
 

 

 

 

Abstract—The main aim of this paper is to advance the state 

of the art in automated prostate segmentation using T2 

weighted MR images, by introducing a hybrid topological MRI 

prostate segmentation method which is based on a set of pre-

labeled MR atlas images. The proposed method has been 

experimentally tested on a set of 30 MRI T2 weighted images. 

For evaluation the automated segmentations of the proposed 

scheme have been compared with the manual segmentations, 

using an average Dice Similarity Coefficient (DSC). Obtained 

quantitative results have shown a good approximation of the 

segmented prostate. 

 

Keywords: Prostate segmentation, MRI T2, hybrid topological 

method 

I. INTRODUCTION 

ROSTATE cancer is one of the major healthcare 

problems affecting men’s population and is the second 

most common cancer in men worldwide. An estimated 1.1 

million men worldwide were diagnosed with prostate cancer 

in 2012, accounting for 15% of the cancers diagnosed in 

men. Considering this worrying data, it is predicted that the 

number of cases will almost double by 2030 [1]. 

Consequently, there is an increased demand and interest in 

advancements and enhancements of current methodologies 

for prostate cancer diagnosis and treatment planning.  

Determination of proper information about the prostate 

location, its volume and shape of prostate gland are basic 

task and play essential role in numerous clinical applications. 

This information is crucial for cancer detection, localization 

and staging, guided biopsy, radiation treatment planning, but 

also for surgical planning and image-guided robotic-aided 

laparoscopic prostatectomy (RALP) with augmented reality 

(AR). In order to provide accurate information various 

imaging techniques are used in the clinical practice. 

Nowadays, trans rectal ultrasound (TRUS) is probably the 

most common and widespread medical imaging technique 

employed for cancer detection [2], [3], [4] as well as for 

guided needle biopsy [5]. This is mainly due to its low cost, 

portability and real-time acquisition. However, this 

technique has its own drawbacks. Namely, due to the low 

sensitivity prostate cancer visualization is poor, its false 

negative rate is high [6] and often resulting in high rates of 

rebiopsies.  

Therefore, the Computer Tomography (CT) has been 

proposed as an alternative, and it is mainly used in prostate 

brachytherapy to determine the placement of the radioactive 

seeds and also to confirm the seed location post-procedure 

[7]. On the other hand, CT requires ionising radiation and 

nephrotoxic contrast media and could not provide 

differentiation between external and internal prostate 

anatomy because of the poor soft-tissue resolution.  

Therefore, in the last decade high-resolution MRI have 

been promoted as a valuable alternative to before mentioned 

imaging techniques, which offers physicians better 

evaluation of the prostate diseases. In the clinical practice 

nowadays three different modalities of MR images are 

normally produced: T2-weighted, diffusion-weighted and 

dynamic contrast enhanced images. Recently, many scientific 

works have proved that MRI has very high accuracy in the 

detection of prostate diseases [8], [9] significantly improving 

the diagnostic rates. It enables easier image segmentation 

and determination of prostate shape and boundaries which is 

the basic step in clinical applications.  

Usual MRI prostate examination results with a series of 

multiple images which are presenting plenty of anatomical 

and functional data regarding the prostate tissues. Analysis 

and segmentation of these images in major percentage of the 

cases in the clinical practice, currently is performed by 

experienced radiologists who based on their knowledge of 

the anatomy.  

However, manual segmentation of prostate boundaries on 

multiple images in the MRI series could be extremely 

difficult and time consuming task, especially for series 

containing large number of images. Manual segmentation is 

subjective and could be performed differently by different 

experts and thus could produce different outcomes.  

Because of this, currently there is a huge demand for fast 

and accurate automatic or semi-automatic segmentation 

methods for clinical applications. 

Development of automatic segmentation algorithms and 

methodologies faces huge challenges, mainly owing to 

variability of prostate size and shape from patient to patient, 
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variable intensity ranges inside the prostate region and 

tissues of surrounding organs, as well as the absence of clear 

prostate boundaries. 

The main aim of this paper is to advance the state of the 

art in automated prostate segmentation using T2 weighted 

MR images, by introducing a topological MRI prostate 

segmentation method using a set of pre-labeled MR atlas 

images.  

The rest of the paper is organized as follows: in part II we 

present the current state of the art in automatic medical 

image segmentation methods, in part III we present the 

proposed topological method for MR image segmentation, in 

part IV the evaluation of the proposed method its results and 

findings about its efficiency are presented. Part V presents 

the work conclusions and the references are in part VI. 

II. RELATED WORK 

Prostate segmentation methods based on images acquired 

using ultrasound, magnetic resonance and computed 

tomography could be generally divided into four major 

categories: contour and shape based methods, region based 

methods, supervised and un-supervised classification 

methods, hybrid methods [2].  

Contour and shape based methods are using the boundary 

features to segment the prostate. This is very difficult 

problem since MRI exhibits high soft tissue contrast. To 

cope with this Zwiggelaar et al. [10] used first and second 

order Lindeberg directional derivatives, in a polar coordinate 

system to identify the edges. On the other hand, Samiee et al. 

[11] used prior information of the prostate shape to refine the 

prostate boundary. Without prior shape information 

segmentation was error prone and often significantly 

different from the anatomical structure. Therefore, Cootes et 

al. [12] proposed to segment prostate in MR slices using the 

active shape model (ASM). Slightly different approach 

which combines two and three dimensional ASMs to 

segment the prostate using MR images was proposed by Zhu 

et al. [13]. A three dimensional ASM was built that 

represented the shape variance of the prostate. 

One of the commonly used methods for region based 

segmentation is the one which lies upon the set of manual 

segmentations of anatomical structures registered to a 

common coordinate frame called atlas, which is afterwards 

used as a reference. These methods are trying to map the pre-

segmented images to the querying image by finding a one to 

one transformation. However, due to variations in image 

intensities and differences in shapes this matching remains to 

be a challenging research topic.  

For this purposes, various multi-atlas segmentation 

methods have been analyzed in order to improve the 

selection of the atlas images which are most similar to the 

querying one [14]. It should be stressed that the weighting 

coefficients should favor the atlas images which are most 

similar to the querying one and thus should contribute more 

in the segmentation.  

Having in mind this, Klein et al. [15] has proposed a 

multi-atlas approach to segment the prostate using localized 

mutual information. The registration of the training volumes 

to the querying one was performed using affine and non-rigid 

registration.  

Álvarez et al. [16] improved this method by taking the 

advantage of both the inter-individual shape variation and 

intra-individual salient point representation.  

Langerak et al. [17] focused their work pre-selection of 

atlases before registration by assigning them to clusters and 

registering only some of these clusters. They are analyzing 

and registering instances from each cluster and then 

combining them to an estimate of the target segmentation. 

By doing so, they claim to achieve the same accuracy with 

atlas reduction of even 60%. 

Sjöberg and Ahnesjö [18] proposed a new multi-atlas 

based segmentation using probabilistic label fusion with 

adaptive weighting of image similarity measures. Namely, 

their method is based on probabilistic weighting of distance 

maps. Relationships between image similarities and 

segmentation similarities are estimated in a learning phase 

and used to derive fusion weights that are proportional to the 

probability for each atlas to improve the segmentation result. 

Xie and Ruan [19] recently proposed a method where they 

first perform an affine registration to minimize the global 

mean squared error to coarsely align each atlas image to the 

target. Afterwards, they use a target-specific regional mean 

squared error, in order to select a relevant subset from the 

training atlas. Then non-rigid registration between the 

training images and the querying one are performed inside 

previously identified subset only. At the end, using the 

estimated deformation fields, structure labels are transferred 

from training to querying images and they are fused based on 

a weighted combination of regional and local mean squared 

error, with proper total-variation-based spatial regularization. 

Makni et al. [20] proposed a modified alternative of the 

evidential C-means algorithm to cluster voxels in 

multispectral MRI, including T2 weighted, diffusion 

weighted and contrast enhanced images. 

In contract to the previously mentioned methods, hybrid 

ones are combining a priory boundary and feature 

information.  These methods are proven to give superior 

results in contrast to others in presence of shape and texture 

variations.  

Vikal et al. [21] proposed a method for building an 

average shape model using the prior shape and size 

information from manually marked contours. In order to 

reduce the noise and enhance the contrast they used a stick 

filter. On the enhanced images they detected the edges by 

applying the Canny filter. The constructed average shape 

model was used to discriminate pixels which are out of the 

model orientation. By applying polynomial interpolation the 

contour was further refined. The segmented contours 

obtained in the middle slices were used to initialize other 

slices towards the peripheral zones in both directions. 
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III. METHODOLOGY 

In order to enable accurate multi-atlas based prostate 

segmentation, the proposed methodology relies on most 

similar atlases which can provide robust and precise 

transformation to the target image. The proposed 

methodology consists of several steps as presented on the 

diagram in Fig. 1.  

 

Fig.  1 Activity diagram which describes the whole methodology 

 

Initial step of the proposed method are similar to those 

proposed in [15], namely appearance-specific atlas selections 

and a patch-based local weighting strategy for atlas fusion. 

After some image preprocessing which aims at 

inhomogeneity correction the top 5 similar atlases are 

selected for atlas registration based on the intensity 

differences in the surrounding region of the prostate. Once 

selected, the similar atlases are non-rigidly registered to a 

target image. Using the calculated transformation anatomical 

structure labels of the atlas are propagated to the space of the 

querying image. The aim of this step in our methodology is 

to order to derive a region of interest formed by the 

interception and union of the a priori shapes in the selected 

atlases, where the prostate contour of a non-segmented 

sample is supposed to be positioned. The final step is to 

delineate the prostate contour in the determined region by 

pixel classification. Namely, pixels within the region of 

interest are classified as prostate-likely-belonging pixels or 

prostate-unlikely-belonging pixels, taking into consideration 

the number of same-position pixels, being part of segmented 

samples and the intensity difference between a pixel of a 

non-segmented sample and the same-position pixels of 

segmented samples. The prostate contour is found as a set of 

pixels, separating column pixels (row pixels) within the 

region of interest in two disjunctive sets, having maximized 

the number of prostate-unlike-belonging pixels in the first set 

and the number of prostate-likely-belonging pixels in the 

other set exclusively. Prostate contour of a non-segmented 

sample is determined in three steps, described as follows: 

 

Step 1: Determine prostate interception and union shape 

model, according to Definition 1 and Definition 2, over a set 

of segmented samples, acquiring prostate shapes’ knowledge 

of n segmented same size and type prostate MR images. 

 

Definition 1: A pixel ],[ jip  is an interception model 

pixel if:  

,],[ 11 sssegmentprostatejiss   

,],[ 22 sssegmentprostatejiss   

… 

,],[ 11   nn sssegmentprostatejiss  

,],[ nn sssegmentprostatejiss   

where nissi 1,  is a segmented sample. 

  

Definition 2: A pixel ],[ jip  is a union model pixel if: 

orsssegmentprostatejiss 11 ],[   

orsssegmentprostatejiss 22 ],[   

… 

orsssegmentprostatejiss nn 11 ],[     

 ,],[ nn sssegmentprostatejiss    

where nissi 1,  is a segmented sample. 

 

According to previous definitions, if a pixel at position i,j 

is found as a prostate pixel in all segmented samples, then 

the pixels is considered as a part of the interception model. If 

at least one pixel at position i,j is found as a prostate pixel, 

then the pixel is a union model pixel. Interception pixels are 

considered as a part of the prostate of a non-segmented MR 

image. 

 

Step 2: Classify each pixel within the union, but out of the 

interception as a prostate-likely-belonging pixel or prostate-

unlikely-belonging pixel, exclusively according Eq. 1 and 

Eq.2. 

If Eq.1 is satisfied, 

 pulbpulbplbplb diffnndiffnn )()(   (1) 

classify the pixel ],[ jip  as a prostate-likely-belonging pixel. 

If Eq.2 is satisfied, 

 pulbpulbplbplb diffnndiffnn )()( 
 

(2) 

 

classify the pixel ],[ jip  as a prostate-unlikely-belonging 

pixel. 

Equation 1, 2 parameters are the following ones: 
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n : Number of segmented samples. 

plbn : Number of segmented samples, where pixel at position 

i,j is part of the prostate segmented region.  

pulbn : Number of segmented samples, where pixel at 

position i,j is not a prostate pixel. 

  The intensity difference between a pixel ],[ jip  of a non-

segmented sample and the mean intensity of pixels at 

position i,j, part of a prostate in segmented samples, is 

calculated according Eq. 3. 

kk

plb

n

k
kplb

ssofsegmentprostatejisswhere

njissjipdiff


 

],[

/)],[(],[
1  (3) 

  The intensity difference between a pixel ],[ jip  of a non-

segmented sample and the mean intensity of pixels at 

position i,j, out of the prostate in segmented samples, is 

calculated according Eq. 4. 

kk

pulb

n

k

kpulb

ssofsegmentprostatejisswhere

njissjipdiff


 

],[

/)],[(],[

1
 (4) 

Value-opposite differences: )( plbnn   and )( pulbnn   

serve as a weight factor for pixel intensity differences: 

plbdiff  and pulbdiff . The smaller )( plbnn  is, greater 

difference )( pulbnn   is obtained. Relatively small pixel 

intensity difference plbdiff  increases pixel prostate 

belonging expectation. On the contrary, small pixel intensity 

difference pulbdiff  decreases pixel prostate belonging 

expectation. Combining previous parameters in a single 

equation (Equations 1, 2), a prostate pixel classifier is 

derived. 

 

Step 3: Determine prostate contour shape as a set of pixel, 

separating the union, out of the interception in two 

disjunctive sets, such as the number of prostate-unlike-

belonging pixels in the first set and the number of prostate-

likely-belonging pixels in the other set is exclusively 

maximized.  

Applying Equations 1, 2 for pixels of a non-segmented 

sample, out of the interception, but within the union, each 

pixel in the region is classified as a prostate-likely-belonging 

or prostate-unlikely-belonging pixel, exclusively.  

Representing with 1 prostate-likely-belonging classified 

pixels, while with 0 prostate-unlikely-belonging classified 

pixels, the problem of identification of a prostate contour 

pixel is simplified to identification of prostate contour pixels, 

separating same row pixels (same column pixels), out of the 

interception, but within the union, in two disjunctive sets, 

such as the number of prostate-unlikely-belonging pixels and 

prostate-likely-belonging pixels in the sets is exclusively 

maximized. 

For example, if 



























],5[

],4[

],3[

],2[

],1[

],[

jip

jip

jip

jip

jip

jip

CP  is a six pixel same 

column set, out of the interception, but within the union, 

being accordingly classified as: }1,1,0,0,1,0{CCP , there 

are 4 prostate contour candidate pixels, without taking into 

consideration the first and the last pixel. Pixel ],1[ jip   

separates classified set CPP  in two disjunctive sets: 

}1,0{1 CPP , }1,1,0,0{2 CPP . The number of prostate-

unlikely-belonging pixels in the first set is 1, while the 

number of prostate-likely-belonging pixels in the second set 

is 2. The sum equals 3. Similarly, pixel ],2[ jip   separates 

set CPP  in two disjunctive sets: }0,1,0{1 CPP , 

}1,1,0{2 CPP . Now the number of prostate-unlikely-

belonging pixels in the first set is 2, while the number of 

prostate-likely-belonging pixels in the second set is 2. The 

sum equals 4. Choosing pixel ],3[ jip   as a prostate 

contour pixel, the following disjunctive sets are obtained: 

}0,0,1,0{1 CPP , }1,1{2 CPP . The number of prostate-

unlikely-belonging pixels in the first set is 3, while the 

number of prostate-likely-belonging pixels in the second set 

is 2. Their sum equals 5. Pixel ],4[ jip   assumed as a 

prostate contour pixel, decreases the number of prostate-

likely-belonging pixels in 2CPP  , while the number of 

prostate-unlikely belonging pixels in 1CPP  remains 

unchanged.  

Therefore, pixel ],3[ jip   is chosen as a prostate contour 

pixel, since the sum of prostate-unlikely-belonging pixel and 

prostate-likely-belonging pixels in the disjunctive sets is 

maximized in that case (Fig.2).  

 

Fig.  2 Point detection mask 

 

If the condition given by Eq.5 is satisfied 

Tjipjipjip

jipjipjip

jipjipjipR






])1,1[],1[]1,1[

]1,[]1,[]1,1[

],1[]1,1[],[8(
8

1

 (5) 

222 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



 

 

 

then the pixel ],[ jip  is a prostate contour outlying pixel. 

Discontinuous prostate contour curves are linked together 

applying standard image morphological operations, such as 

multiple Dilatation at first, then Erosion, in order to derive 

one pixel-thin prostate contour. Figure 3 represents the 

structuring element used in the morphological operations. 

 

 

Fig.  3 Morphological operations’ structuring element 

IV. EXPERIMENTAL EVALUATION AND RESULTS 

For evaluation purposes all the steps described of the 

proposed methodology and presented in Fig. 1 are 

implemented in C# programming language. The program 

was executed on laptop with 4GB RAM memory and 

equipped with Intel Core i3 CPU with 2.4GHz and 64 bit 

Windows 7 OS. It has also ATI Mobility Radeon HD 4650 

with 1GB dedicated memory. The proposed method was 

evaluated on 30 training MRI prostate images. The image 

series used for this evaluation were T2 FSE AXIALS 

256x256 pixel. They were obtained from the online Prostate 

MR Image Database [22]. For each training image, manual 

segmentation is provided. 

A leave-one-out study has been implemented based on 

each of the training scans using the remaining 29 images as 

the atlas database. In the sub-database, the top 5 most similar 

atlases are chosen. Based on these atlases the union and the 

interception shape model are constructed. 

For better visual representation of the obtained results the 

following coloring convention was used: the red colored 

region represents the interception model, while the white 

colored region represents the union, out of the interception, 

Figure 4.  

Pixels within the interception are considered as a part of 

the prostate. Each pixel within the white colored region is 

exclusively classified as a prostate-likely-belonging pixel or 

prostate-unlikely-belonging pixel.  

Taking image 000046.00001.001.0013 from the Prostate 

MR Image Database 

(http://prostatemrimagedatabase.com/Database/000046/0000

1/001/0013.html) as a querying image, the result of the 

classification is shown on Figure 5. Red pixels, out of the 

interception, but within the union are classified as prostate-

likely-belonging pixels, satisfying Equation 1, while the 

white pixels in the same region are classified as prostate-

unlikely-belonging pixels, satisfying Equation 2.  

 

 

Fig.  4 Interception and union derived model 

 

In Figure 5 blue colored pixels are the prostate contour 

pixels, determined in the third processing step of the 

proposed method.  

Filtering prostate contour outlying pixels and applying 

standard region closing morphological operation, using 

Figure 3 structuring element, the prostate contour of a non-

segmented T2 FSE AXIALS database image 

000046.00001.001.0013 is obtained, Figure 6. 

 

 

Fig.  5 Method application results 
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Fig.  6 Identified prostate contour (green), gold standard contour 

delineated manually by the expert (yellow). 

 

For evaluation of the proposed method, we have used 

Dice similarity coefficient (DSC) defined as in Eq. 6 

compared with the manual expert segmentation. 

 
BA

BA
DSC 

 2  (6) 

It has been applied on the apex, central and the base 

region of the prostate. The average of this metric with its 

standard deviations calculated from the selected image series 

compared with the corresponding manual segmentation is 

given in Table1. 

 

TABLE I. 

PROSTATE SEGMENTATION QUANTITATIVE RESULTS FOR TRAINING 

DATASETS 

Region DSC 

Apex 0.81±0.13 

Central 0.82±0.10 

Base 0.79±0.17 

V. CONCLUSION 

Comparing the obtained results a conclusion for prostate 

shape accordance can be derived, based on the prostate 

edges’ direction compatibility, prostate contour position and 
prostate surface. 

In general, prostate segmentation result in this case 

depends of two factors. The number of segmented samples 

used and segmented samples’ prostate shape variability, 
based on what the interception and the union shapes are 

determined. More segmented samples are considered, with 

wider prostate shape variability, more accurate prostate 

contour is obtained. A drawback of the proposed method is 

the incapacity of detecting prostate segments, out of the 

derived union region, being part of prostate of a non-

segmented sample. On the opposite, prostate segmentation 

running time is significantly improved, since relatively small 

segment of a non-segmented prostate MR image is 

processed.  
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