Proceedings of the 2014 Federated Conference on
Computer Science and Information Systems pp. 841-850

DOI: 10.15439/2014F196
ACSIS, Vol. 2

978-83-60810-58-3/$25.00 (© 2014, IEEE

Situational Software Engineering
Complex Adaptive Responses of Software Development Teams

AJB (Barry) Myburgh
Jo’burg Centre for Software Engineering (JCSE)
School of Electrical and Information Engineering
University of the Witwatersrand
Johannesburg, South Africa

barrym@jcse.org.za
software project. As explained by Jurgen Appelo:
Abstract— The Complex Adaptive Situational Model Predictability has a devious sister called complexity [1].

(CASM) promotes understanding of establishing conditions
which enable software engineering success. Influenced by
complexity science, CASM explains aspects of the state of
dynamic equilibrium that is achieved under constraining
influence of management and production governance. Four
states of dynamic equilibrium are defined: Crafted Quality
(Agile), Controlled Quality (waterfall), Managed Costs
(WetAgile) and Self-Directed Quality. A band of software
engineering feasibility is also described and it is suggested that
successful software engineering initiatives require teams to
operate in that band. The journey across the band of feasibility
is explained by introducing SEMAT, with Crafted Quality
amounting to applying SEMAT Essence, and Controlled
Quality being achieved by introducing additional practices
which satisfy the more stringent governance requirements. An
enterprise is then described as a collection of CAS's, thereby
setting the scene for further research into the complexities of
human-driven complex adaptive systems.

I. INTRODUCTION

FOR many practitioners, Agile software development
seems the best way to develop software. But old-style
management often presents the biggest obstacle to successful
adoption of agile approaches. The model described in this
paper promotes understanding of what it takes to establish
conditions which enable software engineering success, not
only with agile approaches, but also traditional, plan-driven
software engineering.

Humans easily relate to causal determinism — a thesis
based on experience that future events (combined with the
laws of nature) are sometimes the result of past and present
events. For example, causal determination enables us to
catch a ball by predicting in which direction it is going.
Causality also enables software developers to design, plan,
and predict what software will do.

Immanuel Kant (1724-1804) promoted universal causal
determinism. But causality is not enough. We can't
accurately predict the weather. We can't predict the full
combination of features, qualities, time and resources of a

This work was not supported by any organization

841

II. COMPLEXITY

Our attempts at understanding complexity involve:
Dynamical systems theory; Chaos theory; Network theory;
Game theory and other branches of science that are
collectively known as the Complexity Sciences. Causality
ruled the sciences from the 17th century. Complexity is a
product of the 20th century. Complexity theory offers a new
way of understanding the problem of producing software and
managing organizations - even though our minds prefer
causality over complexity.

The human brain is wired to find purpose and causality in
everything and we favor "linear thinking" to "nonlinear
thinking". So we easily reason that the global financial crisis
was caused by bankers. Bad atmosphere at work is caused by
the manager. The team didn't make a deadline because of
someone’s mistake.

The mental addiction to causal determinism has led people
to use control to ensure desired outcomes. Engineers and
other people with technical minds are particularly susceptible
to the concept of control. Engineers developed scientific
management - the command-and-control style of
management. Engineers devised the kind of control systems
we still find today which work adequately with repetitive
tasks that don't require serious thought and analysis. But
these control systems don't work with creative product
development.

Managers also look for causes that would produce the
outcomes exactly as they need them: through careful up-front
design, with meticulous top-down planning. Appelo explains
that agile management derives when hierarchical
management embraces complexity and non-linear thinking
and is a logical companion to Agile software development

[2].

III.

The software development industry started in an ad hoc
way with the term "software engineering" first appearing in
the 1968 NATO Software Engineering Conference where

CHALLENGES OF SOFTWARE ENGINEERING

842

attention was given to the perceived "software crisis" of the
time which resulted from the impact of rapid increases in
computer power and the complexity of the problems that
could be tackled. In essence, it referred (and still refers) to
the difficulty of writing correct, understandable, and
verifiable computer programs. The roots of the software
crisis have been recognized as being complexity,
expectations, and change. All too often formal approaches
introduced bureaucracy and delivered software much more
slowly than the rate at which requirements were changing. At
the same time, some teams of passionate and disciplined
programmers, with ad hoc processes and flexible
requirements, delivered products of higher quality at a
fraction of the cost and in a fraction of the time.

The dilemma created by the constantly high rate of
software project failure in the midst of a multitude of
alternative ways of working, triggered the search for general
theories of software engineering that could achieve
recognition equivalent to that of, for example, Maxwell’s
equations in the electrical engineering community [3]. But
where Maxwell’s equations deal with translating natural
phenomena into usable practice, software engineering is all
about people applying process and technology to translate
their ideas into operational solutions. This translation is
enabled by design which, according to John Gero and quoted
by Kruchten [4], is a goal-oriented, constrained, decision-
making, exploration and learning activity which operates
within a context that depends on the designer’s perception of
the context. In the same article Kruchten explains that he had
to extend the boundary of “software design” to include much
more than software practitioners’ traditional activities as
defined in the Software Engineering Body of Knowledge
(SWEBOK). In SWEBOK, software design covers only a
narrow set of processes and artifacts [5]. But if we accept
that design is making choices that will shape the final
product, we must include some requirements activities and
all coding and testing activities. The significance of this
statement is that, contrary to most other engineering
disciplines, the design process remains active throughout —
virtually up until the very moment that source software is
translated into executable machine language. And people
drive the design process. As is described later in this article,
people are the active agents in a complex adaptive system
(CAS) and CAS agents respond to governance forces while
applying rules.

An early case study that deals with the tension between
approaches is described in Dee Hock’s fascinating book
“Birth of the Chaordic Age” (1999). He describes how, in
the 1960’s, a management team responded to their concerns
when the traditional approach to system delivery was failing.
The team took ownership of the challenge and we shut
ourselves in a room and didn’t come out until we had an
approach to which we were totally committed. He also
confirms that: out of initial failure grew a magnificent
success [6].

PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

In 2001 a gathering held in Utah resulted in formulation of
the "Agile Manifesto" [7] which was, on the one hand, a
reaction against the bureaucracy of the formal approaches,
while on the other hand, also taking a stand against the
"chaotic" processes and low quality products of
undisciplined programmers. It gave substance to the search
for a middle road between structure and non-structure,
between order and chaos.

Evidence demonstrates that Agile software development,
when done well, shows a tremendous return on investment.
But if Agile methods have such positive effects, why doesn't
everyone use them? And why are so many software projects
across the world still failing? Appelo refers to a "State of
Agile Development Survey 2009" [8] which identified the
following factors as contributing to failed Agile approaches:

* Management opposed to change

* Loss of management control

» Lack of engineering discipline

* Team opposed to change

* Quality of engineering talent

* Organizational need for planning, predictability
and documentation

This seems to suggest that management preferences are
the biggest obstacles to Agile software development. The
CASM model described in this article sheds further light on
this contention.

In 2009 a group of leading international software
engineering personalities started collaborating on an
initiative to “re-found” software engineering. Ivar Jacobson
(Use Cases, UML, RUP), Bertrand Meyer (Design-by-
Contract and the OO Language Eiffel) and Richard Soley
(CEO of the Object Management Group (OMG)) established
the SEMAT Initiative - Software Engineering Method and
Theory. Supporters of the initiative signed a declaration
somewhat reminiscent of the Agile Manifesto and since then
a great deal of work has been carried out aimed at defining
the “kernel of widely-agreed elements” and often referred to
as "Essence", meaning the essence of software engineering.

Figure 1 highlights two important aspects of the SEMAT
kernel:

* The Areas of Concern (Customer, Solution and
Endeavor) and

* The Alphas (Opportunity, Stakeholder,
Requirements, Software System, Team, Work and
Way of Working)

Areas of concern are addressed in terms of Activity
Spaces which involve the actions taken to achieve objectives.

Alphas represent essential aspects of software engineering
and each progresses through a number of states (Alpha
States) as the team conducts work.

As described in the submission to the OMG [9] and in the
published book “The Essence of Software Engineering:
Applying the SEMAT Kernel” (2013) [10], the SEMAT
initiative promises to fundamentally affect the discipline of
software engineering.

BARRY MYBURGH: SITUATIONAL SOFTWARE ENGINEERING

—
£)
T
i) Opportunity e Stakeholder
(2]
= Qc
= g ’
&= s £
-] Lo 5 a0y, iz
c @ v ©ss e
o g ' ¥ «
= 3 < fulfills S e g
=) i System 8
ERE v d
S
® § § o es : b
= 23 00 S s
E opee =3
23 §
4 performs and plans
— Work Team =
S
4 &
[2, 8
5 R
E >
=
11}

Way of
Working

Figure 1: SEMAT Alphas in the Areas of Concern — Components of the
Essence of Software Engineering

IV. COMPLEX ADAPTIVE SYSTEMS

A view shared by many software development experts and
Agile/Lean evangelists is that software projects are complex
adaptive systems (CAS's). CAS's are composed of agents - as
described by M. Mitchell Waldrop in "Complexity: the
Emerging Science at the Edge of Order and Chaos" (1992)
[11]. CAS agents can be molecules, neurons, web servers,
fish, starlings, and people - always forming new emergent
structures with new emergent behaviors

Software projects involve people who are constantly
organizing and reorganizing into larger structures: Project
teams; Social groups; Task forces; Committees; etc.

CAS's are able to adapt to their environments: an infant
learning to walk; car drivers evading a traffic jam; a software
team adapting to what their customer really wants. Moving
to the sweet spot between chaos and order, they learn and
adapt and navigate their way with “chaordic” [12] processes
that are neither fully ordered nor truly chaotic.

In Agile software development, we often hear reference to
scientific terms such as self-organization and emergence.
The concepts of emergence and the factors leading to
emergent results lie at the heart of CAS theory's relevance to
software development.

Examples of self-organizing systems include an ant
colony, the brain, a Scrum team, a CMMI-Dev team, a team
applying SEMAT Essence. Scrum, CMMI-Dev and Essence
are not methodologies with defined processes or sets of
procedures - they are development frameworks. And the
frameworks provide rules and constraints on behavior that
can cause a CAS to self-organize into an intelligent state of
dynamic equilibrium.

When applying complex systems theory to software
development and management, we are treating the
organization as a system.

System dynamics - not to be confused with dynamical
systems theory - is a technique from the 1950's to help

843

managers understand and improve their industrial processes.
System dynamics recognized that structure is often a more
important contributor to an organization’s behavior than
individual parts themselves.

Systems Thinking was developed in the 1980's and
popularized by Peter Senge's book “The Fifth Discipline”
[13]. It's about understanding how things influence each
other in the whole, a problem-solving mindset that views
problems as parts of an overall system. In some ways similar
to System Dynamics, but more subjective.

Social complexity is the study of complexity in social
systems and to manage social complexity, we need to
understand how things grow - not how they are built. This is
an extension of ideas promoted by Fred Brooks in 1987
when he explained that the very essence of software
engineering lies in complexity, conformity, changeability and
invisibility [14].

Appelo's “Management 3.0 applies complexity thinking
and assumes that managers cannot construct and steer a self-
organizing team. The team must be grown and nurtured.
Productive organizations are not managed with models and
plans; they must emerge through the power of self-
organization and evolution. Appelo suggests that complexity
thinking is like the light that feeds all that grows and goes on
to explain that at the project level, new emergent structures
form and new emergent behaviors are displayed [15]. Like
any other CAS with interconnected agents (people)
interacting with each other to form an integrated whole. Even
though software projects have many elements, only people
are the real agents - the active elements. Teams themselves
are agents on the next higher level.

Items that are not agents include: Requirements; Features;
Artifacts; Deliverables; Tools; Technologies; Processes;
Practices. They cannot actively organize and reorganize
themselves. They cannot initiate interaction with any of the
other elements in the project.

Appelo emphasizes that the primary focus of any manager
should be to energize people - to make sure that they actually
want to do what's required of them. Like a gardener looking
after plants in a garden, a manager looks after the employees
on the team/s [16].

For centuries mathematicians have preferred to work with
linear (ordered) systems and considered nonlinear (complex)
systems to be a special group. But nonlinear systems are the
norm and abundant throughout the universe, whereas linear
systems are a rare and special breed. From the beginning of
the universe, everything in it was shaped by self-
organization. Self-organization is the process where a
structure or pattern appears in a system without any central
authority or external element imposing it through planning.
Self-organization is the norm. It is the default behavior of
dynamic systems, whether these systems consist of atoms,
molecules, species, businesses or software developers.
Appelo emphasizes that self-organization is not a “best
practice” - it is “default practice” [17]. No matter how a team

844

is managed, there will be self-organization. People will
discuss and agree on lunch meetings, folder structures,
workplace territories, birthday parties. Everything that
management does not constrain - and much that it attempts to
- will self-organize. Humans have behaved that way for
200 000 years.

But is what happens also happening in the "right
direction"? Though every self-organizing system can have its
own direction, the possible directions are limited by its
environment. No self-organizing system exists without
context. And the context constrains, governs and directs the
organization of the system.

Environmental constraints affect the direction taken by a
self-organizing system. This is illustrated by considering the
Game of Life - a simple zero-player game invented in 1970
by the British mathematician John Conway. It is "played" on
a grid of cells, where each cell has eight neighbors, one in
each direction, including the diagonals. The cells can be born
and stay alive or die as determined by the application of
rules. The Game of Life is an example of a cellular
automaton - a mathematical system in which cells are
influenced by other cells according to some set of predefined
rules. It is particularly interesting because it is a fine example
of a system with a small set of simple rules, having complex
behavior and ordering itself. The game also shows us that,
whatever the initial situation is, the system will eventually
always stabilize.

There is, however, one catch: the set of rules has to be
chosen carefully. We therefore observe that rules must be
tuned for a system to be both stabilizing and lively. A
different set of rules leads to a different system with different
behavior

As described by Waldrop [18] Stephen Wolfram proposed
a classification scheme for cellular automata - named
universality classes.

e Class I: These are the systems with “doomsday
rules”. No matter what pattern of living and dead
cells at the start, everything dies within a few
generations.

* Class II: These systems are a bit livelier, but not
much. Each initial pattern quickly collapses to a set
of very boring, static configurations.

o Class III: These systems are at the opposite
extreme: they are too lively. Each initial pattern in
the system results in total chaos with no
configuration stabilizing and nothing being
predictable.

* Class IV: These are the systems with a set of rules
not leading to dead, static, or chaotic
configurations. Emerging patterns in this category
are lively, creative, often surprising, but also
stabilizing.

In dynamical systems, Classes I and II correspond to
order. Class III corresponds to chaos. Class IV (of which the
Game of Life is a famous example) corresponds to

PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

complexity. Given that complexity is usually explained as
the region between order and chaos, this means that class IV
finds itself between II and I11.

Complex adaptive systems are systems that can find their
own way toward that sweet spot of complexity, between
order and chaos, where life blooms and creativity thrives.
Scientists call it the edge of chaos, but they also could have
called it the edge of order. This sweet spot represents a state
of dynamic equilibrium between governance forces,
parameters and rules that influence emergent behavior of the
CAS.

Self-organization takes care of the edge of chaos when
certain parameters fall within a critical range. The manager
is not a game designer and is not concerned with the low-
level rules of the game. Rather, the manager configures the
high-level parameters, like diversity of team members,
information flow between people, and connectivity between
teams. When setting up governance in an organization, one
responsibility of a manager is the development of a self-
organizing system, defining the boundaries of the board but
not the rules of the game. When a manager takes rule-making
into own hands, self-organization will be significantly
influenced and frustrated. And then creativity, innovation,
and adaptability in the system will suffer.

Self-organization is fundamental for every complex
system. But in a human social system, self-organization
alone is not enough. Appelo explains how Glen Alleman
described the need for management by pointing out that there
is a difference between self-organizing and self-directing and
this is the role of management [19]. This is not "directing" in
the command and control sense. It is directing in the
"required business value" sense. If self-organizing teams
serve their customers, who "manages" the customer, when
the customer is not prepared to behave in a "well-mannered"
way? If there is more than one self-organizing team working
on the same project, who coordinates the activities between
these teams? When there are conflicts in resources, funding
and requirements, who coordinates resolution of these
conflicts? At least a little management is needed to steer self-
organization in a direction that is of value to everyone in the
system. Appelo points out that Sanjiv Augustine calls it
"light-touch leadership". Appelo calls it alignment of
constraints [20]. This author calls it balancing the
governance forces.

Directed self-organization in software engineering is a
matter of manipulating governance so that a group of people
produces results valuable to the goals of the project.

V. THE COMPLEX ADAPTIVE SITUATIONAL MODEL

Humans, with the introduction of consciousness, invented
morality, laws and authority. We defined preferred directions
for self-organizing systems because some results are seen as
valuable and others as harmful. We value human lives
therefore consider malaria parasites and HIV viruses an
undesirable result of self-organization. Appelo points out

BARRY MYBURGH: SITUATIONAL SOFTWARE ENGINEERING

that we value many irrational and unnatural things too, like
non-discrimination, peace, monogamy [21]. Self-
organization makes no distinction between good and bad,
between virtues or vices, between valuable and harmful.
Systems simply do whatever the environment allows them to
do. Whatever they can get away with. And so, humans
embraced the concept of command-and-control which
enables attempts to steer self-organizing systems (businesses,
teams, countries) in the direction that stakeholders
considered to be valuable. That's how managers got their
positions and how governments try to run countries. They
care about results. They want to make sure that self-
organizing systems either produce valuable things (products
and services), or refrain from harming valuable things
(human lives, economic growth, natural resources).
Managers want software teams to create valuable software
with which to make money or deliver good service.

Key constraints affecting the emergent behavior of a team
of software engineers as a CAS are broadly identified by this
author as:

* Management Governance and
* Production Governance.

Management Governance is a method or system of
management practices that range from formal, high
ceremony practices on the one hand, to informal, low
ceremony practices on the other. The formal approach to
management provides work products that could lead to high
levels of visibility — producing project plan/s and progress
reports, risk management plan/s and reports, quality
management plan/s and reports, configuration management
plan/s and status accounting reports, meeting agendas and
minutes, etc. On the other hand, the informal, low ceremony
approach depends less on detailed, written communication,
hence leaving less visible evidence trails.

Production Governance is a method or system of
production practices that range from engineering,
“Waterfall” practices on the one hand, to organic, iterative or
“Agile” practices on the other. A key engineering practice is
to work according to the sequential stages of the life cycle,
e.g.. Requirements Analysis; Design; Implementation and
Unit Test; Integration and System Test; Qualification Test.
Visible artifacts are then produced, including software
requirement specifications, software architecture documents,
software design documents, programming standard/s and test
records. At the organic extreme we experience a situation
where there is little emphasis on the life cycle stages and
associated documentation, and high focus on the technical
practices of software development.

As illustrated in Fig. 2, this author's hypothesis is that
different combinations of governance constraints influence
emergent behavior, resulting in four possible states of
dynamic equilibrium:

* Crafted Quality (Agile)
* Controlled Quality (Waterfall or Plan-Driven)
* Managed Costs (WetAgile)

845

* Self-Directed Quality

While CASM identifies these four domains, it is important
to realize that for a particular team and at a particular time,
only one of the domains will be dynamically active to
represent the emergent behavior of that team under
particular circumstances.

Today's "Complex Adaptive Situational Model" (CASM)
illustrated in Fig. 2 was first described as the model of
"Situational Software Engineering" by Myburgh in 1992
[22]. Continuous application and research gave rise in 2005
to the second generation of the model, viz. the “Situational
Process Model" (SPM), illustrating interaction between
production processes and management & control processes
[23]. CASM represents the third, published generation of the
model and it identifies four behavioral domains that
represent states of dynamic equilibrium as responses to the
environmental governance constraints.

The terms “Plan-Driven” and “Agile” have been used by
Boehm and Turner [24] to describe what are essentially the
Controlled Quality and Crafted Quality approaches.

CASM in no way implies that the essence of software
engineering is any different in Controlled Quality and
Crafted Quality domains, but life cycle models will be
different as later explained in this article.

A. Crafted Quality (The Curved Arrow)

This domain suits the information age organization where
management formality is relaxed (low ceremony
management governance) and production processes are
accelerated by doing things in parallel (organic production
governance). Crafted Quality is tantamount to taking an
Agile approach. A key benefit of the Crafted Quality
approach is faster delivery — exactly what is required in the

MANAGED
COSTS
(WetAgile™)

CRAFTED CONTROLLED
Cooee QUALITY i Higibicy - QUALITY. .. >
(Waterfall)

DIRECTED
QUALITY

Figure 2: CASM — Insyte’s Complex Adaptive Situational Model

competitive environment of the information age
organization. Crafted Quality is the consequence of Agile
Management meeting Agile Development.

The metaphor chosen for this domain is a curved arrow. It
emphasizes the adaptive nature of an agile team that can
rapidly respond to change.

But Crafted Quality does not only have benefits. Product
rapidly brought to market is often not nearly defect-free,
leading to potentially expensive re-work. This outcome is
well demonstrated by software product with early releases
that are plagued by defects that are only eradicated after a
number of upgrades to the product have been implemented.

B. Controlled Quality (The Cube)

In this domain the emergent behavior derives from
constraints of engineering-style production governance and
formal, high ceremony management governance. A well-
executed Waterfall approach to software engineering
exemplifies Controlled Quality. Such an approach is
described in the article “They Write the Right Stuff” by
Fishman [25]. One of the key benefits of the Controlled
Quality approach is that quality requirements are formally
addressed at each stage of the life cycle — both in terms of
initially specifying the requirements and subsequently
verifying fulfillment thereof.

The metaphor chosen for this domain is the cube. It
emphasizes the disciplined nature of a team operating under
conditions of thorough governance.

But Controlled Quality does not only have benefits. A
number of situational characteristics must apply for
Controlled Quality to deliver value. These include the ability
to drive out and specify requirements and having the time
and other resources to analyze, specify and design the full-
scope solution. And attempts to drive out full scope
requirements, architecture and design can easily lead to a
state of “analysis paralysis” which CASM calls “debilitating
bureaucracy”.

C. The Band of Software Engineering Feasibility

It is not by accident that CASM is represented as a
diamond-shaped model. This layout places the emphasis on
what is called "the band of software engineering feasibility"
which stretches from Crafted Quality, Agile at the one end,
to Controlled Quality, Waterfall at the other. Depending on
circumstances, this implies that the state of dynamic
equilibrium of a software engineering team can exist
anywhere along the band and still produce value-adding
results. An implied characteristic of the software engineering
band of feasibility is that it is supported by a culture of
"management-by-measurement”, meaning that, no matter
whether the way of working is Agile or Plan-Driven,
management will be enabled by taking, analyzing and
responding to relevant measurements.

The evolving, risk-driven approach described by Boehm
in May 1988 in “A Spiral Model of Software Development
and Enhancement” [26] could very well be understood to be

PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

a journey across the software engineering band of feasibility,
with the first iteration being fully Agile, and the last solidly
in Controlled Quality territory.

SEMAT Essence enables practices to define life-cycles,
whether Agile or Plan-Driven, by sequencing a number of
patterns, one for each phase and/or milestone in the life-
cycle The life-cycles are illustrated using the template shown
in Fig. 3.

Each Kernel Alpha and its states are shown in a vertical
column with their creation at the top and their destruction at
the bottom. Milestones are shown as a vertical bar across the
grid starting with an inverted triangle to represent the
milestone and continuing with a white line over which are
shown the states to be achieved to successfully pass the
milestone. Where achieving a state is either recommended or
optional, the state is shown with a dashed outline and
italicized text.

Using the template illustrated in Fig. 3, a sub-clause in the
submission to the OMG provides illustrations of a few
typical software engineering life-cycles, including an
Exploratory Process life-cycle (Crafted Quality) and a
Waterfall life-cycle (Controlled Quality). Readers who
would like to review these models are urged to access the
OMG submission [27].Another useful example is to be found
in “Agile and SEMAT — Perfect Partners” [28].

This suggests that various instantiations of the SEMAT
Life Cycle Model could be placed at various points across
the software engineering band of feasibility.

Thus far we have considered Crafted Quality (Agile) and
Controlled Quality (Plan-Driven). But what of the other two
domains that are not in the band of feasibility?

D. Managed Costs (The Explosion)

This condition emerges when high ceremony management
governance is applied to a situation that has been given the
freedom of organic production governance. This means
management expects Controlled Quality behavior while
simultaneously giving developers the organic freedom of
Agile production. A somewhat dysfunctional expectation as
described in “Corporate Information Systems Management”

% [2]) &) =)
ing

Stakeholders Opportunity || Requirements ~ System work Team Way of Worki

s L] 1 1 —8—— ¢
‘Recogmzed] | rceniinea J | itated J [Seeded]
= Solution Principles
| Represented || TR4100 Conceived | Estabished
—r— s
{ Value Approach { U '\ Foundation |
|ulivoived] Es',abnshedj Potnded Selected | Prepared jm Fomed i Eabisheq §
T SRS Te——— s
Demonstrabi l Started J LCoHaboralngL InUse J
s g PTTIET —p—
{in Agreement] Viable j . | Coherent |+ Usable \ ol | Perorming i inPiace
Acceptable
e
Addressed

ST !
Fulfilled Ready : (Concluded) | ll Performing JkWorkmg Well |

- e
[opaaina I

Concluded [

Fulfiled Retired { cosed [t Adoumed H Reied

r el 90 G

Figure 3: SEMAT Life-cycle Template

BARRY MYBURGH: SITUATIONAL SOFTWARE ENGINEERING

(1999) by Applegate, McFarlan and McKenney [29]. The
Managed Costs name emphasizes that management will
focus on cost and budget control while being quite
disconnected from the day-to-day, technical activities of the
team. Could this explain why Appelo's survey (referenced
above) identified the following factors as contributing to
failed agile approaches?

* Management opposed to change — hanging on to
high ceremony management governance.

* Loss of management control — that is perceived to
happen when moving to a low ceremony approach.

* Lack of engineering discipline — due to organic
production approach.

* Organizational need for planning, predictability
and documentation — associated with high
ceremony management governance.

Steve Pieczko [30] suggests that Managed Costs might be
a hybrid condition experienced by a team that is migrating
from Controlled to Crafted Quality and, while still “dripping
from the waterfall”, they're trying to be agile. Hence the
name “WetAgile”, introduced in 2010 by Pieczko.

A possible explanation, but this author has experienced a
number of situations where the somewhat dysfunctional,
Managed Costs state seems to be permanent and a breeding
ground for "management-by-politics".

The metaphor chosen for this domain is the explosion
which emphasizes the often crisis-driven reality of the
domain.

E. Self-Directed Quality (The Sphere)

When low ceremony management governance interacts
with engineering production governance, the resulting state
is Self-Directed Quality (SDQ) (The Sphere). A somewhat
surprising situation. Why would practitioners elect to be
constrained by engineering production governance when
management governance expects no more than low
ceremony? Followers of Controlled Quality would see this as
an unexpected bonus, while Crafted Quality "agilista" might
think of it as madness. This author suggests two possible
explanations that need to be tested by means of further
research.

The first might be because the tools being used enforce
typical engineering production governance. It was for this
reason that first generation CASM actually called this
domain "Automatic Quality" [31].

A second explanation is that small, (one-person?) software
development initiatives might be executed by individual/s
who prefer to follow the defined stages of the engineering
life-cycle. It might well be that some developers of open
source software prefer to adopt this way of working.

The metaphor chosen for this domain is the sphere,
emphasizing (from an engineer’s point of view), the utopian
situation where effective engineering is performed with few
management constraints.

847

F. When Things Go Wrong

We carlier introduced Stephen Wolfram's proposed
classification scheme where Class IV corresponds to
complexity. Classes I and II correspond to order and Class
III to chaos. As illustrated in Fig. 4, CASM's four domains
are suggested to correspond to four types of Class IV -
Complexity, with Classes I and II lying to the right of the
band, and Class III to the left.

When the freedom of Crafted Quality is abused, the
situation typically degenerates into a state of chaos (Class
111).

Inappropriate responses to governance that desires a
Controlled Quality outcome can easily result in creation of
Class I or II situations with excessive order —experienced as
debilitating bureaucracy.

G. CASM Characteristics

CASM has been introduced as a model of styles of team
behavior and in broad terms, any software engineering team
could, in response to the governance constraints imposed, be
in any one of the four states of dynamic equilibrium. Each
state has a set of defining characteristics. Table 1 describes
characteristics of the domains. The table derives from
published work (Myburgh [32], Boechm and Turner [33]) as
well as from experience gained through practical application
of the model.

VI. BRINGING CASM To LIFE — OPTIONS FOR MANAGEMENT
AND TEAMS

CASM allows management to understand levels of
governance that should be applied according to
characteristics of the situation. The software engineering
team then responds chaordically and achieves a state of
dynamic equilibrium that is situationally appropriate. Table 2
identifies a number of these situational characteristics and
suggests appropriate governance that should be applied. The
table is based on the assumption that we are trying to pin-
point the required point of dynamic equilibrium in the band

MANAGED
COSTS
(WetAgile™)

S~ .-

) .
e
D‘" %,
v CRAFTED CONTROLLED ¢
Class Il -
GeE o Ny QuALITY- 2R vy -auaLiTy-- (T >
o (Agile) (Waterfall) S
W%

Class &Il
- ORDER

N % N e =

DIRECTED
QUALITY

Figure 4: CASM — Modeling States of Complexity

848

PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Table 1 - CASM Domain Characteristics
CRAFTED QUALITY CONTROLLED QUALITY MANAGED COSTS SELF-DIRECTED
(CrQ) (CoQ) (MaC) QUALITY
(AGILE) (WATERFALL) (WETAGILE) (SDQ)
MANAGEMENT
Dedicated on-site customers fﬁs-neegled, formal customer As-neec‘led, formal customer fks-neegled, formal customer
interaction interaction interaction
gﬂ?&i Focused on prioritised increments Focus on formal contract provisions | Focus on formal contract provisions | Focused on prioritised increments
Best Business Practice tends to Best Solution Delivery Practice tends | Best Solution Delivery Practice Best Solution Delivery Practice tends
dominate (Risk-taking) to dominate (Risk-avoiding) tends to dominate (Risk-avoiding) | to dominate (Risk-avoiding)
Sssenilieed gl (ow viieSey) Formal, documented architecture and | Formal, documented architecture Sseilbond phig (v viaibiles)
plans and plans
Evolutionary delivery Incremental or full-scope delivery Incremental or full-scope delivery | Incremental or full-scope delivery
Qualitative control Quantitative control Quantitative control Qualitative control
Classic PMBOK practices less Classic PMBOK practices more Classic PMBOK practices more Classic PMBOK practices less
zLégNINgL feasible (parallel approach) feasible (sequential approach) feasible (sequential approach) feasible (parallel approach)
Sometimes “populate first”, then Often “plan first”, then populate. Often “plan first”, then populate. Sometimes “populate first”, then
plan. Meaning that the team is Meaning that the team is formedin | Meaning that the team is formed in | plan. Meaning that the team is
formed before a plan is available for | response to the needs of a well- response to the needs of a well- formed before a plan is available for
the work to be done defined plan. defined plan. the work to be done
Risk coutained by time-box Risk contained with Management Risk contained with Management Risk absotbed by individual
Reserve Reserve
COMMUNTI- | Tacit interpersonal knowledge (low | Formal, documented architecture & | Formal, documented architecture & | Formal, documented architecture &
CATION visibility) knowledge knowledge knowledge
Innovative, “black-box”, empirical Deterministic, “white-box”, defined | Deterministic, “white-box”, defined | Deterministic, “white-box”, defined
processes process sequence process sequence process sequence
o e e e More often repeatable processes and | More often repeatable processes More often repeatable processes and
More often unique initiatives ; 2 : : i :
PROCESS continuous improvement and continuous improvement continuous improvement
xﬁ:;;‘;:mmves remam Repeated projects can become jobs | Repeated projects can become jobs | Repeated projects can become jobs
Could become chaotic Usually well organised Usually well organised Usually well organised
TECHNICAL
Prioritised informal stories and test | Formalised project capability, Formalised project capability, Prioritised informal stories and test
REQUIRE- cases interface, and quality. architecture interface, and quality. architecture | cases
MENTS
Undergoing unforeseeable change Foreseeable evolution requirements | Foreseeable evolution requirements | Undergoing unforeseeable change
Evolving architecture Guided by full-scope architecture Guided by full-scope architecture | Evolving or full-scope architecture
DEVELOP- Simple design Extensive design Extensive design Simple or extensive design
MENT Short increments Longer increments Longer increments Short increments
Re-work assumed inexpensive Re-work assumed expensive Re-work assumed expensive Re-work assumed expensive
TESTING Exct.:utablc test cases define Documented test plans and Documented test plans and Fomal test plans and procedures
requirements procedures procedures
PERSONNEL
CUSTO- Dedicated, collocated CRACK CRACK performers, notalways co- | CRACK performers, notalways co- | Dedicated, collocated CRACK
MERS performers located located performers
Led by those who revise methodsto | Less involvement of those who Less involvement of those who Less involvement of those who
gg;’nop' meet situation revise methods revise methods revise methods
Leam largely by doing Leam largely by reading Leam largely by reading Leam largely by reading
Many degrees of freedom Framework of policies and Framework of policies and Self-limited degrees of freedom
CULTURE procedures procedures
Thriving on chaos Thriving on order Thriving on order Thriving on order
APPLICATION
PRIMARY Rapid value Predictability, Stability Predictability, Stability Predictability, Stability
GOALS Responding to change High assurance High assurance High assurance
SIZE Smaller teams and projects Larger teams and projects Larger teams and projects Smaller teams and projects
Turbulent Stable Stable Turbulent or stable
imON- High change Low change Low change High or low change
Project-focused Project/organisation focused Project/organisation focused Project-focused
CRACK = Collaborative, Representative, Authorised, Committed, Knowledgeable

BARRY MYBURGH: SITUATIONAL SOFTWARE ENGINEERING

Table 2 — Appropriate Software Engineering Responses to Situational Characteristics

SITUATIONAL YES NO
CHARACTERISTIC THIS DESCRIBES THE SITUATION THIS DOES NOT APPLY
Are requirements readily | A CoQ, Waterfall way of working could be adopted on condition | The CrQ. Agile way of working is required.
definable? that delivery time-scales permit.

Is there a comprehensive
architectural description for the
solution?

A CoQ, Waterfall way of working could be adopted. If the scope
of delivery is large, an incremental approach will mitigate risk by
delivering regular, pre-planned increments.

The CrQ, Agile way of working is required.

Is there pressure to rapidly produce
results?

The CrQ, Agile way of working is required.

A CoQ, Waterfall way of working could be adopted on condition
that requirements are definable.

Is there pressure to produce
accurate schedules, budgets &
estimates?

If the accuracy is to be based on schedules, budgets and estimates
that are derived from a detailed action plan for the initiative, then
a CoQ, Waterfall approach is required.

If the accuracy is to be based on the cost per time-box, then a CrQ,
Agile approach is indicated.

Schedules, budgets and estimates can be based on the cost per
time-box and a CrQ, Agile way of working is suggested.

Does the size of the initiative
introduce significant risk?

A CoQ, Waterfall approach is suitable for mitigating this risk — on
condition that other characteristics required for CoQ also pertain.

The CrQ, Agile way of working is suggested so that the overhead
associated with CoQ, Waterfall can be avoided.

Will implementation of the solution
introduce significant change?

A CrQ, Agile way of working allows for resistance to change to
be mitigated by limiting the extent of change associated with each
iteration.

An incremental, CoQ, Waterfall approach could also be used to
limit the extent of change introduced during each increment.

Either CoQ, Waterfall or CrQ, Agile approaches could be viable.
Other situational characteristics will influence the decision.

Is there significant risk due to
technology? (This suggests that
unproven, state of the art
technology is to be implemented).

A CrQ, Agile approach should be followed by a team that is
mandated to experiment with and get to know the new technology.

Either CoQ, Waterfall or CrQ, Agile approaches could be viable.
Other situational characteristics will influence the decision.

Does cost-of-failure represent a
source of significant risk?

A CoQ, Waterfall way of working should be adopted to allow for
product assurance. Ifthe scope of delivery is large, an incremental
approach will further mitigate risk by delivering regular, pre-
planned increments that could be separately assured.

Either CoQ, Waterfall or CrQ, Agile approaches could be viable.
Other situational characteristics will influence the decision.

Does the software engineering

The team should be able to adapt to whatever way of working is

This situation represents a significant source of risk, and attempts

team collectively have a high level | situationally appropriate.

of competence?

to adopta CoQ way of working could easily result in “debilitating
bureaucracy™, whereas CrQ approaches are likely to evolve into
“freelance chaos™.

of feasibility. Hence suggestions made refer only to options
that lie in this band.

VII. BRINGING CASM To LIFE — OPTIONS FOR THE
ENTERPRISE

The above analysis of situational factors demonstrates that
different ways of working apply to different situations. A
small team of software engineers who are working on a
focused initiative can be expected to adjust their way of
working to be appropriate to the situation. However, in
larger organizations where many teams are tackling many
initiatives, one could expect different teams to be in different
states of dynamic equilibrium at the same time.

To better understand this, we can consider the idea of a
hierarchy of people-based complex adaptive systems — a
system of complex adaptive systems. Working from the
bottom up, we first find an individual person. (Remembering
that a single person is already a CAS). If a few people
collaborate towards achieving the same goal/s, we discover
the next level CAS, viz. a team. Teams could also be
contributing to achievement of common goal/s and hence a
collection of teams could define the next higher level. For
the purpose of this discussion, the highest level CAS will be
the enterprise itself. Now, by employing the various
metaphors associated with each state of dynamic

equilibrium, the diagram in Fig. 5 represents an enterprise as
a collection of complex adaptive systems and the metaphor
for the Enterprise is suggested to be an amoeba.

VIII.CONCLUSION

The Complex Adaptive Situational Model described in
this paper promotes understanding of what it takes to

CrQ (Agile)

CoQ (Waterfall)

MaC (WetAgile) sbQ

Figure 5: The Enterprise “amoeba” - represented as a System of Complex
Adaptive Systems

849

850

establish conditions which enable software engineering
success, not only with agile approaches, but also traditional,
plan-driven software engineering.

Influenced by complexity science, CASM explains aspects
of the state of dynamic equilibrium that is achieved by a
software engineering team under the constraining influence
of management and production governance.

Four states of dynamic equilibrium are defined: Crafted
Quality (Agile), Controlled Quality (Waterfall), Managed
Costs (WetAgile) and Self-Directed Quality. A band of
software engineering feasibility is also described and
successful software engineering initiatives require teams to
operate in that band which stretches from Crafted Quality to
Controlled Quality. Management's challenge is to apply
appropriate governance to enable the required state of
dynamic equilibrium.

The journey across the band of feasibility is further
described by introducing SEMAT, with Crafted Quality
amounting to applying SEMAT Essence, and Controlled
Quality being achieved by introducing additional practices
which satisfy the more stringent governance requirements.

CASM in its four states then allowed introduction of the
idea of describing an enterprise as a collection of complex
adaptive systems, thereby setting the scene for further
research into the complexities of human-driven complex
adaptive systems.

ACKNOWLEDGMENT

Many thanks to Dr. Alastair Walker for early support of
the model and coining the name of the Managed Costs
domain. Thanks also to Dr. Barry Dwolatzky for continued
support and the opportunity to further develop the model. Dr.
Whitey van der Linde is thanked for helping to find the links
between the model and complexity science. The substance
that SEMAT gives to Situational Software Engineering is
primarily thanks to Dr. Ivar Jacobson, one of the founders of
SEMAT.

Jurgen Appelo receives special thanks for the overview of
complexity and complex adaptive systems that is at times
paraphrased from: “Management 3.0 — Leading Agile
Developers and Developing Agile Leaders” (2011). Readers
of this article are encouraged to also read Appelo’s
publications [http://www.mgt30.com/].

Thanks also to other reviewers of the article including
Adrian Schofield, Steve Piezcko, Paul MacMahon. Their
feedback improved the final product.

REFERENCES
J. Appelo, Management 3.0 — Leading Agile Developers, Developing
Agile Leaders, Addison-Wesley, 2011, p. 2.
J. Appelo, Management 3.0 — Leading Agile Developers, Developing
Agile Leaders, Addison-Wesley, 2011, p. 11.
Johnson, P, Ekstedt, M, Jacobson, I, “Where’s the Theory for
Software Engineering?,”http://dx.doi.org/10.1109/MS.2012.127, pp.
94-96.
P. Kruchten, “Casting Software Design in the Function-Behavior-
Structure Framework,http://dx.doi.org/10.1109/MS.2005.33, pp. 52-
58.
A. Abran et al., eds., Guide to the Software Engineering Body of
Knowledge, IEEE CS Press, 2004.

(1]
(2]
(3]

(4]

(3]

(6]
(7]
(8]
[9]

[10]

(1]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

D. Hock, Birth of the Chaordic Age, Berrett-Koehler Publishers, Inc.,
1999, pp. 205-207.

“Agile Manifesto,” [Online]. Available: http://agilemanifesto.org/.
[Accessed 15 January 2014].

J. Appelo, Management 3.0 — Leading Agile Developers, Developing
Agile Leaders, Addison-Wesley, 2011, p. 28.

OMG, “Essence - Kernel And Language For Software Engineering
Methods 1.0 - Beta 1,” July 2013. [Online]. Available:
http://www.omg.org/spec/Essence/1.0/Betal/.

I. Jacobson, P.-W. Ng, P. E. McMahon and I. Spence, The Essence of
Software Engineering - Applying the SEMAT Kernel,
http://dx.doi.org/10.1145/2380656.2380670.

M. M. Waldrop, Complexity: the Emerging Science at the Edge of
Order and Chaos, http://dx.doi.org/10.1063/1.2809917, p 145.

D. Hock, Birth of the Chaordic Age, Berrett-Koehler Publishers, Inc.,
1999, p.3

P. Senge, The Fifth Discipline - The Art and Practice of the Learning
Organization, http://dx.doi.org/10.1108/eb025496.

F. P. Brooks, Jr., “No Silver Bullet - Essence and Accidents of
Software Engineering”, http://dx.doi.org/10.1109/MC.1987.1663532.
J. Appelo, Management 3.0 — Leading Agile Developers, Developing
Agile Leaders, Addison-Wesley, 2011, pp. 50-51.

J. Appelo, Management 3.0 — Leading Agile Developers, Developing
Agile Leaders, Addison-Wesley, 2011, p. 58.

J. Appelo, Management 3.0 — Leading Agile Developers, Developing
Agile Leaders, Addison-Wesley, 2011, p. 100.

M. M. Waldrop, Complexity: the Emerging Science at the Edge of
Order and Chaos, http://dx.doi.org/10.1063/1.2809917, pp 225-226.
J. Appelo, Management 3.0 — Leading Agile Developers, Developing
Agile Leaders, Addison-Wesley, 2011, p. 100, p. 153.

J. Appelo, Management 3.0 — Leading Agile Developers, Developing
Agile Leaders, Addison-Wesley, 2011, p. 100, p. 154.

J. Appelo, Management 3.0 — Leading Agile Developers, Developing
Agile Leaders, Addison-Wesley, 2011, p. 100, p. 101.

A.J. B. Myburgh, “Successful Combinations of Software Engineering
Strategy and Project Management,” in Proceedings of the SAIEE
Symposium “Professional Issues in Software Project Management - 5
September 19907, Johannesburg, 1992.

A.J. B. Myburgh, “Towards Understanding The Relationship
Between Process Capability And Enterprise Flexibility,” in
Proceedings of “SAATCA 8th International Systems Auditor
Convention 24 — 25 August 2005, Johannesburg, 2005.

B. Boehm and R. Turner, Balancing Agility and Discipline — A Guide
for the Perplexed, Addison-Wesley, 2004.

C. Fishman, “They Write the Right Stuff” 2007.
http://www.fastcompany.com/magazine/06/writestuff.html, Last
Accessed 22 June 2014.

B. W. Boehm, “A Spiral Model of Software Development and
Enhancement”, http://dx.doi.org/10.1109/2.59, pp. 61-72.

OMG, “Essence - Kernel And Language For Software Engineering
Methods 1.0 - Beta 1,” July 2013. [Online]. Available:
http://www.omg.org/spec/Essence/1.0/Betal/, p 267-271.

I. Jacobson, I. Spence and P. Ng, Agile and SEMAT — Perfect
Partners,
http://dx.doi.org/http://dx.doi.org/10.1145/2380656.2380670..

L. M. Applegate, F. W. McFarlan and J. L. McKenney, Corporate
Information Systems Management - 5th Edition, McGraw-Hill, 1999,
p. 184.

S. Pieczko, “Waterfall? Agile? How About WetAgile?”, 2010.
http://www.WetAgile.com, Last Accessed 18 June 2014.

A. J. B. Myburgh, “Successful Combinations of Software Engineering
Strategy and Project Management,” in Proceedings of the SAIEE
Symposium “Professional Issues in Software Project Management - 5
September 19907, Johannesburg, 1992, p. 94.

A.J. B. Myburgh, “Towards Understanding The Relationship
Between Process Capability And Enterprise Flexibility,” in
Proceedings of “SAATCA 8th International Systems Auditor
Convention 24 — 25 August 2005”, Johannesburg, 2005.

B. Boehm and R. Turner, Balancing Agility and Discipline — A Guide
for the Perplexed, Addison-Wesley, 2004.

