
Benu: Operating System Increments for
Embedded Systems Engineer’s Education

Leonardo Jelenković, Domagoj Jakobović, Stjepan Groš
University of Zagreb

Faculty of Electrical Engineering and Computing,

Unska 3, 10000 Zagreb, Croatia

Email: {leonardo.jelenkovic, domagoj.jakobovic, stjepan.gros}@fer.hr

Abstract—Most of today’s computer systems, including rapidly
emerging embedded ones, rely on an operating system. Con-
sequently, the development of embedded systems and related
software often requires a deeper understanding of operating
systems. This paper presents a new incrementally built operating
system and a learning course formed around it. Each increment
builds on the previous one and introduces new system elements,
new concepts and solutions, and a new set of assignments for im-
proving or extending operations or simply demonstrating its use.
Increments and assignments are designed to extend theoretical
and practical knowledge in the operating system domain, give
experience with non-trivial software systems and their develop-
ment tools, familiarize the learner with basic computer hardware
components and demonstrate device driver construction. The
audience targeted by this operating system and course materials
includes advanced students with (basic) knowledge of computer
architecture, programming and operating systems. In addition,
materials may be used individually as part of a lifelong learning
process.

I. INTRODUCTION

E
MBEDDED computer systems are ubiquitous and have

become increasingly integrated into our environment,

thus increasing the need for engineers with appropriate skills.

Developing and maintaining such systems involves hardware

and software considerations. The software complexity inherent

in embedded systems may vary from a simple controlling

program running on a small micro-controller to a complex

distributed system. Furthermore, complexity and logical cor-

rectness are not enough. For embedded systems, software (as

well as hardware) must conform to additional requirements,

such as deterministic behavior, dependability, security, low

power consumption, long term operation and connectivity. To

fulfill such requirements, an engineer must have appropriate

skills and expertise. Computer science is a fast-developing

domain, and it is common for computer science engineers to

expand their skills long after getting their degrees, qualifying

them for new challenges. Some of the challenges for the

embedded system software developer are discussed in the

following.

Software development for a new project may start from

scratch or may reuse code from existing projects. Some simple

systems may be built from scratch in a short period, but

to achieve the required functionality in shorter periods, it is

usually better to start with existing elements, e.g., a similar

system or a collection of components. If there are no similar

systems or useful components to reuse, one may start by

selecting the operating system and appropriate development

tools that will be used as a base. The operating system

and development tools might be selected from the available

commercial off the shelf tools (COTS), such as µC/OS-II [1],

QNX [2], VxWorks [3], or from freely available tools, such

as Linux [4] and and FreeRTOS [5]. Possible disadvantages

of COTS systems may include price and possible problems

with customization because all system details and internal

component sources might not be available. The main problem

with freely available systems lies in the absence of technical

support (except in the form of free community forums).

Whether we use COTS, freeware or a custom-built system,

at some point of development, customizing the core system is

likely to be required. The reason for customization might be a

change in system requirements or a hardware change (e.g., a

new or changed device, part or system, prior to the existence

of official support). When system customization is required,

even if we have the complete source code, an operating

system (as for the core of any system) is a complex system,

and changes are difficult to implement. Deep knowledge of

operating systems is required if the desired change is to be

made without compromising the existing functionality.

To be a successful embedded system engineer, one must

understand computer architecture, have programming skills

and have a deeper understanding of operating systems. The

basics of those skills are usually acquired through education.

Improvement of these skills is possible with practice and ex-

perience. While knowledge of computer architecture and pro-

gramming language skill is usually improved through courses,

operating system expertise is harder to attain. Depending on

the instructor and the available options, operating system

exercises usually concentrate only on using operating system

operations through its interface (and improving understanding

in this way). Knowledge obtained in this fashion may be

adequate for a regular software engineer but is not sufficient

for an embedded systems engineer who might be asked to

customize some (operating system) core component.

A deeper knowledge of operating systems might be ac-

quired individually, using the literature and resources from

the Internet or through special seminars or courses. In this

paper, we present the educational system, Benu, whose source

code is freely available [6]. Benu was built primarily for

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 819–826

DOI: 10.15439/2014F237

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 819



education on operating systems in embedded and real-time

systems (RT), but it is generic enough that it can also be

used for education on operating systems in other areas. The

source code is accompanied by a textbook (currently only in

Croatian), as Benu is used in the course “Operating systems

for embedded computers” (OSFEC) [7].

Remainder of this paper is structured as follows. A com-

parison with similar systems is made in Section II. Section III

presents the basic concepts and ideas behind Benu. The main

part of the paper details the contents of the Benu increments,

which are presented in Section IV. Benu usability is discussed

in Section V. Conclusions are presented in Section VI.

II. RELATED WORK

Creating an operating system for education is an old idea

and has been performed many times in the past because exam-

ples are the best educational tools, especially those examples

that the teacher is comfortable using. A review of many such

systems, often called “instructional operating systems,” has

already been presented in several papers, e.g., [8] and [9].

A large number of such educational systems indicate the

complexity in teaching this subject and the possibility of many

different approaches, emphasis on different aspects of operat-

ing systems, different abstraction levels, influences of teacher

preferences and the number of students in groups and their

competences, i.e., their previous education. In this section, we

compare only a few instructional operating systems, primarily

highlighting features that are important for those systems when

comparing them to Benu.

MINIX [10] is a well-known instructional operating system,

modeled on UNIX, which was first introduced in the early

1980s and has since evolved to version 3. In addition to

educational use, mostly for understanding UNIX system archi-

tecture and micro-kernel concepts, MINIX was later developed

for systems with minimal resources, embedded systems, and

systems requiring high reliability. A classical operating system

textbook [11] details MINIX internals, providing its usage for

education.

Linux [4] is not built to be an educational tool. However,

because it was free from initial release, it has become fairly

popular in academia, and it is often used as a base for

student assignments in operating system courses. Because of

the magnitude of the Linux source code, the assignments

are mostly concentrated on utilizing operations that Linux

provides, not on modifying its internal coding. Linux is a

complete operating system, built to be effective and used on a

variety of computers, primarily targeting personal computers,

workstations and servers. Therefore, Linux source code, while

freely available, in authors view is too vast and complicated to

be used as an educational system for begginers. Only highly

persistent students can master Linux complexity and use its

internals as part of assignments.

The operating system µC/OS-II [1] is a small system,

designated for embedded and real-time systems, with very

limited hardware resources. It comes with a companion book,

and it is free for educational use. µC/OS-II was primarily

created for use in real-time systems, but because it is simple,

it is also adequate for education, perhaps more for individual

use by enthusiasts than in coursework.

Nachos [12] is a system skeleton prepared for student

assignments (in C++) that complete some of the Nachos

functionalities. Topics covered by Nachos include thread and

process management, paging, file systems and network subsys-

tems. Because solutions from previous assignments are used in

the next ones, students are highly motivated to do their best

in every assignment. Nachos comes with a MIPS processor

emulator for the UNIX environment, which somewhat limits

its use. Similar ideas used in Nachos are behind PortOS [13].

PortOS runs in an emulated environment, as a process in a

Windows operating system. Assignments prepared for PortOS

include multithreading, network and file subsystems.

Nachos and PortOS start with threads and are therefore

on a higher abstraction level than Benu. In addition, Benu

highlights the building process, building tools and advanced

features using C. MINIX, and especially Linux, are complete

operating systems, made to be used in more than one role,

while Benu is built just for education and research. µC/OS-II is

specifically designed for embedded and real-time systems and

has many mechanisms for low-level system control exposed

directly to user programs. For example, a user program may

temporarily disable some kernel components, such as inter-

rupts and scheduling. Although a few of such mechanisms

can be found in Benu, we do not encourage their usage; we

prefer accomplishing all such operations through the kernel.

III. BENU BASIC CONCEPTS

Benu is a collection of increments that uses a step-by-

step presentation of the core operating system operations, data

structures and algorithms, where each new increment intro-

duces only a few new subjects. Other educational operating

systems, while presenting a single topic, still use the complete

system, highlighting related elements from it. In Benu, using

increments, the student can focus better on only the subjects

introduced in that increment, thus simplifying the learning

process of an otherwise very complex system. The evolution

of operating system components is roughly presented through

increments, starting with the basic functionality in one incre-

ment and adding extended functionalities as they are needed.

In addition to operating system topics, using Benu in education

might improve the other skills required for embedded system

development. These skills include the advanced use of the

C programming language, experience with development and

debugging tools and methods, and familiarization with POSIX

for real-time and embedded systems.

For education, Benu can be used without supervision, sim-

ply progressing through prepared assignments. Better results

can be achieved faster if assignments are preceded with some

theoretical introduction, e.g., that presented in [7], with topics

covered, such as those presented in [14], or any operating sys-

tem textbook, e.g., [15], [11] or [16]. Source code dissection,

assignments and other experiments should follow theoretical

820 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



introductions to broaden students’ understanding. Every incre-

ment in Benu is associated with example assignments. New

components, methods or principles are carefully chosen and

added such that each new major increment brings the proper

number of new elements for ease of understanding. Some

concepts that are more radical and complex, such as threads

and processes, are introduced in several smaller increments.

Changes from one increment to the next can be easily tracked

using text or graphical tools, such as Meld [17].

The current version of Benu is prepared for both Intel i386

and ARM platforms. Although the i386 platform is not typical

for embedded systems, it has the advantage of providing edu-

cators with access to development tools, emulators, computers

and documentation. Adding support for other processors is

supported by the layered architecture of Benu, with a sepa-

rate hardware abstraction layer. As a development platform,

Linux is selected because all of the required tools, i.e., GNU

development tools [18], are freely available and easy to install

on Linux. Linux itself may be run as a development platform

in an emulated environment, requiring only the emulator to

be installed on the host computer (if the host computer is not

already Linux-based).

Based on our experience in teaching computer architecture,

programming languages and operating system basics as well

as using Benu in an advanced operating system course, we

observed that using Benu accomplished the following:

• A deeper understanding of the operating system, its

components, data structure, operations, algorithms and

limitations,

• Improvement of advanced programming skills, which

in turn produces shorter, more efficient, extendable and

more readable (and thus reusable) code,

• An understanding of the capabilities of developing and

debugging tools and computer emulators,

• The ability to build embedded system software from

scratch, not relying on any operating system interface,

and preparing images to be loaded into systems with

variety of memory configurations,

• Expertise with POSIX interfaces for timers, threads and

signals for real-time and embedded systems,

• The ability to navigate within and use larger source code

projects (written by others), the discovery of usual con-

cepts and practice in source code naming, file structure

and management tools, and

• An improvement in the student’s problem-solving skills.

We do not claim that Benu is the best choice in the field of

embedded operating system education, but it may be among

the easiest for beginners. Starting increments are simple and

do not require preparation. Students can start early, familiarize

themselves with the development environment and be prepared

for the more demanding increments that follow.

IV. CONTENTS OF INCREMENTS

Benu is created using basic operating system principles as

a base [15], [16] and is modified to better suit the embedded

system environment, simplified for educational purposes, and

TABLE I
MAJOR AND MINOR INCREMENTS IN BENU

Major increments – chapters Minor increments

Chapter_01_Startup 01_Startup

02_Example_clock

Chapter_02_Source_tree 01_Source_tree

02_Console

03_DEBUG

04_Debugging

Chapter_03_Interrupts 01_Exceptions

02_PIC

03_Dynamic_memory

04_Interrupts

Chapter_04_Timer 01_Time

02_One_timer

03_Timers

Chapter_05_Devices 01_Devices

02_Keyboard

03_Serial_comm

Chapter_06_Shell 01_Shell

02_Arguments

03_Programs

04_Makepp

Chapter_07_Threads 01_User_threads

02_Threads

03_Ext_context

04_Synchronization

05_Messages

06_Signals

05_Sched2

Chapter_08_Process 01_Syscall

02_User_mode

03_Programs_as_module

04_Programs_as_process

05_Static_processes

06_Processes

built for incremental topic introduction. Benu contains eight

major increments in the source code, which, for the rest of

this section, are just “increments” or “chapters”. Each chapter

has several minor increments, depending on the complexity

of the subjects presented in the chapter, as shown in Table

I. Details about each chapter, its purpose, the components

it presents, and possible assignments, are presented in the

following sections.

A. Chapter 01 – Development environment

The goal of Chapter 01 (with related materials from the

textbook) is to present the environment used for developing

system software, i.e., Benu, which will run on bare-bone

hardware (real or emulated). Compiling and running system

software requires special steps during the compilation and

linking phases, supported with appropriate configurations, and

is thus significantly different from compiling and running

application programs. Because of this straightforward goal, the

code is purposely simple; it just displays the "Hello World"

message on the console.

There are only three files in Chapter 01: two with source

LEONARDO JELENKOVIĆET AL.: BENU: OPERATING SYSTEM INCREMENTS 821



code (one in assembly and one in C) and one with shell script

used for compiling. The assembly code is small, but it is

required for processor initialization (stack pointer and status

register). The assembler then transfers control to a function

written in C. A single function is placed in a C file, i.e., a func-

tion that writes a text string into video memory, thus displaying

it on the console. While low-level operations implemented in

assembly code and device drivers might be interesting to some,

they are not essential for using and understanding Benu and

the principles it describes. It is possible to learn most operating

system concepts without a knowledge of assembly language

or device driver details; therefore, assembly and device drivers

are placed into a separate directory (from the next chapter)

to isolate them from the other increments and lessons. To

compile and link the source codes into an executable and run

it, a shell script is used only in this chapter. A shell script

better reflects the necessary steps involved and therefore better

serves the purpose of this chapter, which is to show how the

appropriate tools are used. The script illustrates how to start

the compiler and linker and how to create the system image

and start emulator, using all necessary flags and parameters.

Beginning with the next chapter, Benu uses standard build

tools, i.e., make with appropriate definitions across Makefiles.

The second minor increment of the first chapter demon-

strates how very simple systems can be implemented without

having an OS in a traditional sense. For that purpose, a simple

clock is implemented that uses hardware timers and displays

a counter on the screen.

Assignments for the first chapter should include only the

preparation of the development environment, e.g., installing

the required tools, downloading Benu, and compiling and run-

ning it in an emulated environment. The first few assignments

should also focus on using a revision control tool, such as Git

[19] or Subversion [20].

B. Chapter 02 – Layered structure

The instructional goal of the second chapter is to demon-

strate the modular and layered approaches to operating system

design. To reduce complexity, systems are often developed

modularly, using the “divide and conquer” approach. A single

module or component is simpler than an entire system, and it

is thus easier to develop and test. Furthermore, modules can

be concurrently developed by different programmers, reducing

development time.

Operating systems are designed and built in a modular

manner; each module is a “subsystem”. Typical subsystems

include input-output, memory management, thread and process

management, network, security and file subsystems.

Operating systems are also layered, and the layers commu-

nicate with one another using strictly defined interfaces in a

top-to-bottom fashion, i.e., a higher layer uses the services

of the immediately lower layer only. One of the purposes

of introducing layers is to separate smaller, architecture-

dependent code that sits immediately above the hardware,

often called the “hardware abstraction layer” (HAL), from the

larger architecture-independent code in the layers above. This

separation makes it easier to port the operating system across

different architectures because only the HAL has to be mod-

ified or rewritten. The architecture-independent code consists

of several layers, one built upon another. The first layer, called

the “kernel”, is immediately above the HAL and provides

the core operations for system resource management. System

resources include hardware components, such as devices, and

software components, such as synchronization objects and the

task scheduler. The kernel implements fine-grained operations

that manipulate system resources and provide an interface

for accessing them from the layer above, i.e., the application

programming interface (API) layer. The API layer (henceforth

referred to as “api”) uses the kernel layer to implement

any designed interface (e.g., POSIX [21]) for user programs,

i.e., the next higher layer. User programs use the “api” to

implement operations that are required by the user (which is

the highest layer of the operating system).

Benu adheres to the described layered approach with four

layers, named after directories where their code is placed: arch

(HAL), kernel, api and programs. There is also an additional

pseudo-layer, the library layer (“lib”), which captures the util-

ity functions used by the other layers, e.g., string manipulation

and list operations. A list of all of the layers as well as their

containing directories in Benu is shown in Fig. 1.

user

program layer (/programs)

api layer (/api) library

kernel layer (/kernel) (/lib)

hardware abstraction layer (/arch)

hardware

Fig. 1. Layers in Benu

In Chapter 02, the layers contain no functionality: the

corresponding directories are mostly empty, and they are just

placeholders for the components that will be implemented in

subsequent chapters.

Each layer has a clearly defined interface for the higher

layers. Fig. 2 shows an interface example introduced in

Chapter 04, when the user program uses the clock_nanosleep

operation. The function clock_nanosleep is defined in api as a

system call to the kernel function sys__nanosleep. The kernel

function uses the HAL interface arch_timer_set which calls

i8253_set_time_to_counter from the device driver (via the

timer interface function set_interval).

programs: [api] clock_nanosleep

kernel: [kernel] sys__clock_nanosleep

[kernel] ktimer_settime

[arch] arch_timer_set

arch: [arch] timer->set_interval

(=>i8253_set_time_to_counter)

Fig. 2. Interface chain for operation clock_nanosleep (in Chapter 04)

822 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



Interfaces that one layer provides for the next one are

defined in header files placed in the include directory (placed

in top level, same as those from Fig. 1).

The naming convention used throughout Benu follows cer-

tain prefix rules. Kernel functions that provide the interface to

the higher layer (i.e., to api) have the prefix sys__; internal

kernel functions (i.e., the ones used only within the kernel)

are prefixed with k_ or just k; functions that are part of HAL

are prefixed with arch_; and the device driver’s functions are

prefixed with a short device name.

Devices and subsystems are used through a predefined inter-

face. Chapter 02 defines the interface for printing characters on

the console, i.e., console_t (defined in include/types/io.h)

with the following elements:

int (*init)(void *p);

int (*clear)();

int (*gotoxy)(int x, int y);

int (*print)(int attr, char *text);

Each structure element is a function that implements a

specific operation. The same functionality may be achieved

by different devices or components. For example, for simple

console display, a graphics card can be used, as in Chapter

02, or a serial port connected to a terminal, as in Chapter 05.

Switching from one console to another is accomplished using

different objects (variables) that implement the same interface.

In Chapter 02, in kernel/startup.c, consoles for kernel

and user programs are selected using variables k_stdout and

u_stdout, both referencing variable vga_text, defined in the

device driver file arch/devices/vga_text.c.

The same principle for defining an interface is frequently

used in Benu, i.e., using the structure with functions and

parameters like console_t. Interfaces are defined for the

interrupt device (Chapter 03), timer devices (Chapter 04),

general devices (Chapter 05), and dynamic memory allocators

(Chapter 03). Interfaces make separations easier, replacing one

device or component with another simpler and source code

more readable.

Chapter 02 also presents possibilities for tracing and de-

bugging. Because the system being created uses (emulated)

hardware directly, debugging is harder than debugging a

traditional program which can be paused and inspected at any

moment. One primitive debugging method is to insert print

commands in the source code, e.g., with the printf operation

or with LOG and ASSERT macros that will be executed only in

the DEBUG mode. Another method is to use the appropriate tools

that enable the developer to stop (and examine) the system

while executing, such as the GNU debugger and the QEMU

emulator [22], which are used in the demonstration example.

Assignments for Chapter 02 can be focused on layered

architecture and on debugging. For example, the assignment

can be to divide the console into two parts, one for kernel

messages and the other for program output. Implementation

through two different console_t objects, almost the same as

the one provided, will require little coding but will need im-

plementation in nearly all layers. Debugging can be practiced

by requesting stops and system inspections at defined points

or by discovery of covertly inserted bugs that cause system

failures.

C. Chapter 03 – The interrupt subsystem

Interrupts are very important mechanisms, not only for man-

aging devices but also for other purposes, e.g., protection from

system calls, thread scheduling (timer interrupts), memory

management and program failure detection. The instructional

goal of this chapter is the presentation of interrupt handling

methods in the operating system. The presented material is,

by necessity, simplified and therefore has some limitations,

but it also offers space for possible extensions using student

assignments.

The primary function of the interrupt subsystem is to pro-

vide an interface for connecting the interrupt handler functions

(which might be part of other subsystems) with interrupts,

i.e., the functions that will be used as interrupt handlers. The

interface for registering the interrupt handler function hnd with

an interrupt identified by number id is defined in HAL as

follows:

arch_register_interrupt_handler(id, hnd);

For every source of interrupts identified by an interrupt

number, at least one handler function can be defined. When

the interrupt occurs, all handlers for that interrupt are called

sequentially.

Benu uses an Intel 8259 programmable interrupt controller

(PIC) in HAL through the arch_ic_t interface, making future

replacements with other interrupt controllers (e.g., APIC)

easier. Chapter 03 defines the interrupt subsystem but handles

only the processor’s interrupts because no other device driver

is used in Chapter 03. Device drivers are added in ensuing

chapters, i.e., the timer in Chapter 04 and the keyboard and

UART in Chapter 05.

Registering more interrupt handler functions for a single

interrupt number can be accomplished using a static data

structure (i.e., an array with predefined size for each interrupt

number) or a dynamic data structure, such as a list. A list

provides more flexibility and less overall memory consump-

tion, but requires dynamic memory management. Because

dynamic memory management will also be required for other

subsystems, it is introduced in this increment. Two algorithms

for dynamic memory management are presented: the simple

“first fit” (FF) method with a “last in, first out” list of free

blocks and the more complex “two level segregated first”

(TLSF) method [24]. FF is simpler, and, on average, faster

than TLSF. However, TLSF provides reduced fragmentation;

and more importantly, the execution time complexity of TLSF

is O(1), while the worst case for FF is O(n), where n equals

the number of free blocks. Therefore, TLSF is a candidate for

use in real-time systems.

Student assignments for Chapter 03 include improvements

to the interrupt subsystem, such as adding priorities to existing

interrupt handlers. Then, when multiple interrupts overlap,

LEONARDO JELENKOVIĆET AL.: BENU: OPERATING SYSTEM INCREMENTS 823



they can be handled according to their priorities. Other as-

signments can be focused on implementing additional dynamic

memory management algorithms, such as “best fit”.

D. Chapter 04 – Time management

Most program activities, especially in embedded systems,

must be executed in a timely manner. Therefore, the operating

system must provide support for time management through

a timer subsystem. Most required operations include system

time control (“set” and “get” system time), thread execution

delays and programmable future actions, i.e., alarms. The

operating system also uses time for managing input/output

devices, scheduling and maintenance.

The timer subsystem implemented in Benu consists of two

components: a lower-level component implemented in HAL

and a higher-level component implemented in the kernel.

The component implemented in HAL uses an Intel 8253

programmable interrupt timer (PIT) through the arch_timer_t

interface. The primary operations provided by that interface

include keeping system time and a single alarm, which, upon

alarm expiration, forwards a call to the kernel. The component

implemented in the kernel extends capabilities to multiple

alarms available to the kernel and programs and provides

operations for program delays.

Assignments for Chapter 04 may include extensions of the

timer subsystem. For instance, absolute times can be changed

to relative times or the sorted list of alarms may be replaced

with some more efficient structure; monotonic clock can be

added to the system, a clock that can’t be changed with *set*

interface (as current real-time clock can); a software watchdog

timer can be implemented; other more advanced hardware

devices than the Intel 8253 can be used to achieve better

resolution for time management.

E. Chapter 05 – Device interface

Every device in a computer has its own specifications. To

simplify device management, devices are grouped into classes,

and an interface is defined for each class. When creating

a device driver for a device, the appropriate interface must

be implemented. The simplest device driver interface must

include functions for sending data to the device and functions

for reading data from the device. Such an interface may not be

as efficient as a more complicated interface that, for example,

uses direct memory access capabilities of the devices, but it is

a good starting point for illustrating the integration of device

control into an operating system. For that reason, Benu uses

a simple interface defined by the structure device_t (defined

in include/arch/device.h) with the following functions:

int (*init)(uint flags, void *parm, device_t *dev);

int (*destroy)(uint flags, void *parm, (...) );

int (*send)(void *data, size_t size, (...) );

int (*recv)(void *data, size_t size, (...) );

void (*irq_handler)(int irq, void *dev);

int (*callback)(int irq, void *dev);

The usage of the device_t interface is demonstrated on

three devices for which the device driver is prepared within

Benu: the display driver (replacing console_t), a keyboard

driver using the Intel 8042 controller, and a serial port using

the 16550 UART device. The interface device_t is intended

for use only within the kernel. The kernel allows programs

to access these interfaces indirectly through sys__device_*

system calls (*open, *close, *read, and *write).

Assignments for this chapter may include introducing the

program (thread) blocking state to read/write operations until

they are completed on a device. Other assignments include

adding device drivers for other devices or improvement to

current devices, e.g., adding scroll history capabilities to the

console display driver.

F. Chapter 06 – Command shell

The interfaces offered to users on today’s computer systems

range from graphical interfaces, with buttons or menus, to

console-oriented interfaces, such as the command line inter-

face, where the user types commands to be executed. Because

Benu only has a text-based console, a command-line interface

is implemented and presented. From an educational point of

view, the implementation of a command line user interface is

useful for two reasons: parsing the command line and sending

parameters to programs (as strings, without interpretation).

The second novelty introduced in Chapter 06 is in the

compile script (Makefile). Every program from the programs

folder may be independently included in or excluded from

compilation. This change further distances the program layer

from the kernel, making the kernel (and thus HAL and api)

potentially usable for many purposes.

Assignments for this chapter may include improvements

to the shell program, e.g., adding history and auto-complete

features.

G. Chapter 07 – Thread management

The systems presented in the previous chapters or the

systems based on them (e.g., created as assignments) are very

simple. Still, they may be sufficient for numerous embedded

systems. More complex systems require additional features,

such as multithreading and processes. Introducing those fea-

tures has a strong impact on all of the system components,

making the system significantly more complex and larger, and

thus it is not recommended if those features are not required

by the embedded system.

Multithreading support simplifies complex system imple-

mentation. Independent tasks may be run independently as

threads, with their own timings and resource requirements that

are more easily coded and satisfied at runtime.

Based on our teaching experience, we believe that mul-

tithreading programming is one of the most difficult sub-

jects in computer science education. Thinking “in parallel”

is required, and any shared resource must be considered

and properly protected. Synchronizations via semaphores and

monitors have to be carefully designed to achieve desired

sequences and avoid deadlocks or simultaneous changes on

824 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



any shared resource. Multithreading is increasingly important

because modern processors are multicore and manycore and

require multithreading for using all of the processing power

the processors can provide. Thus, many operating system and

programming courses emphasize multithreading with the other

subjects.

The multithreading covered in Benu includes both lower-

level kernel operations, such as thread creation with resource

allocation and context switching, and higher-level operations,

such as scheduling, synchronization and communication. A

priority scheduler is used with “first in, first out” as the

second level scheduling criteria (for threads with equal prior-

ity). Semaphore and monitor synchronization mechanisms are

included, and communication is provided through messages

and signals.

Many assignments can be created for Chapter 07. Threads

can be used for kernel operations, e.g., in an interrupt sub-

system for processing individual interrupts. Existing thread

operations can be improved or extended. Semaphores and

monitors may be extended with “try-wait” and “timed-wait”

operations or improved with priority inheritance protocols.

New synchronization and communication mechanisms could

be added, such as barrier, read/write locks and pipes. Program

assignments that solve some synchronization problems can

also be created.

H. Chapter 08 – Process Management

Programs, especially more complex ones, may have bugs

that might compromise the system. In a multitasking en-

vironment, there should exist mechanisms that protect the

kernel and other tasks from a malfunctioning task. The usual

protection mechanisms include processor operation modes and

memory protection, both requiring hardware support from the

processor. If the system is running in unprivileged processor

mode, the thread may not be able to execute instructions that

could compromise the entire system. For example, if a thread

cannot disable interrupts but must instead use a synchroniza-

tion function for a critical section, the eventual error that leads

to an infinite loop in a critical section will only affect that

thread and other threads that use the same critical section

object, while the rest of the system will be unaffected. The

same reasoning is true with memory separation methods, such

as memory protection and virtual memory. If a thread cannot

change memory locations outside its defined boundaries, it

cannot compromise kernel data or other programs.

Grouping threads that work on the same operation into a

single process (i.e., threads that are created within the same

instance of a single program) will isolate them from other

threads, and vice versa. An error in one thread will usually

have only a local effect on threads in the same process. Errors

that compromise a shared system resource, like a device, will,

however, still be an issue for the entire system.

Chapter 08 brings a further separation of programs and

the kernel by introducting the privileged and unprivileged

processor modes, forcing software interrupts as mechanisms

for calling kernel functions (syscalls). Additionally, memory

protection is introduced using segment registers of the Intel

80386 processor family for simple virtual memory imple-

mentation. Threads use logical addresses and cannot reach

outside the boundaries of their processes. Any attempt to do

so will trigger an interrupt, and the thread will be terminated.

Compiling programs using logical addresses complicates the

building process. Since kernel and programs must be prepared

for different locations (physical and logical) they are separated

into different objects after compilation. To simplify emulation

in those increments GRUB was used as boot loader where

program objects can be prepared and loaded as modules.

Assignments for Chapter 08 might be same as those for

Chapter 07 because major differences in the chapters are in

the implementation of the syscall mechanism via a software

interrupt with the address space changing from the user to the

kernel, from logical (process) to physical address space. Both

changes require special syscall parameter handling, which

provides a sufficient challenge to adopt.

V. USING BENU

Even in the last increment (that includes all) there are 56

source code files (.c) and 73 header files (.h) (including the 16

example programs). Furthermore, about half of them are only

for layering purposes (parameter checking and forwarding

call to lower level function). The combined source code of

the kernel, HAL, library and api (all except headers and

example programs) have approximately 7,500 lines of code

(as counted by the cloc program). A system this small cannot

have advanced components, such as paging, file systems and

networking, which are required in more complex systems.

However, some simpler systems, such as the ones used in

embedded computers, may use an operating system like Benu

because they may not need advanced components at all. Future

work on Benu includes developing those advanced compo-

nents, though in some minimalistic form that has yet to be

devised. Otherwise, such complexity will significantly reduce

its educational value. The components present in Benu are

built on basic principles, avoiding too many complexities that

may have better properties. From an educational viewpoint,

this approach leaves the basic course straightforward and

allows for advanced student assignments and projects.

Although Benu is built on somewhat different ideas than

Linux and MINIX, it can be a good prelude to studying

them. Because Benu is not a complete operating system, it

can provide a simpler example for embedded systems that

do not need advanced components. Due to their simplicity,

Benu source codes do not have as complex interconnections

in their kernel as real systems have (e.g., Linux). Compared

to other systems, the components in Benu are easier to change

and replace, and new components are easier to integrate and

evaluate, thus making Benu also usable in operating system

research. For example, current synchronization mechanisms

can be changed and extended with other models (e.g., [23]),

priority inheritance and priority ceiling protocols can be

embedded, deadlock detection can be implemented, thread

scheduling can be upgraded, and interrupts can be processed

LEONARDO JELENKOVIĆET AL.: BENU: OPERATING SYSTEM INCREMENTS 825



with threads [24]. As example extensions, “round robin” (RR)

and “earliest deadline first” (EDF) schedulers are implemented

and presented in Benu.

In addition to Benu source code, a companion textbook is

available to students (currently only in Croatian). The textbook

is tightly coupled to Benu but includes theoretical explanations

of operating system topics, excluding advanced components

such as networking and file systems. A quick start with Benu is

possible with a basic knowledge of computer architecture and

operating systems, and a moderate knowledge and experience

in the C programming language. Therefore, a Benu course

should best be placed after courses that cover fundamentals.

In addition, Benu could be learned as a post-graduate, as

part of the lifelong education process. Benu targets students

interested in operating system internals and experimentations

with it and students interested in software development for

embedded computers.

Benu has been used as a teaching tool since the 2009/2010

academic year, when OSFEC was offered as an elective

course in master computing science studies. Most students

who take this course show much interest, and most of them

successfully complete the exams. However, for some students,

the assignments and exams are harder to complete. After an

analysis, it was found that the students who had problems did

not have the recommended prerequisite courses in bachelor

studies, especially the courses that exercise C programming

skills.

VI. CONCLUSION

Mastering operating system topics, including theory, imple-

mentation details, tools and common practices, can be faster

and more interesting for students if a simple system such as

Benu is used in teaching and assignments. The uniqueness

of Benu among other instructional operating systems is in

its incremental build structure, allowing gradual introduction

of operating system components. Each increment logically

extends the previous one with only a few new elements, which

are, consequently, easier to adopt.

An operating system is a complex system, and, even with

simplifications, as in Benu, many students may find it difficult

to master. However, the majority of students do not need

to master all of the components of an operating system.

For some, it will be enough to master the kernel layer or

even just a specific components, like the interrupt subsystem,

timer subsystem and threads. For others, Benu may be just a

starting point, one step toward understanding more complete

and complex systems.

A quantitative comparison of Benu with other (instruc-

tional) operating systems is not performed. To perform such

a comparison, we cannot just use the other systems, but we

would also need to prepare teaching materials and assignments

closely coupled with them, as the current OSFEC materials

are coupled to Benu. Nevertheless, based on our experience

with Benu, we can conclude that Benu offers a great deal for

independent study and exercise and provides a base for faster
learning, not only in the operating system domain but also in

embedded system software development.

ACKNOWLEDGMENT

This work was supported by FP7 project Embedded Com-

puter Engineering Learning Platform (E2LP).

REFERENCES

[1] J. J. Labrosse, MicroC OS II: The Real Time Kernel, 2nd ed. CMP-
Books, 2002. ISBN 1578201039

[2] QNX operating systems. [Online]. Available: http://www.qnx.com/
products/neutrino-rtos/

[3] Wind River VxWorks. [Online]. Available: http://www.windriver.com/
products/vxworks/

[4] The Linux kernel archives. [Online]. Available: http://www.kernel.org
[5] FreeRTOS. [Online]. Available: http://http://www.freertos.org/
[6] L. Jelenković. (2012) Benu source code. [Online]. Available:

https://github.com/l30nard0/Benu
[7] ——. (2010) Operating system for embedded computers, course

homepage (in croatian). [Online]. Available: http://www.fer.unizg.hr/en/
course/osfec

[8] C. L. Anderson and M. Nguyen, “A survey of contemporary
instructional operating systems for use in undergraduate courses,” J.

Comput. Sci. Coll., vol. 21, no. 1, pp. 183–190, Oct. 2005. [Online].
Available: http://dl.acm.org/citation.cfm?id=1088791.1088822

[9] Y.-P. Cheng and J.-C. Lin, “Awk-Linux: A lightweight operating
aystems courseware,” IEEE Trans. Educ., vol. 51, no. 4, pp. 461–
467, nov. 2008. doi: 10.1109/TE.2007.912571. [Online]. Available:
http://dx.doi.org/10.1109/TE.2007.912571

[10] MINIX 3. [Online]. Available: http://www.minix3.org
[11] A. S. Tanenbaum and A. S. Woodhull, Operating systems design and

implementation, 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 2006. ISBN 0131429388

[12] W. A. Christopher, S. J. Procter, and T. E. Anderson, “The Nachos
instructional operating system,” in Proceedings of the 1993 Winter

USENIX Conference, 1993, pp. 479–488.
[13] B. Atkin and E. G. Sirer, “PortOS: an educational operating

system for the post-PC environment,” in Proceedings of the

33rd SIGCSE technical symposium on Computer science education,
2002. doi: 10.1145/563517.563384 pp. 116–120. [Online]. Available:
http://dx.doi.org/10.1145/563517.563384

[14] C. Yang, “Computer operating systems in electrical engineering
curriculum,” IEEE Trans. Educ., vol. 36, no. 1, pp. 177–180, 1993.
doi: 10.1109/13.204841. [Online]. Available: http://dx.doi.org/10.1109/
13.204841

[15] A. Silberschatz, G. Gagne, and P. B. Galvin, Operating system concepts,
8th ed. Wiley, 2011. ISBN 1118112733

[16] L. Budin, M. Golub, D. Jakobović, and L. Jelenković, Operating systems

(in Croatian), 3rd ed. Zagreb: Element, 2013. ISBN 9789851976107
[17] Meld: Diff and merge tool. [Online]. Available: http://meld.sourceforge.

net
[18] GNU operating system. [Online]. Available: http://www.gnu.org
[19] Git (distributed version control system). [Online]. Available: http:

//git-scm.com/
[20] Apache Subversion (version control system). [Online]. Available:

http://subversion.apache.org/
[21] IEEE and O. Group. The open group base specifications issue 7.

[Online]. Available: http://pubs.opengroup.org/onlinepubs/9699919799/
[22] QEMU: open source processor emulator. [Online]. Available: http:

//wiki.qemu.org
[23] P. A. Buhr, M. Fortier, and M. H. Coffin, “Monitor classification,”

ACM Comput. Surv., vol. 27, pp. 63–107, March 1995. doi:
10.1145/214037.214100. [Online]. Available: http://dx.doi.org/10.1145/
214037.214100

[24] S. Kekckler, A. Chang, W. Chatterjee, and W. Dally, “Concurrent event
handling through multithreading,” IEEE Trans. on Computers, vol. 48,
no. 9, pp. 903–916, 1999. doi: 10.1109/12.795220. [Online]. Available:
http://dx.doi.org/10.1109/12.795220

826 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014


