2
 (by ia and ib selection). 

After performing k iterations (where k is key size, i.e. the 

number of ratios) we obtain a bit sequence  ,1,0),,( 1  ik   which is ciphertext for .Num  

VI. DECRYPTION 

Suppose there is a bit sequence  ,1,0),,( 1  ik   which is a ciphertext for 

unknown number .Num  Just as in the encryption algorithm, 

at each iteration is considered the interval   .1,0,, 00  baba ii Consider the ith iteration of the 

algorithm. 

Current segment  11,  ii ba is divided in a ratio ii qp : . 

Let point  11,  ii bas  separates it, i.e. 

.
)( 11

1
ii

iii
i

qp

pab
as 

   If ,0i  then .,1 sbaa iii    

Otherwise, ., 1 iii bbsa  

After performing k iterations (where k is key size) we 

obtain a segment  ,, kk ba and 
nkk ab

2

1
)(  because of 

key selection. As  kkn
ba

Num
,

2
  number Num is uniquely 

decoded as follows:   ,12  k
n

aNum  

where  x  is the largest integer, which comes before x. 

VII. INCREASING CRYPTOGRAPHIC STRENGTH OF THE 

ALGORITHM 

If attacker does not know a secret key, all he knows is that 

encrypted value belongs to the interval  ., 00 ba  But to 

make algorithm more secure, this segment can be hidden. 

Let us choose an arbitrary strictly increasing function 

)(xf  so that .)(,0)(lim  xfxfx  Suppose 

.2)(,0)( n
bfaf   Let us use function )(xf  to encrypt   

n-bit number .20: n
ss  Using modified arithmetic 
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encryption algorithm, we encrypt number x from interval 

),,[ ba where sxf )(  (fig.1). 

 

Fig.1 Increasing cryptographic strength of algorithm 

In this case secret key is set of ratios ii qp , (key for 

modified arithmetic algorithm we already described earlier) 

and function ),(xf  that was used in encryption. 

To decode a cipher h we should find a  and b such that 

0)( af and n
bf 2)(  (they are unique, because )(xf is 

strictly increasing function), decode x from interval  ba, and calculate ).(xfs   Now if attacker doesn’t know 
a secret key, he doesn’t have any information about s. 

VIII.  IMPLEMENTATION FEATURES 

The algorithm described above can be implemented using 

only integers, which allows the implementation to eliminate 

rounding or computation errors. Nevertheless, the size of the 

numerator and denominator of fractions ii ba ,  and 

n

Num
x

2
  can’t be limited in general case, and therefore 

arbitrary-precision integer arithmetic should be used. As a 

result algorithm speed is not high enough. 

The algorithm can be modified in order to accelerate 

implementation. On each iteration of the encryption  

transformation matrix )1,0[),[ ii ba can be applied to 

segment ).,[ ii ba  Then it is obvious that .1,0  ii ba  

Point x transforms by the following rule: 

if ,0i then 
i

ii

nn p

qpNumNum 
22

,     (2) 

      else 
i

ii

nn q

qpNumNum 
22

.       (3)  

It saves time for the calculation of the segment, and long 

arithmetic is only required for the storage of a fractional 

number x. 

As a result the encoding iteration includes comparing 

points x and 
ii

i

qp

p

 and following x recalculation according 

to the rules (2) and (3). In case of decrypting we need to 

know final segment ),,[ kk ba  so decoding iteration is 

implemented directly with ia  and ib recalculation. 

In order to remove one of the slowest parts of the 

implementation - arbitrary-precision integer arithmetic, we 

can apply rounding to the largest previous integer, which is 

used in many implementations of standard arithmetic 

coding
1
. 

The idea of this approach is that all fractional numbers 

such as ii ba , and x, which belong to the interval )1,0[  are 

multiplied by ,2 r where r is some power of two. Thus, 

arithmetic operations can be quickly performed. E.g. in case 

of 32-bit architecture, it is convenient to choose .32r  

After multiplying the resulting fraction shall be rounded 

down to the nearest integer. The more is r, the smaller is 

rounding error, so it is advisable to choose large values for r. 

On each iteration of the encoding (or decoding) algorithm 

initial segment )2,0[),[ 00
r

ba   decreases, because 

),,[),[ 11  iiii baba so rounding error increases and at some 

point it is impossible to determine if 


 r

n

Num
x 2

2
belongs 

to segment ),[ 1 sa i or ).,[ 1ibs To avoid it, the length of 

interval ),[ 1 sa i and ),[ 1ibs after the process of rounding 

should be not less than 1. In other words, 

,11  ias  

,1
)( 11 

 
ii

iii

qp

pab
 

.11
i

ii
ii

p

qp
ab

   

Similarly for the interval ),[ 1ibs : 

.11
i

ii
ii

p

qp
ab

   

Thus, in order to be able to perform the ith iteration, the 

current length of the segment ),[ 11  ii ba should not be less 

than 

)(max)(max,max i
i

i
i

ii

i

ii

i

ii qpqp
q

qp

p

qp 


 
  (4) 

There is a special renormalization operation, which allows 

to increase the length of the current segment. It can be used 

in one of three cases: 

1.   Segment ),,[ 11  ii ba lies in the left half of the interval 

),2,0[ r  i.e. ).2,0[),[ 1
11

  r
ii ba  In this case interval 

)2,2[ 1 rr is not involved in the encryption process 

anymore, so we can “bring closer” )2,0[ 1r segment 

twice, i.e. use transformation ).2,0[)2,0[ 1 rr 
 Then 

                                                           
1Moffat, Alistair. ACM Transactions on Information Systems / Alistair 

Moffat, Radford M. Neal, Ian H. Witten // – 1998. – Vol. 16, No. 3, July 

1998. 
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,2 11   ii aa  

,2 11   ii bb  

.2xx  

2.    Interval ),[ 11  ii ba  lies in the right half of the 

interval ),2,0[ r i.e. ).2,2[),[ 1
11

rr
ii ba

  Similarly to 

the previous case, we can use 

transformation ).2,0[)2,2[ 1 rrr  Then 

),2(2 1
11

  r
ii aa  

),2(2 1
11

  r
ii bb  

).2(2 1 r
xx  

3.    Interval ),[ 11  ii ba  lies in the central part of the interval 

),2,0[ r  i.e. ).23,2[),[ 22
11

  rr
ii ba  Then let’s 

“bring closer” twice the interval ),23,2[ 22   rr  i.e. use 

transformation ).2,0[)23,2[ 22 rrr   Then 

),2(22 1
11

1   i
rr

i aa  

),2(22 1
11

1   i
rr

i bb  

).2(22 11
xx

rr    

It is easy to notice that each case of the renormalization 

increases the length of the segment twice. If none of the 

renormalization conditions is satisfied, then the length of this 

interval is strictly greater than .2 2r According to this we 

can find the maximum size of ip and .iq  If they are m-bit 

numbers, then (by (4)) current segment length after 

renormalization should be greater than 

.222)(max)(max 1 mmm
i

i
i

i
qp  

Then ,21max  rm and .3max  rm Larger size makes 

no sense to choose, because rounding leads to (r-3)-bit p and 

q numbers.  

As a result we turn from calculations with fractional 

numbers with unlimited numerator and denominator to 

calculations of the fixed integers. This fact significantly 

increases the speed of algorithm. The price of this 

acceleration is a rounding error, which may reduce the 

strength of cryptographic algorithm. 

IX. STATISTICS 

Any order-preserving encryption can be represented as 

transformation from domain )2,0[ 1b
to some range ),2,0[ 2b

 

where 21,bb are the sizes of input and output data 

respectively, so it is possible to attack a cipher using linear 

approximation cryptograms on extreme values (fig 2). 

In other words, cryptogram for a certain )2,0[ 1b
x is 

approximated with value ,2 12 x
bb 

and plaintext for 

cryptogram )2,0[ 2b
m – with value .

2 12




bb

m
Knowledge 

of the secret key is not required to calculate the approximate 

value, only sizes of the input and output data are needed. To 

defend against such attack we should increase an 

approximation error.  

Therefore, in order to study the cryptographic strength of 

the algorithm statistics of "segment" lengths was examined. 

The end points of such “segment” ia equals successive 

encrypting function values, i.e. )].1(),([  ififa i  

Obviously, the closer "segment" lengths distribution to 

uniform distribution, the smaller the error of approximation. 

 

 

Fig.2 Linear approximation of cryptograms on extreme values 

As a result, it was found that the “segment” lengths 

distribution is close to exponential (fig. 3, the abscissa 

indicates the segments lengths and the ordinate indicates the 

number of such segments). As too big error appears, this 

attack cannot be applied. 

 

 

Fig.3 “Segment” lengths distribution of two-byte numbers 

X. MATRIX BASED OPE SCHEME 

The suggested scheme allows to avoid overflow accuracy 

errors as it uses only integers. The scheme does not disclose 

any information about initial values of encrypted variables, 

except their order.  

Tuple of three numbers ),,( tkr serves as a ciphertext. 

Suppose we need to encrypt positive integer x. In 

contradistinction to pseudo-random number generator 

method the first element of cryptogram is not the sum of 

numbers of random ascending sequence on the step x, but a 

number i of a step, such that sum of random numbers 

exceeds the initial number x on this step. The second 

element of the cipher is the difference between x and the 

sum of random sequence on (i-1)th step. It can also be 
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encrypted in a similar way, using the sum of random 

elements of a different sequence  

.121 rr gxggg    

Obviously, .11   rrr gggx Therefore, to encrypt 

residual 1 rgx we need to calculate the sum of the 

sequence elements, which will be limited by .1 rr gg  

Instead of pseudo-random sequence elements sum we can 

use strictly increasing function with special features. The 

sum of the sum sequence of matrix elements is suggested to 

be used as strictly increasing function: 

 0 0

,

i

n

j

ia  

where ia  is an elements of matrix iA of size .nn We use a 

certain sequence of matrices 

 ,,,, 21 rAAA  

First, a certain matrix 1A is chosen. Each successive matrix 

can be calculated using some transformation of the previous 

one. As such transformation we research power function.  

 ,,,, 1
2
11

r
AAA  

In order to prevent the increasing of matrix elements after 

multiplication operation, we consider matrix elements are 

from finite field ℤm. Residual 1 rgx  is hidden with the 

help of elements of the matrix, calculated on the rth step. 

Elements are summed up randomly, and the number k of 

step, where the sum ks exceeds ,1 rgx is the second 

element of the tuple. The residual obtained at this stage is 

the third element of the tuple.  Let's look at the scheme in 

greater detail. 

Encryption scheme under consideration is symmetrical, 

i.e. it uses private key for encryption and decryption of data. 

In the research the input data of cryptographic algorithm are 

integer non-negative numbers from 0 to n2 , where 

,64,32,16n which corresponds to the size of built-in types  

unsigned short int, unsigned int, unsigned long int, unsigned 

long long int of C++ language, which the scheme is 

implemented on. The result of cryptographic algorithm is a 

tuple of three numbers ),,( tkr , where tkr ,, ℤ .0  

XI. KEY GENERATION 

The private key in the scheme is non-degenerate matrix 

)0(det AA  over the finite field ℤm, ,2m  with nn size, 

where 2,  nNn and a certain permutation of   elements 

of matrix with such size, called matrix traversal.   

A. Non-degenerate matrix generations 

Standard way of non-degenerate matrix generation is to 

generate matrix with random elements and check its non-

degeneracy. If the determinant of obtained matrix is equal to 

zero, generation shall be repeated until this condition is 

violated.  

For small-size matrices this method is quite effective. 

However with increase of matrix size, multiplication 

operation takes more and more time, which reduce speed of 

private key generation.  

Direct methods of determinant calculation can be based 

on permutations sum, or Laplace expansion of smaller 

degree determinants. However such methods are rather 

ineffective, because they require time complexity )!(nO for n 

degree determinant calculation. There are other methods 

with fewer operations, e.g. Gauss method modification, 

where matrix is transformed to the form of echelon and 

determinant is calculated as product of multiplication of 

diagonal elements. Complexity of this method constitutes 

).( 3
nO If there is available multiplication algorithm of two 

square matrices of size n in time ),(nM where ,)( a
nnM   

for certain ,2a then matrix determinant can be calculated 

in time )).(( nMO  However if random matrix is degenerate, 

calculations shall be repeated until we get non-degenerate 

matrix. 

This research suggests using knowingly non-degenerate 

matrix generation approach, based on the following linear 

algebra theorem. 

Theorem. Square matrix A with non-zero principal minors 

can be presented in the form of LU lower triangular matrix 

L, whose main diagonal consists of non-zero elements, times 

upper triangular matrix U with units on the main diagonal. 

Since lower triangular matrix L contains a single diagonal, 

its determinant equals one. Upper triangular matrix U 

determinant equals multiplication of elements on main 

diagonal. Using the property of determinant, we obtain 

).det()det()det()det()det( UULLUA   

Thus, in order to generate non-degenerate matrix A, it is 

enough to generate matrices L and U, compliant with the 

above properties and find their multiplication result. 

Computational complexity of matrix product by definition is 

),( 3
nO however there are more effective algorithms, for 

instance, Coppersmith–Winograd algorithm, performing 

multiplication in ).( 3727.2
nO  

B. Generation of  matrix elements permutation  

Algorithm uses permutation of matrix elements, imitating 

its traversal, a specific order in which to trace the elements 

of a matrix. Cryptographic robustness cannot be achieved 

through simple row traversal of matrix elements or row 

traversal with a shift. The traversal should be generated 

randomly. Traversing function shall go over all matrix 

elements (through each element only once), i.e. the function 

has to be bijective. For instance, we can use affine 

transformation. 

It shall be presented through randomly generated non-

degenerate in ℤm matrix B of size 2×2 (B shouldn't be 

identity matrix, or else the function implements row 

traversal with a shift) and vector ),,( 21 ccc  where   

21,cc  ℤm. Matrix non-degeneracy provides inverse 

mapping, used in decryption. New element coordinates are 

calculated as follows:  
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where coordinates ),( ji  mean initial row traversal  

),(),2,2(),1,2(),2,1(),1,1( nn and )),(),,(( jivjiu  is 

traversal, used in algorithm.  

Generally, to determine matrix traversal we can use any 

effective algorithm for random permutation of set of 

elements generation, e.g. Fisher–Yates shuffle algorithm 

(Knuth shuffle), with time complexity reduced to ),(nO  

along with its updated versions – Durstenfeld and Sattolo 

algorithms, using less memory space. When using high 

quality unbiased random numbers generator, algorithm 

guarantees equiprobability of permutations.  

XII. ENCRYPTION 

Let's consider data encryption procedure. Suppose we 

need to encrypt x ℤ .0  At first private key ),( A is 

generated. The first element r of ciphertext is calculated as 

follows: 

,)()(

1

1

1

 




 r

i

i
r

i

i
AdxAd  

where 


2

0

)(

n

i

iaAd  

is the sum of elements ia  of matrix A. Power operation i
A  

is performed in ℤm.  

In order to determine the second element of the cipher, 

we need to calculate the sum 

,

0

' k

i

iaS  

where '
ia are elements of matrix ,r

A such that   

.)(

1

1

 r

i

i
AdxS  

Difference  

  1

1

)(

r

i

i
SAdxt  

is the third element of the cipher. 

XIII. DECRYPTION 

Suppose the input of decryption algorithm is a tuple 

),,( tkr and the key is ).,( A  First, we shall calculate matrix 

.r
A Using known permutation  of matrix elements, we 

calculate  

,

0

' k

i

iaS  

where '
ia are elements of matrix .r

A  Adding to the sum S 

the third element of ciphertext t, we obtain a certain number 

h, which, according to encryption procedure, equals  

 1

1

.)(

r

i

i
AdxSth  

Using the first element  of ciphertext we calculate the sum 


1

1

)(

r

i

i
Ad  

and obtain the number , that was encrypted 

 1

1

.)(

r

i

i
Adhx  

XIV. CONSTRUCTINON CORRECTNESS 

First of all we have to verify cipher uniqueness. Thus, the 

encrypted number should be the same number as decrypted. 

We also shall prove that such encryption is order-preserving. 

Theorem 1. If with encrypted N there is cipher Enc(N), then 

with decryption Dec(Enc(N)) there is number N.  

Proof. We need to prove that mapping, determining 

encryption algorithm, is bijective. In bijective mapping 

every element of one set corresponds to only one element of 

another set, along with inverse mapping with the same 

property. 

Bijective mapping properties: 

1.    A function BAf : is bijective if and only if it is 

invertible, that is, there is a function ABg : such 

that fg  is identity function on A and gf   is identity 

function on B.  

2.    The composition fg  of two bijections is again a 

bijection.  

Function ),(1 Axf calculates the parameter r. Since 

,0det A  then function 


j

i

i
Ad

1

)(  

is strictly increasing, i.e. 

.)()(

1

11

 


 j

i

i
j

i

i
AdAd  

Obviously, for any x from ℤ 0 number r is found uniquely. 

Function ),,(2 Axf calculates the parameter k. Since 

,)(

1

 r

i

i
Adx  

hence we get  

.)()(

1

  r

i

ri
AdAdx  

Therefore, there is the only k, such that 

,)(,

1

10

'  


 r

i

i
k

i

i AdxSaS  

where '
ia  are elements of matrix .r

A  It is obvious that 

permutation of matrix r
A elements does not violate this 

condition. If functions  
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1

1

)(

r

i

i
Ad  

and S are bijective, then function ),,(3 Axf , calculating t, 

is also bijective. 

Theorem 2. If with encryption of 1N  with the key K we 

obtained cipher ,1Enc  and with encryption 2N  with the 

same key we obtained cipher ,2Enc  and  ,21 NN  then 

.21 EncEnc   

Proof. Let us say that tuple ),,( 11111  maaA   is greater 

than vector ),,,( 12212  maaA   if ,21 jj aa  where j is 

first position number, such that ,21 jj aa  for all j, from 

m+ 1 to 0.  

We shall consider 21, xx ℤ ,0  such that .21 xx   

According to encryption procedure 

,)()(
11

1

1

1

1

 




 r

i

i

r

i

i
AdxAd  

.)()(
22

1

2

1

1

 




 r

i

i

r

i

i
AdxAd  

Consequently, 

.)()(,)()(
2121

11

1

1

1

1

 








 r

i

i

r

i

i

r

i

i

r

i

i
AdAdAdAd  

These functions are strictly increasing, so .21 rr   As 

,)(

1

1

11

1 r

i

i
AdxS  

,)(

1

1

22

2 r

i

i
AdxS  

therefore, .21 SS  By definition of S function, since all the 

matrix elements are non-negative, then .21 kk   

,)(

1

1

111

1  r

i

i
SAdxt  

.)( 2

1

1

22

2

SAdxt

r

i

i    

If  






 1

1

1

1

21

)()(

r

i

i

r

i

i
AdAd and ,21 SS  i.e. 21 rr   and 

,21 kk  then .21 tt   

XV. CRYPTOGRAPHIC STRENGTH 

A. Ciphertext-only attack 

Provided that the attacker doesn't have key parameter, i.e. 

matrix size n and modulus m, then ciphertext-only attack 

does not seem possible. Matrix size of n×n modulus m can 

be presented with 
2

n
m variants.  

Suppose we extract a certain ciphertext ).,,( tkr  Suppose 

the size of secret matrix is n×n, and operations are 

performed modulus m. As the matrix is non-degenerate and 

non-identity, minimum sum of its elements equals )1( n  

and maximum ).1(2 mn  Thus, initial number lies within 

the range from )1)(1(  nr to ).1(2 mrn  The sum S lies 

within the range from 0 to )1( mk  and may be presented 

with k
m variants.  

B. Chosen-plaintext attack 

All order-preserving encryptions are vulnerable to such 

kind of attack. Let us encrypt a sequence of numbers 

.,, 21 xx We shall consider ciphertexts of form 

.)0,0,( ir With these values of encryption function, the sum 

is 

,)(

1

i

l

i

j
xAd   

Hence for subsequent plaintexts ,2,1  ii .We can 

find residuals 

i

l

i

j
xAd 1

)(  

encrypted with the last two elements of the tuple.  

Next we shall consider ciphertexts of form .)0,,( ti kr  

Since the last tuple element equals zero, corresponding 

residual equals  

t
k

j

ja

1

,  

where ja  are elements of matrix 1rA in accordance with 

secret traversal. Thus, examining successively 

,,2,1 21  kk we can determine the elements of matrix 

.r
A  During security enhancement, matrix elements are 

summed up randomly, with !2
n  possible variants. Besides, 

if ,1r  matrix root is an expensive operation.  

Another way to enhance security is applying strictly 

increasing function value f(x) to initial number x before 

encryption procedure. For instance, f(x) can be Ax+ B, where BA, ℤ, A> 1, 0< B< A, and instead of x there is initial 

number. The procedure of encryption substitution is as 

follows. Suppose, Num ℤ 0 a number, that needs to be 

encrypted. Let us randomly choose number A, which is the 

part of the key. Allowed value range for B is limited by A, 

therefore, the bigger number A, the more possible variants 

there are for B. Number B is also randomly chosen, and 

adding number B enables two neighbor numbers to grade 

into numbers, whose difference is a random number, i.e 

.)()1( 121212 BBABAxBxANumNum   

Thus, in order to find the number, following 

number ,2Num we need to sort out at worst 

2323  ABBA  numbers, which enhances the 

construct security. 
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Next we substitute x for Num, calculate Ax+ B and encrypt 

the deduced number. After decryption, we need to perform 

integer division of decrypted number by A in order to get 

initial number. This scheme doesn't require storing of 

coefficient B within the key and, therefore gives opportunity 

to use different B values for any numbers, including equal 

numbers. 

XV. STATISTICS 

The plots depicting dependence of r, k, t parameters on 

size of initial unencrypted values are provided below. We 

used secret matrix of size 10 × 10 with elements from ℤ10 

and parameter 82A  for encrypting 1000 subsequent 8-bit 

numbers. 
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Fig.4 Dependence of r parameter on plaintext size 
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Fig.5 Dependence of k parameter on plaintext size 

 

0

1

2

3

4

0 200 400 600 800 1000

 

Fig.6 Dependence of t parameter on plaintext size 

XVI. FURTHER WORK 

Currently we are examining other ways of attacking given 

OPE schemes and increasing cryptographic strength of them. 

We are also looking for optimal parameters of schemes, 

which provide an acceptable balance of speed and security. 

There are several possible approaches to accelerate 

implementation such as using GPU for calculations, using 

specified matrix implementation, using faster standard 

algorithms required in schemes, etc.    

After appropriate results are achieved, these schemes will 

be embedded as third-party libraries in security database 

service implemented in our laboratory. 

REFERENCES 

[1] G. Bebek. Anti-tamper database research: Inference control 

techniques, Technical Report EECS 433 Final Report, Case Western 

Reserve University, 2002. 

[2] Gultekin Ozsoyoglu, David A. Singer, and Sun S. Chung. Anti-

Tamper Databases: Querying Encrypted Databases. In 17th Annual 

IFIP WG 11.3 Working Conference on Database and Applications 

Security, 2003, http://dx.doi.org/10.1109/ICDEW.2006.30 

[3] R. Agrawal, J. Kiernan, R. Stikant, and Y. Xu, Order-preserving 

encryption for numeric data, ACM SIGMOD International Conference 

on Management of Data, pp. 563-574, 2004. 

[4] G. Amanatidis, A. Boldyreva, and A. O'Neill, Provably-secure 

schemes for basic query support in outsourced databases, Working 

Conference on Data and Applications Security, pp. 14-30, 2007. 

[5] A. Boldyreva, N. Chenette, Y. Lee, and A. O'Neill, Order-preserving 

symmetric encryption, Eurocrypt, pp. 224-241, 2009. 

[6] A. Boldyreva, N. Chenette, and A. O'Neill, Order-Preserving 

Encryption Revisited: Improved Security Analysis and Alternative 

Solutions, Crypto11, 2011. 

[7] Schneier, B., Wiley J.: Applied Cryptography Second Edition 1996 

ISBN 0-471-11709-9.. 

[8] D. Boneh and B. Waters, Conjunctive, subset, and range queries on 

encrypted data, TCC, 535-554, 2007. 

[9] H. Hacigumus, B.R. Iyer, C. Li, and S. Mehrotra, Executing SQL over 

encrypted data in the database-service-provider model, ACM 

SIGMOD Conference on Management of Data, 2002. 

[10] M. Halloush and M. Sharif, Global heuristic search on encrypted data 

(GHSED), International Journal of Computer Science Issues (IJCSI), 

1:13-17, 2009. 

[11] Raluca A. Popa, Frank H. Li, Nickolai Zeldovich, An Ideal-Security 

Protocol for Order-Preserving Encoding. IEEE Symposium on 

Security and Privacy 2013, 

http://dx.doi.org/10.1109/CISS.2012.6310814 

MARIA USOLTSEVA, SERGEY KRENDELEV, MIKHAIL YAKOVLEV: ORDER-PRESERVING ENCRYPTION SCHEMES 899


