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Abstract—In this paper the authors evaluate in context of
numerical calculations accuracy classical integer order and direct
non-integer based order numerical algorithms of non-integer
orders derivatives and integrals computations. Classical integer
order based algorithm involves integer and fractional order
differentiation and integration operators concatenation to obtain
non-integer order. Riemann-Liouville and Caputo formulas are
applied to obtain directly derivatives and integrals of non-integer
orders. The following accuracy comparison analysis enables to
answer the question, which algorithm of the two is burdened
with lower computational error. The accuracy is estimated ap-
plying non-integer order derivatives and integrals computational
formulas of some elementary functions available in the literature
of the subject.

I. INTRODUCTION

T
HERE are many formulas which can be applied to

compute directly derivatives and integrals of non-integer

orders [8], [9], [10], [11], [12], [14]. They include Riemann-

Liouville non-integer (fractional) order integral/derivative and

Caputo non-integer (fractional) derivative. However, non-

integer order derivatives and integrals can be also com-

puted applying integer and fractional order differentiation

and integration operators concatenation. Classical integer or-

der derivatives and integrals can be obtained applying well

known numerical techniques. To calculate fractional order

derivatives and integrals, Riemann-Liouville/Caputo formulas

can be applied. The question, the authors want to answer

is, which of the algorithms enables to obtain more accurate

values of example non-integer derivatives and integrals of

some elementary functions.

The paper is divided into the following parts: at the begin-

ning the authors present details of the applied operators of

non-integer (fractional) order differentiation and integration,

followed by detailed description of the integer and fractional

order differentiation and integration operators concatenation

and the explanation of their practical numerical implementa-

tions. The final part of the paper include accuracy comparison

analysis of example non-integer order derivatives and integrals

of some elementary functions. The values assumed as exact

for the accuracy comparison are calculated applying formulas

of non-integer order derivatives and integrals available in the

literature of the subject [11], [14].

II. MATHEMATICAL PRELIMINARIES

Non-integer (fractional) order integration and differentiation

operators include:

• Riemann-Liouville Fractional Order Integral

RL
t0

I
(ν)
t =

1

Γ (ν)

∫ t

t0

f (τ)

(t− τ)
1−ν

dτ (1)

• Riemann-Liouville Fractional Order Derivative

RL
t0

D
(ν)
t f (t) =

1

Γ (n− ν)

(

d

dt

)n ∫ t

t0

f (τ)

(t− τ)
1−ν

dτ (2)

• Caputo Fractional Derivative

C
0 D

(ν)
t f (t) =

1

Γ (n− ν)

∫ t

0

f (n) (τ)

(t− τ)1−ν
dτ (3)

Formulas (2) and (3) are related by

RL
t0

D
(ν)
t f (t) =C

0 D
(ν)
t f (t) +

n−1
∑

k=0

tk−ν

Γ (k − ν + 1)
f (k) (0) (4)

where: n − 1 < ν < n ∈ N = {1, 2, ...} , ν ∈ R is the

order of fractional integral/derivative, f (n) (τ) = dnf(τ)
dτn

is the

classical derivative of integer order, Γ (x) =
∫

∞

0 e−t tx−1dt
is the gamma function and t satisfies the following conditions

−∞ < t0 < t < ∞, ⌊n⌋ = n+ ν.
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III. APPLIED METHODS OF INTEGRATION AND

DIFFERENTIATION

A. Applied Methods for Classical Integer Orders Derivatives

and Integrals Computations

• Classical integer order derivatives are calculated applying

well known numerical methods involving 5 point stencil

Central Diffidences.

• Classical integrals of the integer orders are obtained

applying well known and efficient methods of numerical

integration:

– Gauss-Kronrod Quadrature (denoted as GKr)

∗ The method is a very efficient modification of well

known Gauss-Legendre Rule. It uses so called the

Gauss-Kronrod Pairs. For example the G30/K61

pair includes the nodes of the 30-point Gauss-

Legendre Quadrature + 31 new ones and all 61

different coefficients.

∗ The advantages of the method is its efficiency and

high accuracy obtained with only some dozens of

sampling points if applied to precisely selected

type of integrand. The main disadvantages are: a

complex method of nodes and weight calculations,

high precision input data requirement and in-

dept knowledge about the method application to

actually obtain high accuracy results.

– Midpoint Rule (denoted as NCm)

∗ The method is a very efficient modification of the

rectangular rule. In the midpoint rule the sample

point is taken from the middle of each subinterval.

This feature enable the application of the method

to the integrands with singularities at the end point

of the integration range.

∗ The method can be applied to any integrand, be-

cause the weight function equals 1 and the nodes

of quadrature are of equal width. The accuracy

of calculations should theoretically increase while

increasing the amount of subintervals, for which

the integration range is divided into. However

mechanical increase of the amount of subintervals

often leads to small accuracy increase and big

increase in computational complexity.

All further details regarding integer order derivatives and

integrals methods of computations can be found in available

literature of the subject [1], [2], [3], [4], [5]. There is only

presented, on Figs 2-3 indicative accuracy of the applied

methods.

B. Applied New Efficient High-accuracy Methods of Integra-

tion for Non-integer and Fractional Orders Derivatives and

Integrals Computations

The integrands in formulas (1)-(3) are difficult to integrate

due to singularity at the end of integration range. The difficulty

rises as the order of calculated fractional order integral nears

0 and the order of fractional order derivative nears 1. This

feature makes inefficient widely known methods of numerical

integration in context of accuracy of calculations. Addition-

ally some of the fractional orders derivatives and integrals,

mentioned in last sentence are not possible to compute with

satisfactory accuracy at all (relative error exceeding 90-100

%).

Generally the problems associated with singularities in

numerical integration are the most difficult to solve. In such

cases high accuracy results can only be obtained by appli-

cation of dedicated methods, as for example weighted type

quadratures. This type of quadratures, however can only be

applied to precisely selected types of functions in unmodified

form. It is forced by their association with the corresponding

weights. To obtain high accuracy results, either the integrand

must satisfy conditions of a particular quadrature application

requirements or the quadrature must be adopted to a particular

integrand. Choosing the second method, the authors of the pa-

per developed precise modifications to the existing numerical

methods of integration: Gauss-Jacobi Quadrature and Double

Exponential Quadrature, which initially were developed for

integer order integration only.

Modified version of Gauss-Jacobi Quadrature have adopted

weight function for fractional order derivatives and integrals

computations (the method is denoted in the paper as GJ).

Double Exponential Quadrature (denoted as DE) [16], [17]

on the other hand involves hyperbolic functions substitution

in independent variable transformation in integrand and trape-

zoidal rule applied to the transformed integrand. Application

of the methods enables to obtain high accuracy computations

results of fractional order derivatives and integrals [6], [7].

Important remarks:

• In the case of the non-integer (fractional) order differenti-

ation and integration operators (1)-(3), regardless if there

is integral or derivative to calculate, we always apply the

integration operator.

• The non-integer (fractional) order differentiation opera-

tors (1)-(3) unlike integer order differentiation operators,

are non-local operators. They are not calculated applying

the values of the neighbor function points, but from the

whole range of differentiation. This can be beneficial in

case of a physical process analysis, because we take into

consideration its history from the beginning, however this

feature increases significantly the complexity of numeri-

cal calculations. Higher complexity of calculations influ-

ences negatively the accuracy of input data for each part

of calculations. Inaccuracies in input data are the classical

cause for numerical calculations accuracy decrease.

C. Concatenation of Operators of Integer and Fractional

Order Differentiation and Integration as a Obtain Method of

Non-integer Order

Scientifically interesting calculation method of non-integer

order derivatives and integrals computations is application of

concatenation of integer and fractional order differentiation

and integration operators.

The practical operations of concatenations are related with

fractional and integer order operators. Some of them are trivial,
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Fig. 1. Accuracy Estimation Based on Integer and Fractional Orders Integra-
tion Operators Concatenation

some require additional assumptions. There is always assumed

the existence of the corresponding derivatives and integrals and

that the operations of concatenation are always performed on

the same definitive integration range.

Interesting concatenations combination of integer and frac-

tional orders differentiation and integration in context of the

paper’s subject include:

• Fractional order derivative of integer order derivative

D(ν)
(

D(n)f (t)
)

= D(n+ν)f (t) (5)

• Fractional order integral of integer order integral

I(ν)
(

I(n)f (t)
)

= I(n+ν)f (t) (6)

where n is classical integer order derivative or integral, ν ≥ 0
and t ≥ 0 (see Figure 1 for visualization).

Comprehensive mathematical calculations to the subject can

be found in [14].

In the works of [9] and [10] discussed properties (5) and (6)

are named Law of Exponents, because they relate to the opera-

tions performed on the exponents of the fractional and integer

order operators (1)-(3). The Law of Exponents is generally

true for the fractional integration operators. It is also valid for

fractional order differentiation operators [14]. Still it is well

known [10] and [9] in §IV.6 Law of Exponents, that there exist

functions for which fractional order differentiation operator (3)

do not satisfy (5). However, the authors of the following paper

focus only on functions, for which concatenations (5)-(6) are

possible, in this case f (t0) = 0.

IV. EVALUATION DETAILS

The description of a general method of the fractional

order differentiation and integration operators concatenation is

presented in [10], [9]. It is expressed by the following formula

I(ν)
[

I(n)f (t)
]

=
1

Γ (ν) · Γ (n)

∫ t

0

(t− x)
ν−1

·

·

[
∫ x

0

f (y) dy

]

dx (7)

We substitute x = k ∗ h in inner integral, where k is the

amount of subintervals, which the integration range is divided

into, and h is the width of each interval. As a result we obtain

the values of the inner integral in h-spaced intervals. This

values serve as input function f (x) for the outside integral.

The integration methods applied in the following research

require precisely sampled function’s values in the nodes points

and their synchronization with the corresponding weights.

Sampling the function in equally spaced points and then inter-

polating the values of the function in the nodes points does not

comply with its function sufficiently. There must be applied a

different approach, which is presented as Algorithm 1.

Algorithm 1 Concatenation of integer and fractional order

differentiation and integration operators. Nodes of a quadrature

for I(ν) as an integration step of I(n).

Step 1. Select fractional orders to concatenate I(n) and I(ν).
The I(n) is the inner integral and the I(ν) is the outer one.

Step 2. Calculate quadrature nodes and weights for the I(ν).

Step 3. Calculate I(n) applying as step the points of the nodes

from Step 2.

Step 4. Calculate I(ν) applying as inputting as f (x) the values

obtained in Step 3.

1) Arbitrary Precision in Numerical Calculations: To over-

come the bottlenecks of the double precision computer arith-

metic and to increase overall computations accuracy [18], two

arbitrary precision programming libraries together with a C++

wrapper [22] are applied:

MPFR [21] is an arbitrary precision package for C language

and is based on GMP [20].

MPFR supports arbitrary precision floating point variables.

It also provides an exact rounding of all implemented opera-

tions and mathematical functions [19].

A. Testing Functions

The integrand in formulas (1)-(3) consists of two factors:

the first factor, so called core and the second one, which is

the actual function, of which there is non-integer (fractional)

order derivative or integral to calculate.

The core has the biggest influence on the shape of the

integrand and on the difficulty level of integration. In this

respect, the actual function to integrate contributes only to

a minimal extent.

Due to this, the authors decide it is enough to select two

functions for testing purposes:

• Power function

f (t) = (t− t0)
p
, t0 = 0, p = 0.5 , t ∈ (0, 1) (8)

• Exponential function

f (t) = eatI (t) , a = 0.5, t ∈ (0, 1) (9)
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B. Accuracy Estimation of Computations

Accuracy estimation is performed on the basis of the non-

integer (fractional) order derivatives and integrals formulas

(10)-(13) available in the literature of the subject [11], [14].

Due to the fact, that they are in fact computational formulas,

there must be taken into consideration some calculations error,

although very small.
Assuming D(−ν) = I(ν).

• Power Function (8):

– Fractional integral

t0D
(−ν)
t f (t) =

Γ (p+ 1)

Γ (p+ ν + 1)
(t− t0)

p+v
. (10)

– Fractional derivative

t0D
(ν)
t f (t) =

Γ (p+ 1)

Γ (p+ 1− ν)
(t− t0)

p−v
. (11)

• Exponential Function (9):

– Fractional integral

t0D
(−ν)
t f (t) = tν

N
∑

k=0

(at)k

Γ (k + ν + 1)
. (12)

– Fractional derivative

t0D
(ν)
t f (t) = t−ν

N
∑

k=0

(at)k

Γ (k + 1− ν)
. (13)

C. Accuracy Definition

In the whole paper the accuracy is expressed as relative

error in % in context of integration range

e(t)r =

(

1−
vc
ve

)

· 100% (14)

where vc denotes calculated value, ve a value assumed as exact

one and t0, t is integration range.

V. COMPARISON ANALYSIS

A. General remarks

The methods of numerical integration developed by the

authors of the paper, to their best knowledge, are the only

numerical methods of integration available at the moment,

applying which it is possible to obtain high accuracy results

calculating non-integer (fractional) derivatives and integrals:

• GJ method delivers high accuracy results with average

accuracy above 10−80 mark. The order of the derivative

and integral and integration range has no impact on

accuracy. Actually, the method increases offered accuracy

in cases, in which traditionally methods decrease it. The

method requires 4-64 sampling points to reach average

accuracy abilities. The type of integrated function influ-

ences only slightly the final results.

• DE is able to deliver 10−50 average accuracy level

for fractional integrals of orders greater than 0.5 and

fractional derivatives smaller that 0.5 with 600 − 1000
sampling points. The methods is in general more depend-

able on range and type of the integrated function.

Fig. 2. Integer Order Integration results for function (8) in red and function
(9) in black

Fig. 3. Integer Order Differentiation results for function (8) in red and function
(9) in black

B. Accuracy of integer order integration and differentiation

As it is presented on Fig. 2, GKr ensures enormous ad-

vantage over NCm in context of accuracy of integration. GKr

achieves triple greater accuracy with only 61 sampling points.

NCm was tested with 10000 sampling points. Further sampling

points increase in case of GKr did not enable to obtain better

results; actually, the accuracy deteriorated. In case of NCm,

further accuracy increase was very slow with each 10000
sampling points added, that it did not justified the further

experimentation.

Application of GKr is the optimal choice for integration

operators concatenation.

Application of 5-point Central Differences to obtain 1st and

2nd derivative resulted with high accuracy, almost error free

results (See Fig. 3). Further points increase did not bring any
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accuracy increase.

Application of 5-point Central Differences is the optimal

choice for differentiation operators concatenation.

C. Accuracy of non-integer order integration and differentia-

tion

As it is presented on Figs 4-7 application of both developed

methods of numerical integration GJ and DE to compute

directly non-integer order derivatives and integrals enables to

obtain highest possible results.

The accuracy of the integer and non-integer orders inte-

gration operators concatenation is limited to the accuracy

possible to obtain applying integer order numerical integration

methods, because it determines the accuracy of the input data

for fractional order integration. For differentiation operators

concatenation, the deteriorating amount of information about

the integrated function during the operators concatenation

affects the final accuracy. The loss of information understood

in the sense of the input data accuracy decrease: during integer

operator application the function is known in the entire range,

i.e. it is available in the continuous form; during the fractional

operator application the input function is available only in

some earlier pre-calculated points, i.e. it is available in the

discrete form only.

Fig. 4. Non-integer Order Integration Results for function (8). GKr and NCm
applied to compute integer orders, GJ and DE to compute fractional and non-
integer order

VI. CONCLUSION

The purpose of the following research was to evaluate in

context of computations accuracy two algorithms of non-

integer order derivatives and integrals computations: direct

numerical calculation of non-integer order derivatives and

integrals and the non-integer orders of derivatives and integrals

obtained by the application of concatenation of the integer and

fractional orders operators of integration and differentiation.

Fig. 5. Non-integer Order Integration Results for function (9) GKr and NCm
applied to compute integer orders, GJ and DE to compute fractional and non-
integer order

Fig. 6. Non-integer Order Differentiation Results for function (8)

There is no doubt, that direct calculation of non-integer

orders derivatives and integrals applying both numerical meth-

ods, GJ and DE, developed by the authors of the paper

for non-integer and fractional order derivatives and integrals

computations applying formulas (1)-(3) are the methods to

favorite if one want to obtain high accuracy results. The

methods are efficient and their accuracy does not depend on

order of the calculated derivative and integral or the integration

range.
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[15] C. Schwartz, “Numerical Integration of Analytic Functions“, in Journal

of Computational Physics, vol. 4, pp. 19-29, 1969.

[16] H. Takahasi, Quadrature Formulas Obtained by Variable Transformation,
Numerische Mathematik, nr 21, 1973.

[17] M. Mori, “Discovery of The Double Exponential Transformation and
Its Developments“, publ. RIMS, Kyoto Univ., 41, pp. 897-935, 2005.

[18] J.M. Muller, N. Brisebarre, F. De Dinechin, C.P. Jeannerod, V. Lefevre,
G. Melquiond, N.Revol, D. Stehle, D. and S. Torres, “Handbook of
Floating-Point Arithmetic“, Birkhauser Boston, New York,NY, 2010.

[19] K.R. Ghazi, V.Lefevre, P.Theveny and P.Zimmermann, ”Why and how to
use arbitrary precision” IEEE Computer Society, vol.12, nr 3, 2010, DOI
Bookmark: http://doi.ieeecomputersociety.org/10.1109/MCSE.2010.73.

[20] The GNU Multiple Precision Arithmetic Library, https://gmplib.org/.

[21] The GNU Multiple Precision Floating-Point Reliable Library, https://
mpfr.org/.

[22] C++ wrapper for the GNU Multiple Precision Floating-Point Reliable
Library, http://www.holoborodko.com/pavel/mpfr/.

[23] J. Waldvogel, “Towards A General Error Theory of the Trapezoidal
Rule“, in Approximation and Computation, pp 267-282, Springer Verlag,
W.Gautschi, G.Mastroianni and Th.M.Rassias (Eds.), 2011.

APPENDIX

Below there are presented the main ideas behind two new

numerical methods of integration developed by the authors

of the paper for non-integer (fractional) order derivatives and

integrals computations mentioned in the paper.

A. Double Exponential Formula

The Double Exponential (DE) formula joins two applied

techniques: the double exponential transformation applied to

the initial integrand and the trapezoidal rule applied to the

transformed integrand.

General idea standing behind the DE transformation which

was proposed by Schwartz [15] and become known as the

Tanh rule (since x = tanh (t)) is as follows:

Let us consider the integral

I =

∫ b

a

f (x) dx

where f (x) is integrable on interval (a, b). The function f (x)
may have singularity x = a, x = b or at both.

First we apply the following variable transformation

x = φ (t) , φ (−∞) = a, φ (∞) = b.

We obtain

I =

∫

∞

−∞

f (φ (t))φ
′

(t) dt.

It is important that φ (t) possess the property such as φ
′

(t)
decreases its values to 0 at at least double exponential as t →
±∞, i.e.

∣

∣

∣
φ

′

(t)
∣

∣

∣
→ exp (−c exp (|t|)) (15)

where c is some constant.

After that, it is best to apply the trapezoidal formula with

an equal mesh size to the transformed integrand expression

[23], i.e.

I = h
∞
∑

n=−∞

f (φ (nh))φ
′

(nh)

where nh is sampling step.

Due to the property (15) truncation of the summation

process can be done at some arbitrary chosen n = −N− and

n = +N+, i.e.

I = h

N+
∑

n=−N−

f (φ (nh))φ
′

(nh) , (16)

N = N−+N++1, where N states the amount of sampling

points of the function.
Since φ

′

(nh) as well as the whole expression

f (φ (nh))φ
′

(nh) converges to 0 at exponential rate at
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large |n|, the quadrature formula (16) is called the Double

Exponential [16], [17].
Due to truncation of the summation process (16) at some

arbitrary chosen n = N−, n = N+, function f (x) can have

singularities at x = a and/or x = b as long as it is integrable

over the integration range.
There should be taken two kinds of errors into considera-

tion when implementing the DE formula: discretization error,

because we use the trapezoidal rule to approximate an integral

and truncation error, because we truncate infinite sum at some

N .The optimal strategy is to make both errors equal [17].
The subinterval width h, which defines the evaluation step

and the number of sample points are key values in such

strategy. The source [17] suggest the following value of h
for DE formula

h ∼
log (2πNω/c)

N
,

where c is some constant to be taken, usually 1 or π/2 and

ω is the distance to the nearest singularity of the integrand.
Correct selection of a function (17)-(19) with optimal

properties enables to control the level of convergence of the

whole transformed expression (16). The rate of convergence

has enormous impact on accuracy, i.e. to rapid convergence

decreases the accuracy [16].
The authors test three different transformations and selected

(18) because of it optimal convergence rate for the purpose of

the research, which is also suggested by the literature of the

subject [17], [16].

a b

x

fHxL

Fig. 8. Graph of the original core integrand in the formulas (1)-(3)

The transformations expressions are as follows:

x = φ (t) =

= tanh tp, φ
′

(t) =
ptp−1

cosh2tp
, p = 1, 3, 5, . . . (17)

x = φ (t) =

= tanh (φ/2 sinh (t)) , φ
′

(t) =
φ/2 cosh t

cosh2sinh (t)
(18)

-¥ ¥

x

t

Fig. 9. Graph of the transforming expression (18)

-4.7 4.7

t

fHtL

Fig. 10. Graph of the transformed core integrand (20) and the range applied
in computations

x = φ (t) = tanh
(

φ/2 sinh
(

t3
))

,

φ
′

(t) =
3π/2 t2 φ/2 cosh t3

cosh2sinh (t2)
(19)

Applying the transformation (18) to the formulas (1)-(3) ac-

cording the formula (16), we obtain the following trapezoidal

form

S = h

N
∑

i=1

f

(

b− a

2
xi +

b+ a

2

)

wi (20)

where

xi = f (tanh (π/2 sinh (ti)))

are the nodes and

wi =
cosh (ti)

cosh2 π/2 sinh ti
·
b− a

2

are the weights of the Double Exponential Quadrature.
Additionally ti = −ta + (i − 1) · h, i = 0, 1, 2, 3, · · ·N −

1, h = 2ta
N−1 are the new integration range and the width of one

trapezoidal subinterval. The selection of the value ta parameter

decides how near the singularity we integrate.
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There is presented the visualization of the DE transforma-

tion on Figs 8-10.

B. Gauss-Jacobi Quadrature with Adopted Weight Function

A weight function, which enables to eliminate definite

integration range endpoints singularities is Jacobi weight (21)

[1], [2], [3], [4].

p (x) = (1− x)λ (1 + x)β , λ, β > −1. (21)

A quadrature formula with the weight (21) assumes the form

∫ 1

−1

(1− x)λ (1 + x)β · f (x) dx ∼=

∼=

n
∑

k=1

Ak · f (xk) . (22)

The nodes xi are zeros of the Jacobi polynomial

Jn (x;λ, β).
The Jacobi Polynomial can be determined by applying

Rodrigues formula

Jn (x;λ, β) =

=
(−1)

n

2n · n!
(1− x)−λ (1 + x)−β ·

·
dn

dxn

[

(1− x)
λ+n

(1 + x)
β+n

]

(23)

The weights Ak can be computed applying the following

formula

Ak = 2λ+β+1Γ (λ+ n+ 1)Γ (β + n+ 1)

n!Γ (λ+ β + n+ 1)
·

·
1

(1− x2
k)

[

J
(λ,β)

′

n xk

]2 (24)

The remainder of the Gauss-Jacobi Quadrature is expressed

as

R =
2λ+β+2n+1

λ+ β + 2n+ 1
·

·
Γ (λ+ n+ 1)Γ (β + n+ 1)Γ (λ+ β + n+ 1)

Γ2 (λ+ β + 2n+ 1)
·

·
n!

2n
· f2n (ξ) , ξ ∈ 〈−1, 1〉 (25)

Now the transformation of the weight function. Substituting

λ = 1− α, β = 0 in (22) we obtain
∫ 1

−1

φ (x)

(1− x)1−α
dx (26)

which coincides with the core integrand in the formulas

(1)–(3).

To change the integration range from [−1, 1] to arbitrary

chosen [t0, t] formula (26) must be transformed as follows
(

t− t0
2

)ν

·

∫ 1

−1

φ (u)

(1− u)
1−α

du (27)

where

φ (u) = f

((

t− t0
2

)

u+

(

t− t0
2

))

Applying formulas (26)-(27) we can express the formula (1)

as
RLI(ν) =

1

Γ (ν)

(

t− t0
2

)ν ∫ t

t0

f (u)

(t− u)
1−α

du.

To calculate non-integer (fractional) order derivatives apply-

ing formula (3) we proceed the similar way
(

t− t0
2

)n−ν ∫ 1

−1

φ (u)

(1− u)
1−α

du

where

φ (u) = f

((

t− t0
2

)

u+

(

t− t0
2

))

.

The formula (3) assumes the following form

CD(ν) =
1

Γ (n− ν)

(

t− t0
2

)n−ν ∫ t

t0

(

d
dt

)n

(t− u)
n−α−1 du.

(28)

The formula (28) seems to have similar form as (3). The

most difficult part in context of numerical integration, however

is calculated applying a method which guarantees multiple

times higher accuracy, applying the Jacobi polynomials.
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