


Abstract—This paper presents the methodology for the
synthesis of real-time applications for the Infrastructure as a
Service (IaaS) model of cloud computing. We assume that the
function of the application is specified as a set of distributed
echo algorithms with real-time constraints. Then our
methodology schedules all tasks on available cloud
infrastructure minimizing the total costs of the IaaS services,
while satisfying all real-time requirements. It takes into account
limited bandwidth of communication channels as well as the
limited computation power of server nodes. The optimization is
based on the iterative improvement algorithm, which has the
capability of escaping from the local extrema, giving better
results than greedy algorithms. The method starts from the
fastest solution and in the next steps modifies the solution to
reduce the cost of hiring the cloud infrastructure. We also
present a sample application, that shows the benefits of using
our methodology.

Index Terms—cloud computing, Infrastructure as a Service,
real-time system, distributed systems, system synthesis.

I. INTRODUCTION

LOUD computing recently has received significant at-

tention as a new computing infrastructure. A cloud en-

vironment often has hundreds of thousands of processors

with numerous disks interconnected by dedicated high-speed

networks. There are three deployment models of cloud com-

puting [1]. The first is the private cloud, it works specially

for organization with private security and exclusive network.

The second is the public cloud, it gives the maximum effi-

ciency level in shared resources and it is protected by the

cloud service provider. The third is the hybrid cloud, it com-

bines the private and public. Cloud computing supports

three types of services [2]:

C

● IaaS (Infrastructure as a Service) offers end users

direct access to processing, storage, and other com-

puting resources. IaaS allows users to configure re-

sources, to run operating systems and to run appli-

cation software on them. Examples of IaaS are:

Amazon Elastic Compute Cloud (EC2), Rackspace

and IBM Computing on Demand,

● PaaS (Platform as a Service) offers an operating

system as well as suites of programming languages



and software development tools that customers can

use to develop their own applications. Examples of

PaaS are: Microsoft Windows Azure and Google

App Engine. PaaS gives end users control over ap-

plication design, but does not give them control

over the physical infrastructure,

● SaaS (Software as a Service) offers final applica-

tions that end users can access through a thin client

(web browser). Examples of SaaS are: Gmail,

Google Docs. The end users (customers) do not ex-

ercise any control over the design of the applica-

tion, servers, networking and storage infrastructure.

Cloud computing is really changing the way, how and

where the computing is going to be performed. More and

more Internet-enabled devices are now available (mobile

phones, smart TVs, navigation systems, tablets, etc.). It is

expected that in a few years, almost each product may be

identified and traced in the Internet using RFID (Radio Fre-

quency IDentification), NFC (Near Field Communication)

or other wireless communication methods. Smart device not

only incorporates sensing/monitoring and control capabili-

ties, but also may cooperate with other devices and with In-

ternet applications. For example an adaptive car navigation

system may interact with an Internet system, controlling and

monitoring the traffic in a city, to avoid traffic jam. In such

case cloud applications are used to process requests sent by

smart devices implementing client applications. Usually re-

sponses to the device should be sent during the limited time

period. Therefore, this class of application is a real-time sys-

tem.

Distributed Internet application requires an expensive net-

work platform, consisting of servers, routers, switches, com-

munication links etc., to operate. The cost of the system may

be reduced by sharing the network infrastructure between

different applications. This is possible by using the Infra-

structure as a Service (IaaS) model [3] of the cloud comput-

ing services [4]. IaaS together with a real-time cloud envi-

ronment [5] seems the ideal platform for many real-time

cloud applications. But to guarantee the quality of service

Synthesis of Real Time Distributed Applications for Cloud
Computing

Stanisław Deniziak
Cracow University of Technology, Department of

Computer Engineering
Warszawska 24, 31-155 Cracow, Poland

Kielce University of Technology, Department of
Computer Science

Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce,
Poland, Email: sdeniziak@pk.edu.pl

Sławomir Bąk
 Cracow University of Technology, Department of

Computer Engineering
Warszawska 24, 31-155 Cracow, Poland

Email: sbak@pk.edu.pl

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 743–752

DOI: 10.15439/2014F234

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 743

and minimize the cost of the system, efficient methods of

mapping real-time applications onto IaaS should be devel-

oped.

Some studies [6], [7] consider resource allocation for

cloud applications. The common focus of these works is the

optimization of resource allocation from IaaS in respect of

the cost. One of the previous method selecting resources

from a cloud is based on the conception of the game theory

[8]. The method optimizes the cost and the performance.

This conception reflects the common characteristics of the

physical position and bandwidth available between job and

resources, and emphasizes on establishing a scheduling rela-

tionship between near entities. In resource scheduling, a

choice of near and low-cost resources is a key criterion. Pa-

per [9] also describes the scheduling algorithm for cloud

computing. In this cost-based method, the set of computing

resources with the lowest price are assigned to the user, ac-

cording to the current supplier resource availability and a

price. Another method, proposes scheduling of resources,

based on genetic algorithm [10]. In this method, scheduling

scheme is coded using integer sequence and a fitness func-

tion is based on influence degree. The genetic operations in-

clude selection, crossover, mutation and elitist selection.

None of the above methods consider real-time requirements.

The use of the cloud infrastructure for real time computing

is a quite new concept. Current work concerning Real Time

Cloud Computing mainly concentrates on 2 domains: adopt-

ing existing web technologies to this new paradigm and de-

veloping software architectures for real-time applications.

Recent studies [11]–[14] have been performed on the alloca-

tion of resources for real time tasks. Aymerich et al. [11] de-

veloped an infrastructure for a real-time financial system

based on cloud computing technologies. Liu et al. [12]

showed how to schedule real-time tasks with different utility

functions. The real-time tasks are scheduled non-preemptive-

ly with the objective to maximize the total utility by using

time utility function (TUF). Tsai et al. [13] discuss about a

real-time database partitioning on cloud infrastructures. Kim

et al. [14] investigate power-aware provisioning of resources

for real-time cloud services. In their work the real-time con-

straint is specified in a Service Level Agreement (SLA) be-

tween customers and cloud providers. SLAs specify the ne-

gotiated agreements, including Quality of Service (QoS),

such as deadlines. In such cloud models the service provider

is responsible for the allocation resources. Their work exam-

ines power management while allocation of resources should

meet the SLA. None of these studies consider a cost-efficient

selection, from a set of different types of resources available

in clouds, for real-time tasks.

The closest work to ours is that of Kumar et al. [15]. They

develop an algorithm of resource allocation for applications

with real-time tasks. They propose an EDF-greedy scheme

and a scheme considers temporal overlapping to allocate re-

sources efficiently. Unfortunately an EDF-greedy strategy

may not give the lowest total cost, because of their tendency

to be trapped in local minima of the cost.

In our work, we consider the IaaS model of the real-time

cloud computing, where the user pays the cost of using the

resources supported by the service provider. We present the

methodology for the synthesis of reactive, real-time cloud

applications specified as a set of distributed echo algorithms.

The goal of our methodology is to find the distributed archi-

tecture of the application which will satisfy all user require-

ments. We developed an iterative improvement algorithm,

which is able to escape from the local extrema, giving much

better results than constructive algorithms. Presented method

also minimizes the cost of IaaS services required for running

the real-time application in the cloud environment.

The next section presents our assumptions and it defines

the concept of real-time cloud computing used in our

methodology. In section 3 the method of synthesis will be

described. Section 4 presents example and experimental re-

sults demonstrating the advantages of the methodology. The

paper ends with conclusions.

II. PROBLEM STATEMENT

System synthesis is a process of automatic generation of

the system architecture, starting from the formal specifica-

tion of functional and non-functional requirements. Function-

al requirements define functions that should be implemented

in the target system. Nonfunctional requirements usually de-

fine constraints that should be fulfilled, e.g., time constraints

define the maximal time for execution of the given opera-

tions, cost requirements define the maximal cost of the sys-

tem, etc.

Functions of distributed systems are usually specified as a

set of communicating tasks or processes. Since we consider

real-time systems, hence time constraints are the main set of

requirements. The model of the system specification used in

our methodology will be described in p.1.

We use existing network infrastructure, hired from a cloud

(IaaS), consisting of servers, routers and connections. If the

current architecture does not guarantee that all time require-

ments will be met, the infrastructure should be extended by

adding some components, i.e. additional resources should be

hired from cloud providers. Thus, it should be possible to

specify architectural requirements that have to be satisfied by

the target system. The model of the target architecture will

be described in p.2, while requirements that are used in our

methodology will be presented in p.3.

1. Functional specification

We assume that a real-time cloud application will process

requests received from clients. The system should be able to

process all requests during the required time period, i.e., for

each real-time request a response should be sent before the

specified deadline. We consider soft real-time processing

[16], ensuring that the process will be completed at a given

time depending on the constraints of quality of service. In

744 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

case of a large number of requests and a long time of pro-

cessing, real-time processing will be possible only if massive

parallel computing will be applied. Therefore, the functional

specification of the system should represent the function as a

distributed algorithm [17], developed according to the

following requirements:

(1) parallel model of computations: system should be

specified as a set of parallel processes using mes-

sage passing communication,

(2) parallel request handling: huge number of requests

may cause the communication bottleneck, to avoid

this, simultaneous requests should be handled by

different processes.

We assume that the system is specified as a collection of

sequential processes coordinating their activities by sending

messages. Specification is represented by a graph G = {V,

E}, where V is a set of nodes corresponding to the processes

and E is a set of edges. Edges exist only between nodes

corresponding to communicating processes. Tasks are

activated when required set of events will appear. As a

result, the task may generate other events. External input

events will be called requests (Q), external output events are

responses (O) and internal events correspond to messages

(M). The function of the system is specified as finite

sequences of activation of processes. There is a finite set of

all possible events

Λ=Q∪O∪M={λ i : i=1,… , r} (1)

For each event λ
i

communication workload ω(λ
i
) is

defined. System activity is defined as the following function:

Φ :C xV →ω x 2Λ
(2)

where C is an event expression (logical expression consisting

of logical operators and Boolean variables representing

events) and ω is the workload of the activated process.

Using function Φ it is possible to specify various classes

of distributed algorithms. Fig. 1 presents sample echo algo-

rithm [18] consisting of 5 processes. The algorithm consists

of 10 actions. Each action is activated only once, when the

corresponding condition will be equal to true. All actions ex-

cept A
1
 and A

6
 contain alternative sub-actions. Only the first

action, for which the condition will be satisfied, will be acti-

vated. According to the echo algorithm specification, process

v
1
 is the initiator, messages m1

1
, ..., m14

7
 are explorer mes-

sages, while m15
1
, ..., m25

7
 are echo messages (indices are

added only for readability, mx
i
 means that message mx is as-

sociated with edge e
i
 in the graph, for the same reason, edge

names in the event expressions mean any received message

corresponding to this edge, e.g., e
1

= m1
1
 | m4

1
 | m15

1
, e

2
=

m2
2
 | m9

2
| m20

2
, etc.). Events x

1
, ..., x

11
 are internal events,

used for storing the state of processes between successive ex-

ecutions.

Since different requests may be processed by distinct algo-

rithms, the function of a system may be specified using a set

of functions Φ sharing the same processes. Each function has

only one initiator (process activated by the request). Process-

es may be activated many times, but the algorithm should

consists of the finite number of actions and infinite loops are

not allowed.

2. Real Time IaaS Architecture

The proposed architecture of RTCCI (Real Time Cloud

Computing Infrastructure) is composed of two layers

(Fig. 2): Network Layer (NL) and Server Layer (SL).

A1: Φ(v1,{q1}) → (5, {m11,m22,m33})

A2: Φ(v2,{m11}) → (4,{x1,m54}) | Φ(v2,{m104}) → (4,{x2,m41})

A3: Φ(v3,{m33}) → (7,{x3, m75,m86}) | Φ(v3,{m115}) → (7,{x4,m63,m86})

 | Φ(v3,{m136}) → (7,{x5,m63,m75})

A4: Φ(v4,{m22}) → (6,{x6,m104,m115,m127})|

 Φ(v4,{m54}) → (6,{x7,m92,m115,m127})|

 Φ(v4,{m75}) → (6,{x8,m92,m104,m127})|

 Φ(v4,{m147}) → (6,{x9,m92,m104,m115})

A5: Φ(v5,{m86}) → (5,{x10,m147}) | Φ(v5,{m127}) → (5,{x11,m136,})

A6: Φ(v1,{e1&e2&e3}) → (10, {r1})

A7: Φ(v2,{x1&e1&e4}) → (4,{m151}) | Φ(v2,{x2&e1&e4}) → (4,{m164})

A8: Φ(v3,{x3&e3&e5&e6}) → (3,{m173}) | Φ(v3,{x4&e3&e5&e6}) → (3,{m185}) | Φ(v3,{x5&e3&e5&e6}) → (3,{m196})

A9: Φ(v4,{x6&e2&e4&e5&e7}) → (5,{m202}) | Φ(v4,{x7&e2&e4&e5&e7}) → (5,{m214}) | Φ(v4,{x8&e2&e4&e5&e7}) → (5,{m225}) |

 Φ(v4,{x9&e2&e4&e5&e7}) → (5,{m237})

A10: Φ(v5,{x10&e6&e7}) → (2,{m246}) | Φ(v5,{x11&e6&e7}) → (2,{m257})

Fig 1. Sample specification of the echo algorithm

v1 v2

v3 v4

v5

e1

e2
e3

e4

e5

e6
e7

SŁAWOMIR BĄK, STANISŁAW DENIZIAK: SYNTHESIS OF REAL TIME DISTRIBUTED APPLICATIONS 745

Layer NL consists of Communication Channels (CC) com-

posed of routers and communication links. For each CL
i
 the

available bandwidth B(CC
i
) is defined.

Layer SL contains servers (S) consisting of computational

nodes N
i
. Each N

i
 is characterized by performance P

i
 re-

served for RTCC system, and it may be equipped with a net-

work interface. Thus, each computational node may be con-

nected to another communication link.

The goal of our methodology is to find the cheapest sys-

tem architecture for an application that fulfills all time con-

straints and uses the existing network infrastructure available

in a cloud. All servers (nodes) and communication channels,

that are used in the target architecture Π
T
 = {S, CC} of the

system, will be outsourced to the cloud provider.

The method starts from the initial architecture Π
I

= {S',

CC'} consisting of the fastest resources. Next, the architec-

ture is optimized by performing some modifications of Π
I
,

only resources supported by cloud providers are considered

here. Our methodology minimizes the cost of hiring the net-

work infrastructure by achieving the maximal utilization of

all resources and by allocating cheapest components that sat-

isfy all time constraints. Each available resource is character-

ized by properties defining the performance and the cost of

the corresponding IaaS service. Specifications of all avail-

able resources constitute the database of resources L =

{CC", S"}.

Communication channels cc
i
 ϵ CC'' are characterized by

the maximal available bandwidth B(cc
i
), bandwidth B

r
(cc

i
)

reserved for the application and the price of communication

service Cr(cc
i
) for each available bandwidth. Communica-

tion channel connects any pair of network interface ports.

Thus, the time of transmission of packet D
i
 through commu-

nication channel cc
j
 is the following:

T (Di)=
l (Di)

B r(cc j)
(3)

where l(D
i
) is the length of packet D

i
.

We assume that each server s
i
 may consist of any number

of nodes, i.e., a multiprocessor or a cluster architecture of the

server. Each node may execute all assigned tasks sequential-

ly. Thus, the following properties characterize the server:

─ n
S
 - the number of nodes, hence server s

i
 may be repre-

sented as a set {N
1
, …, N

ns
} of nodes,

─ Cr(s
i
) - the cost of the computing services, the cost de-

pends on the number of nodes allocated to the application,

usually the cost function is not linear.

─ {P
1
, …, P

ns
} - performance of each node.

The time required for executing process τ
i
by the node N

j

equals:

T (τ i)=
w (τ i)

P j

(4)

where w(τ
i
) is the workload of task τ

i
.

Fig. 2 presents a sample target architecture of RTCCI.

3. Requirements and constraints.

Let ρ(λ
x
,λ

y
) be a sequence of actions A

1
,...,A

s
 such, that λ

x

is the request, λ
y
 is the response, and:

A1 :Φ (v i ,λ x)→{ω 1 , {λ1}}, As :Φ (v j ,λ s)→{ω s ,{λ y}},

∀
1< k< s−1

A
k
→ A

k + 1

(5)

where v
i
, v

j
 are any processes and A

k
→A

k+1
 means that ac-

tion A
k
 generates events activating action A

k+1
. Then, the

time of execution of the given sequence of actions is defined

as a sum of the execution times of all processes and a time of

inter-process communication:

t(p(λ x ,λ y))=∑
i=1

s ω (Ai)

P (A i)
+ ∑

i=1

s ω (mi)

Br(mi)
(6)

where: ω(A
i
) is the workload of the process activated by ac-

tion A
i
, P(A

i
) is the performance of the server executing this

process, ω(m
i
) is the communication size, B

r
(m

i
) is the re-

served bandwidth of the channel used for sending the mes-

sage. If processes activated by actions A
k
 and A

k+1
 are exe-

cuted by the same server, then ω(m
k
) = 0 for any message

sent between these processes.

The time constraint is the maximal period of time that may

elapse between sending request and receiving the response.

Since the request may activate different sequences of actions

until the response will be obtained, therefore the time con-

straint (deadline) is defined as:

tmax(λ x ,λ y)=MAX
i

(t(pi (λ x ,λ y))) (7)

During the synthesis, processes and transmissions are

scheduled and assigned to network resources. The method

first assigns processes and transmissions to the fastest re-

Fig 2. Sample target architecture

 NLNL

 SL SL

CLCL

CLUSTERCLUSTER CLUSTERCLUSTER

S 2S 2S 1S 1

CLCL

S 3S 3

S 1S 1
N1N1 N2N2 N3N3 N4N4 N5N5 N6N6 N7N7

N8N8 N9N9 N10N10 N11N11 N12N12 N13N13 N14N14

N15N15 N16N16 N17N17 N18N18 N19N19 N20N20 N21N21

N22N22 N23N23 N24N24 N25N25 N26N26 N27N27 N28N28

S 2S 2

N1N1 N2N2 N3N3 N4N4 N5N5 N6N6 N7N7

N8N8 N9N9 N10N10 N11N11 N12N12 N13N13 N14N14

N15N15 N16N16 N17N17 N18N18 N19N19 N20N20 N21N21

N22N22 N23N23 N24N24 N25N25 N26N26 N27N27 N28N28

N1N1 N2N2 N3N3 N4N4 N5N5 N6N6 N7N7 N8N8 N9N9 N10N10 N11N11 N12N12 N13N13 N14N14

N15N15 N16N16 N17N17 N18N18 N19N19 N20N20 N21N21 N22N22 N23N23 N24N24 N25N25 N26N26 N27N27 N28N28

N29N29 N30N30 N31N31 N32N32 N33N33 N34N34 N35N35 N36N36 N37N37 N38N38 N39N39 N40N40 N41N41 N42N42

N43N43 N44N44 N45N45 N46N46 N47N47 N48N48 N49N49 N50N50 N51N51 N52N52 N53N53 N54N54 N55N55 N56N56

N1N1 N2N2 N3N3 N4N4 N5N5 N6N6

N7N7 N8N8 N9N9 N10N10 N11N11 N12N12

N13N13 N14N14 N15N15 N16N16 N17N17 N18N18

N19N19 N20N20 N21N21 N22N22 N23N23 N24N24

N25N25 N26N26 N27N27 N28N28 N29N29 N30N30

N31N31 N32N32 N33N33 N34N34 N35N35 N35N35

N37N37 N38N38 N39N39 N40N40 N41N41 N42N42

N43N43 N44N44 N45N45 N46N46 N47N47 N48N48

N1N1 N2N2 N3N3 N4N4 N5N5 N6N6

N7N7 N8N8 N9N9 N10N10 N11N11 N12N12

N13N13 N14N14 N15N15 N16N16 N17N17 N18N18

N19N19 N20N20 N21N21 N22N22 N23N23 N24N24

N25N25 N26N26 N27N27 N28N28 N29N29 N30N30

N31N31 N32N32 N33N33 N34N34 N35N35 N36N36

N37N37 N38N38 N39N39 N40N40 N41N41 N42N42

N43N43 N44N44 N45N45 N46N46 N47N47 N48N48

N49N49 N50N50 N51N51 N52N52 N53N53 N54N54

N55N55 N56N56 N57N57 N58N58 N59N59 N60N60

N49N49 N50N50 N51N51 N52N52 N53N53 N54N54

N55N55 N56N56 N57N57 N58N58 N59N59 N60N60

CLCL CLCL CLCL CLCL

746 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

sources supported by cloud providers. This step verifies if it

is possible to find the network infrastructure which fulfills all

time constraints. Next, the cost is minimized by performing

the following modifications:

• change communication channel to cheaper one, de-

creasing bandwidth B
r
(cc), for any allocated communi-

cation channel, in this way the cost of communication

service Cr(cc) may be reduced,

• change server s to cheaper one or reduce the number of

allocated nodes, in this way the cost of computing ser-

vices Cr(s) will be reduced.

Only modifications that do not violate time constraints are

considered. The optimization process will stop, when each

considered modification of the architecture will cause viola-

tion of time requirements. Hence, the total cost of the IaaS

service will be the following:

CM=∑
i

Cr(cci)+ ∑
j

Cr(s j) (8)

The goal of our methodology is to minimize C
M

.

III. SYNTHESIS

Our method of synthesis starts from the formal specifica-

tion of the system (as described in p. II.1) and tries to pro-

duce the optimal target architecture of the system, that satis-

fies all constraints. The method minimizes the cost of out-

sourcing the network infrastructure to the IaaS cloud

provider.

1. Assumptions

The method is based on the worst case design. We assume

that the workload of each action and sizes of all transmis-

sions are estimated for the worst cases. All time constraints

should also satisfy the following condition:

t max(λq ,λo)⩽
1

f max(λ q)
(9)

where f
max

(λ
q
) is the maximal frequency of requests λ

q
, λ

o
 is

response to the request. Otherwise, the system will be not

able to process requests in real-time.

The system specification consists of a set of distributed al-

gorithms (tasks). Our scheduling method is based on the as-

sumption that the worst case is when all tasks will start at the

same time, this corresponds to the simultaneous appearance

of all requests. Thus, all tasks are scheduled in a fixed order

and are activated in certain time frames. When the system

will receive new request, it will be processed during the next

activation of the corresponding task. Therefore, time con-

straints should include this delay, i.e., task should be sched-

uled with period equal:

t max (λ q ,λ o)

2
(10)

The goal of optimization is the minimization of the cost of

outsourcing the network infrastructure to cloud providers.

The method schedules tasks and transmissions on available

cloud resources. We use an efficient iterative algorithm for

finding the (sub-)optimal solution.

2. Dynamic task graph

The algorithm should be able to verify if after scheduling

next task, it is still possible to obtain the valid system. For

this purpose the dynamic task graph (DTG) is created. All

tasks are simultaneously analyzed according to their order of

execution, assuming that processes and transmissions will be

executed by the fastest resources. Since in the system specifi-

cation only the first message received by a process is rele-

vant, all other messages are temporarily neglected. In this

way the specification is converted into task graph. Next, the

task graph is scheduled using ASAP (As Soon As Possible)

method.

3. Algorithm of the synthesis

In our earlier works [19], [20] synthesis is performed us-

ing the greedy algorithm, that schedules processes according

to their priority. However, it is constructive algorithm and

the obtained results are far from optimal, because the method

is prone to be trapped in the local minima of the cost. In this

paper, we present the iterative improvement algorithm,

which is able to escape from the local minima, giving better

results than constructive algorithm. An outline of the al-

gorithm is shown on Fig. 3.

Gain is the difference of quality of the new solution and

the current one. The quality of the solution is determined on

the basis of several features of the target architecture. In our

case, the quality of solutions is based on the cost of the sys-

tem that satisfies all time constraints, i.e., the optimum is the

cheapest system that meets the time constraints.

The algorithm starts from the initial architecture where all

processes are assigned to resources with the highest perfor-

mance, according to the rule: the biggest task to the fastest

processor. For transmissions, also communication services

with the highest bandwidth are reserved. Next, while any

time constraint is not violated, the method tries to reduce the

cost of IaaS services by modifying the network infrastructure

using iterative improvement methods (refinement of the cur-

rent result). The methodology repeats the following steps:

• remove the node or replace the resource with a

cheaper one,

Generate initial solution ΠCUR

do{

 ΠBEST = ΠCUR;

 gain = 0;

 while((Π'=refine(ΠBEST)) != Φ){

 gain = Q(Π') - Q(ΠCUR);

 if(gain > 0)

 ΠCUR = Π';

 }

}while(gain > 0);

Fig 3. An outline of the iterative improvement algorithm.

SŁAWOMIR BĄK, STANISŁAW DENIZIAK: SYNTHESIS OF REAL TIME DISTRIBUTED APPLICATIONS 747

• create a dynamic task graph,

• schedule all processes and transmissions.

The solution giving the best gain is chosen to the next

step. The algorithm terminates when there is no solution that

can improve the total cost of the system.

The quality of the solution determines the gain of the im-

provement. The aim of the algorithm is to minimize the cost,

thus the main system feature determining the gain should be

the cost of the system. However, driving refinement only ac-

cording to the optimisation goal usually leads to trapping the

algorithm in local minima (the greedy approach). Hence it is

appropriate to define the quality of the solution using also

other features of the solution. It should inhibit the greed of

the algorithm. For this purpose laxity L is introduced. The

laxity is defined as follows:

L=tmax−t cur , L⩾0 (11)

where tcur is the execution time for the current solution.

At each step, various modifications of the current system

are considered. Each modification may change the cost

and/or the latency of the solution. Quality (Q) of the modi-

fied system is defined as follows:

Q={
CBEST⋅LCUR

C
CUR

⋅L
BEST

, whenΔ C < 0 and L
CUR

⩾0

0, when Δ C> 0 or LCUR< 0 } (12)

where:

Δ C=CCUR−CBEST (13)

L
CUR

 and C
CUR

 are the features of the current result, L
BEST

 and

C
BEST

 are the features of the best result, found in the previous

iterations.

The quality is defined as the ratio of the previous cost to

the cost after modification. If the latency is also changed,

then the quality is modified by the percentage of the latency

increase. If there is no reduction of the system cost, then the

quiality equals 0, i.e., modification will be rejected. This

condition guarantees that the algorithm is convergent. The

quality is also equal to 0 when a time constraint is violated,

i.e., L
CUR

< 0.

Solutions that do not lead to a gain greater than 0 are re-

jected. The quality prefers solutions with the greatest reduc-

tions of cost and greater increase of the performance of the

system. If all modifications do not reduce the cost of the sys-

tem (ΔC=0) then the solution with the greatest increase of

the system performance is taken as the best to the next step.

At each step of the algorithm, various modifications of the

current solution are considered and solution that gives the

highest quality is chosen to the next step. Since the quality Q

depends also on the increase of laxity, therefore the greed of

the algorithm will be reduced, i.e., instead of the modifica-

tion reducing cost the algorithm may select modification that

more reduces the laxity. Higher laxity means more possiblili-

ties of improvements in the next steps.

In order to minimize the cost of the system, in the algo-

rithm the following modifications are considered:

(1) Change the node from the cloud to cheaper one and

move tasks to it.

(2) Replace the communication link to cheaper one.

(3) Remove one node and move all assigned tasks to

other nodes.

In the case where more than one task is allocated to the re-

source, it is necessary to schedule tasks. The FIFO schedul-

ing method is used for this purpose. The refinement process

is presented on Fig. 4. It consists of 3 loops, each loop evalu-

ates all possible modifications of the system architecture.

Only systems with quality greater than 0 are taken into con-

sideration. We assume that the process refine returns the ar-

chitecture, then after next activation it continues its execu-

tion. The process terminates after analyzing all possible

modifications of the initial architecture. Architecture with the

highest quality is taken as an input to the next step of the al-

gorithm.

IV. EXAMPLE

As an example demonstrating our methodology we present

the design of an adaptive navigation system for a smart city

[19]. We assume that all cars are equipped with GPS naviga-

tion devices (GD), that are able to communicate with the In-

ternet using wireless communication (we assume that the net-

work of access points covers the whole city). GD devices

send requests to RTCC system. Requests contain information

about current position, the destination and user preferences.

Then, the system finds the optimal route and sends response

to GD device. Since GD expects the response in a reasonable

time, then the system should satisfy real-time constraints. We

assume that the time in which the GD device has to get an

answer must be no longer than 5 seconds. The idea of such

system is based on the adaptability, i.e., the system may take

into consideration traffic information, traffic impediments

(e.g., car accidents) and it may construct different routes for

the same destinations to avoid traffic jams.

Since the system may receive thousands of requests per

second the centralized system may not be able to handle all

requests due to the communication bottleneck. Therefore, we

propose the distributed system. The city is partitioned into

sectors, routes through each sector are computed by different

processes. Each process also receives requests and sends re-

sponses from/to positions in the corresponding sector. Thus,

the function of the system may be specified as a set of dis-

tributed algorithms, similar to the echo algorithm. In our ex-

ample the specification consists of 6 to 12 tasks, in each task

another process is the initiator. The initiator receives all re-

quests coming from the corresponding sector, computes all

possible routes to adjacent sectors and sends the information

about routes to adjacent processes. When messages will

reach the destination sector, then the best route is selected

and information about it is sent back to the initiator.

748 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Assume that a cloud provider offers 13 servers and 4

bandwidths for communication services (Fig. 5), and assume

that parameters of available resources are known. In Table I

available bandwidths of communication links and the cost of

IaaS communication services are presented. Table II shows

parameters of servers available in the cloud and costs of IaaS

computing services are presented. The time constraint t
max

equals 5 s.

Some dynamic tasks graph constructed for the best solu-

tion are presented on Fig 6. On Fig 7 the Gantt chart present-

ing the scheduling of all processes is presented. We may ob-

serve high utilization of all servers.

TABLE I COST OF AVAILABLE IAAS COMMUNICATION SERVICES

Link Bandwidth (Mbps) Per hour

LX1 1 0.0001$

LX2 5 0.0010$

LX3 10 0.0028$

LX4 20 0.0069$

refine(ΠCUR){

 for each X
i
 ϵ ΠCUR

do {

 Π’ = ΠCUR – X
i
;

 for all X
j
 in IaaS do

 if C(X
j
) < C(X

i
) then {

 Π” = Π’ + X
j
;

 for each v
k
ϵ X

i
 do //transfer tasks from X

i
 to X

j

 Assign v
k
 to X

j
;

 if Q(Π”) > 0 then

return Π”;

 }

 }

 for each CL
i
 ϵ ΠCUR

do {

 Π’ = ΠCUR – CL
i
;

 for all CL
j
 in IaaS do

 if C(CL
j
) < C(CL

i
) then {

 Π” = Π’ + CL
j
;

 for(cl
k
ϵ CL

i
){ //transfer transmission from CL

i
 to CL

j

 Assign cl
k
 to Cl

j
;

 if Q(Π”) > 0 then

 return Π”;

 }

 }

 for each X
i
 ϵ Π

CUR
 do {

 Π” = ΠCUR - X
i
;

 for each v
k
ϵ X

i
do { //transfer tasks from X

i
to other resource from ΠCUR

 Find resource X
j
 ϵ Π" such, that L(Π")is maximal after

 assigning v
k
 to X

j
;

 Assign v
k
 to X

j
;

 }

 if Q(Π”) > 0 then

return Π”;

 }

 return Φ;

}

Fig 4. Synthesis algorithm for cost minimization.

SŁAWOMIR BĄK, STANISŁAW DENIZIAK: SYNTHESIS OF REAL TIME DISTRIBUTED APPLICATIONS 749

The frequency of task activation depends on the number

of requests appearing during the given time period. For a

large number of requests the system will require more com-

puting power. Thus, the cost of IaaS services strongly de-

pends on the maximal estimated traffic in the city. Fig. 8 and

Table III present the dependence between the number of re-

quests and the cost of IaaS services for greedy and iterative

improvement algorithm. To allocate resources from the IaaS,

iterative improvement algorithm produced much better re-

sults than greedy algorithm. The comparison is shown in Ta-

ble III. Our algorithm allows the end users of IaaS to reduce

the cost of hiring cloud resources by over 50%.

V. CONCLUSIONS

We analyze the problem of allocating resources for re-

al-time tasks such that the cost is minimized and all the dead-

lines are met. In this paper the methodology for the synthesis

of reactive, real-time cloud applications accordant with the

Cloud Computing concept, was presented. We developed the

architectural model of the reactive RTCC system and we

proposed the method of specification for such systems, in the

form of a set of distributed Echo algorithms.

Next, the method of synthesis that guarantees the fulfill-

ment of all time requirements was proposed. The method

schedules all processes and transmissions on network re-

sources supported by cloud providers, while the cost of IaaS

services is minimized. Finally, we presented the design

process of the sample RTCC system, which underlines the

advantages of our methodology above greedy algorithm.

In our approach we use iterative improvement algorithm

for scheduling and allocation of new resources and we show

its advantage over the heuristic greedy algorithm. In the fu-

ture work we will consider developing a more sophisticated

method of optimization as well as more advanced methods

for the worst case analysis. Reactive RTCC systems are a

new challenge for future Cloud Computing. We believe that

in the future, RTCC systems will constitute an important

class of Cloud Computing systems, thus efficient design

methods will be very desirable.

REFERENCES

[1] IBMSmartCloud http://www.ibm.com/cloud-computing/us/en/what-

is-cloud-computing.html. Last access, April 2014

[2] C. S. Yoo, “Cloud Computing: Architectural and Policy

Implications”. Review of Industrial Organization, June 2011, 38.4:

405-421, http://dx.doi.org/10.1007/s11151-011-9295-7.

[3] A. Amies, H. Sluiman, QG. Tong and GN Liu, “Infrastructure as a

Service Cloud Concepts. Developing and Hosting Applications on the

Cloud” IBM Press, 2012.

[4] R. Buyya, J. Broberg, A. Goscinski, “Cloud Computing: Principles

and Paradigms" New York, USA: Wiley Press., 2011. pp. 1–44,

http://dx.doi.org/10.1002/9780470940105.

[5] D. Kyriazis et al, “A Real-time Service Oriented Infrastructure”

Annual International Conference on Real-Time and Embedded

Systems (RTES 2010). November 2010, Singapore. pp. 39-44,

http://dx.doi.org/10.5176/978-981-08-7654-8_R-47.

TABLE II: COST OF AVAILABLE IAAS SERVICES FOR ONE SERVER.

Server Processor Per hour

S1 1.7 GHZ 0.004 $

S2 2.4 GHZ 0.008 $

S3 2 × 1.7 GHZ 0.007 $

S4 2 × 2.4 GHZ 0.014 $

S5 4 × 1.7 GHZ 0.013 $

S6 4 × 2.4 GHZ 0.025 $

S7 4 X 1.5 GHZ 0.012 $

S8 4 X 1.2 GHZ 0.01 $

Fig 5. Database of resources available in the cloud.

S5b capacity 1700

M1 M2 M3 M4

S4b capacity 2400

S3a capacity 1700

M1 M2

M2M1

S4a capacity 2400

M1 M2

S2 capacity 2400

S1b capacity 1700

S1a capacity 1700

S5a capacity 1700

M1 M2 M3 M4

S7 capacity 1500

M1 M2 M3 M4

S6b capacity 2400

M1 M2 M3 M4

S6a capacity 2400

M1 M2 M3 M4

S8 capacity 1200

M1 M2 M3 M4

S3b capacity 1700

M2M1

Bandwidth 20
Bandwodth 10

Bandwidth 5
Bandwidth 1

Fig 6. Several sample tasks graph

T12(450)

T8(337)

T10(970)

T6(652)

T9(560)

T3(571)

T11(590)

T2(158)

T5(470)

T7(748)

T1(353)

T4(823)

T5(470)

T8(337)

T9(560)

T2(158)

T7(748)

T1(353)

T10(970)

T11(590)

T3(571)

T4(823)

T6(652)

T12(450)

T11(590)

T1(353)

T5(470)

T6(652)

T9(560)

T12(450)

T10(970)

T4(823)

T7(748)

T8(337)

T3(571)

T2(158)

T5(470)

T1(353)

T12(450)

T3(571)

T11(590)

T7(748)

T2(158)T10(970)

T6(652)

T9(560)

T8(337)

T4(823)

750 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

[6] R. Huang, H. Casanova, A. A. Chien, “Automatic resource

specification generation for resource selection” ACM/IEEE

Conference on Supercomputing, November 2007, Reno, pp 1–11,

http://dx.doi.org/10.1145/1362622.1362638.

[7] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, “The cost of

doing science on the cloud: the montage example” ACM/IEEE

Conference on High Performance Computing, Networking, Storage

and Analysis, November 2008, Austin, pp 1–12,

http://dx.doi.org/10.1109/SC.2008.5217932.

[8] L. Mengkun, C. Ming, X. Jun, “Cloud Computing: A Synthesis

Models for Resource Service Management” 2010 Second

International Conference on Communication Systems, Networks and

Applications (ICCSNA 2010), vol.2, June 2010, Hong Kong, pp. 208-

211, http://dx.doi.org/10.1109/ICCSNA.2010.5588886.

[9] Y. Zhi, Y. Changqin, L. Yan, “A Cost-based Resource Scheduling

Paradigm in Cloud Computing” 12th International Conference on

Parallel and Distributed Computing, Applications and Technologies,

October 2011, Washington, pp. 417-422,

http://dx.doi.org/10.1109/PDCAT.2011.1.

[10] W. Ybin, T. Ling, “Research on Cloud Design Resources Scheduling

Based on Genetic Algorithm” International Conference on Systems

and Informatics (ICSAI 2012), May 2012, Yantai, pp. 2651-2656,

http://dx.doi.org/10.1109/ICSAI.2012.6223598.

[11] F. M. Aymerich, G. Fenu, S. Surcis, “A real time financial system

based on grid and cloud computing” ACM symposium on Applied

Computing, March 2009, New York, pp 1219–1220,

http://dx.doi.org/10.1145/1529282.1529555.

[12] S. Liu, G. Quan, S. Ren, “On-Line Scheduling of Real-Time Services

for Cloud Computing” World Congress on Services, July 2010,

Miami, pp 459–464, http://dx.doi.org/10.1109/SERVICES.2010.109.

[13] W. Tsai, Q. Shao, X. Sun, J. Elston, “Real-Time Service-Oriented

Cloud Computing” World Congress on Services, July 2010, Miami,

pp 473–478, http://dx.doi.org/10.1109/SERVICES.2010.127.

[14] K. H. Kim, A. Beloglazov, R. Buyya, “Power-aware provisioning of

cloud resources for realtime services” International Workshop on

Middleware for Grids, Clouds and e-Science, November 2009, New

York, pp.1–6, http://dx.doi.org/10.1145/1657120.1657121.

[15] K. Kumar, J. Feng, Y. Nimmagadda, Y. Lu, “Resource Allocation for

Real-Time Tasks using Cloud Computing” International Conference

on Computer Communications and Networks (ICCCN), July 2011

Maui, pp. 1-7, http://dx.doi.org/10.1109/ICCCN.2011.6006077.

[16] G. C. Buttazzo, “Hard real-time computing systems: predictable

scheduling algorithms and applications”. Vol. 24. Springer, 2011, pp.

1 – 22, http://dx.doi.org/10.1007/978-1-4614-0676-1.

[17] G. Tel, “Introduction to Distributed Algorithms” Cambridge

University Press, 2nd edition, 2001.

[18] E. J. H. Chang, “Echo Algorithms: Depth Parallel Operations on

General Graphs” IEEE Transactions on Software Engineering, July

1982, pp. 391 – 401, http://dx.doi.org/10.1109/TSE.1982.235573.

[19] S. Bąk, R. Czarnecki, S. Deniziak "Synthesis of real-time cloud

applications for Internet of things" Turkish Journal of Electrical

Fig 7. Gantt chart for target scheduling of processes

P7

P1

P4

P15

P16

P11

P8

P12

P3

P13

P10

P9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 *100 [ms]

T1>T12

T1>T2

T1

T5>T11

T4>T6

T2>T10

T12>T5

T1>T4

T7>T8

T4>T7

T2>T3

T1>T9

T2>T3

T4>T5

T2>T4

T4>T6

T2

T2>T10

T1>T12

T2>T1

T7>T8

T4>T7

T3>T9

T5>T11

T12>T5

T2>T4

T3>T9

T7>T6

T1>T12

T2>T1

T7>T8

T3>T2

T3

T2>T10

T8>T11

T3>T7

T4>T2

T4>T1

T4>T7

T5>T12

T2>T3

T4>T6

T4

T7>T8

T1>T9

T4>T5

T5>T11

T2>T10

T5>T11

T5>T4

T12>T1

T5

T11>T8

T1>T9

T5>T6

T1>T2

T5>T12

T2>T10

T6>T7

T2>T3

T6>T8

T6>T5

T7>T10

T5>T12

T3>T9

T6>T7

T4>T1

T4>T2

T6>T4

T6

T7>T3

T6>T11

T3>T9

T1>T12

T7>T4

T7>T3

T8>T11

T7>T8

T7>T10

T7

T7>T6

T2>T1

T10>T2

T6>T5

T7>T3

T8>T11

T3>T9

T5>T12

T8>T7

T7>T4

T8>T6

T2>T1

T7>T10

T11>T5

T3>T2

T8

T1>T4

T1>T12

T9>T1

T2>T10

T5>T11

T3>T7

T9>T3

T9

T7>T8

T1>T2

T5>T6

T12>T5

T2>T3

T10>T7

T1>T9

T8>T11

T2>T1

T1>T12

T10>T2

T10

T7>T6

T2>T4

T12>T5

T7>T8

T5>T4

T1>T2

T11>T6

T1>T9

T11>T5

T11

T5>T12

T12>T1

T11>T8

T2>T3

T2>T10

T8>T7

T12>T5

T1>T9

T12>T1

T12

T5>T4

T2>T10

T1>T2

T2>T3

T5>T11

T8>T7

T5>T6

T11>T8

Fig 8. Dependence between the number of requests and the cost of IaaS

services for greedy and iterative improvement algorithm.

36 49 64 81 100 121 144

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

Greedy algorithm Iterat ive improvement algorithm

Number of tasks

C
o

st
 o

f
re

so
ur

ce
s

TABLE III TIME AND COST OF TASKS FOR GREEDY AND ITERATIVE

IMPROVEMENT ALGORITHM

Lp.
Number

of tasks

Greedy algorithm

Iterative

improvement

algorithm

Time

[ms]

Cost

[$/h]

Time

[ms]

Cost

[$/h]

1 36 4658.3333 0.01600 4658.3333 0.01600

2 49 4800.8333 0.02200 4884.3333 0.02155

3 64 4986.6667 0.05035 4346.6667 0.02480

4 81 4946.0000 0.05600 4938.0000 0.03010

5 100 4872.8265 0.10625 4921.0000 0.04550

6 121 4868.2500 0.13320 4714.2235 0.05655

7 144 4907.0000 0.13945 4987.0000 0.08075

AVERAGE COST 0,07475 0,03951

SŁAWOMIR BĄK, STANISŁAW DENIZIAK: SYNTHESIS OF REAL TIME DISTRIBUTED APPLICATIONS 751

Engineering and Computer Sciences, to be published,
http://dx.doi.org/10.3906/elk-1302-178.

[20] S. Bąk, R. Czarnecki, S. Deniziak "Synthesis of Real-Time
Applications for Internet of Things" Lecture Notes in Computer
Science vol. 7719, 2013 pp. 37-51, http://dx.doi.org/10.1007/978-3-
642-37015-1_4.

752 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

