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Abstract—This paper proposed a comprehensive algorithm for
building machine learning classifiers for Breast Cancer diagnosis
based on the suitable combination of feature selection methods
that provide high performance over the Area Under receiver op-
erating characteristic Curve (AUC). The new developed method
allows both for exploring and ranking search spaces of image-
based features, and selecting subsets of optimal features for
feeding Machine Learning Classifiers (MLCs). The method was
evaluated using six mammography-based datasets (containing
calcifications and masses lesions) with different configurations
extracted from two public Breast Cancer databases. According to
the Wilcoxon Statistical Test, the proposed method demonstrated
to provide competitive Breast Cancer classification schemes
reducing the number of employed features for each experimental
dataset.

I. INTRODUCTION

B
REAST CANCER is a major concern and the second-

most common and leading cause of cancer deaths among

women [1]. According to published statistics, Breast Cancer

has become a major health problem in both developed and

developing countries over the past 50 years. Its incidence

has increased recently with an estimated of 1,152,161 new

cases in which 411,093 women die each year [2]. At present,

there are no effective ways to prevent it, because its cause

remains unknown. However, an efficient diagnosis in its early

stages can give a woman a better chance of full recovery [2].

Therefore, its early detection can play an important role in

reducing the associated morbidity and mortality rates.

Breast Cancer screening has proved to be the best way

to detect cancer early. A useful and suggested approach is

the double reading of mammograms (two radiologists read

the same mammograms) [3], which has been advocated to

reduce the proportion of missed cancers, but the workload

and cost associated are high. With the support of Breast

This work was supported by the Breast Cancer Digital Repository Consor-
tium (BCDR - http://bcdr.inegi.up.pt))

Cancer Computer-Aided Diagnosis (CADx) systems only one

radiologist is needed to read each mammogram rather than

two.

There is good evidence in the literature that Breast Cancer

CADx systems can improve the AUC performance of ra-

diologists [4] [5] [6] [7] [8], e.g. in [9], it was presented

an evaluation of the variation of performance in terms of

sensitivity and specificity of two radiologists with different

experience in mammography (6 and 2 years respectively), with

and without the assistance of two different CADx systems

(SecondLook and CALMA). The evaluation was made on a

dataset composed by 70 images of patients with cancer (biopsy

proven) and 120 images of healthy breasts (with a three years

follow up). The results showed that the use of a CADx allows

for a substantial increment in sensitivity (up to 15.6%) and

a less pronounced decrement in specificity, which was more

significant for the least experienced of the radiologists.

However, the performance of current and future commercial

CADx systems still needs to be improved so that they can meet

the requirements of clinics and screening centers [10] [11].

In this work, we proposed a new method supported on the

combination of five Feature Selection Methods (FSMs) and

MLCs respectively, for building Breast Cancer classification

schemes (i.e. calcifications and mases) that provide the high

performance over the AUC curve. The selected FSMs are

filter-based methods, which use heuristics (statistics) based

on general characteristics of the data rather than a MLC

(as wrapper or embedded paradigm) to evaluate the merit of

features [12] [13] [14] [15]. As an optimal subset of features

is always relative to a certain evaluation function [16], it was

used different FSMs with different evaluation function: the

traditional CHI-Square Discretization (CHI2) [17] based on

the chi-square statistic function, Information Gain (IG) [18]

based on the information measure, One-Rule (1Rule) [19]

based on rules as a principal evaluation function and Re-
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lief [20] based on the distance measure. Also, it was used

an algorithm developed in previous work [21] named RMean

based on a voting function for indexing relevant features (see

Algorithm 2, which is revisited here). The proposed method

dynamically form subsets of features extracted from resultant

rankings (one by each FSM applied) for feeding five machine

learning models: Feed Forward Back-Propagation (FFBP) neu-

ral network [22], Support Vectors Machine (SVM) [23], Naive

Bayes (NB) [24], Linear Discriminant Analysis (LDA) [25]

and k-Nearest Neighbors (kNN) [26] respectively. Finally, the

selection of the best classification scheme is based on the

Wilcoxon Statistical Test [27] [28] following two criteria:

(1) the higher obtained AUC value and (2) if there is clas-

sification performances tied, the one using less number of

employed features is preferred. The method was evaluated on

six datasets containing calcifications and masses lesions (with

differents configurations) extracted from two public Breast

Cancer databases and and it is included a statistical comparison

of achieved results.

The remainder of the work is ordered as follows: the Materi-

als and Methods section, overviews the employed databases,

FSMs and MLCs. Also, describes in detail the proposed

method and the experimental setup design for its evaluation.

The Results and Discussion section presents an exploratory

comparison based on the obtained AUC scores using the

Wilcoxon statistical test [27] [28] to assess the meaningfulness

of differences between classification schemes. Finally, Conclu-

sions and Future work are drawn in the last section.

II. MATERIALS AND METHODS

A. Databases

This work is supported on two public databases: the Breast

Cancer Digital Repository (BCDR), which is the first wide-

ranging annotated Portuguese Breast Cancer database, with

anonymous cases from medical historical archives supplied

by Faculty of Medicine - Centro Hospitalar de São João at

University of Porto, Portugal [29] and the Digital Database

for Screening Mammography (DDSM). For convenience, the

DDSM images used in this study were obtained from the

Image Retrieval in Medical Applications (IRMA) project

(courtesy of TM Deserno, Dept. of Medical Informatics,

RWTH Aachen, Germany) where the original LJPEG images

of DDSM were converted to 16 bits Portable Network Graph-

ics (PNG) format [30] [31].

The BCDR is composed of 1734 patient cases with mam-

mography and ultrasound images, clinical history, lesion seg-

mentation and selected pre-computed image-based descriptors;

each case may have one or more Region of Interest (ROI)

with associated Pathological Lesion (PL) segmentations (for

different PLs), typically in Mediolateral Oblique (MLO) and

Craniocaudal (CC) images of the same breast.

On the other hand, the DDSM database is composed by 2620

patient cases divided into three categories: normal cases (12

volumes), cancer cases (15 volumes) and benign cases (14

volumes); like in the BCDR, each case may have one or more

associated PL segmentations, usually in MLO and CC image

views of the same breast.

B. Feature Selection Methods

Several types of extracted features (e.g. intensity statistics,

shape and texture) from mammograms have been combined to

form subsets of features, which extensively provided signifi-

cant information for lesions classification [32] [33] [34] [35].

However, selecting the most appropriate subset of features is

still a very difficult task; usually a satisfactory instead of the

optimal feature subset is searched.

The selected methods were all derived from the filter

paradigm, because its execution is a one step process without

any data exploration (search) involved and are also indepen-

dent of classifiers [36].

1) CHI2 Discretization: This method consists on a justified

heuristic for supervised discretization [17]. Numerical features

are initially sorted by placing each observed value into its own

interval. Then the chi-square statistic (x2) is used to determine

whether the relative frequencies of the classes in adjacent

intervals are similar enough to justify merging. The extent

of the merging process is controlled by an automatically set

x2 threshold. The threshold is determined through attempting

to maintain the fidelity of the original data.

2) IG method: The IG measurement normalized with the

symmetrical uncertainty coefficient [18] is a symmetrical

measure in which the amount of information gained about

Y after observing X is equal to the amount of information

gained about X after observing Y (a measure of feature-

feature intercorrelation). This model is used to estimate the

value of an attribute Y for a novel sample (drawn from the

same distribution as the training data) and compensates for

information gain bias toward attributes with more values.

3) 1Rule: This method estimates the predictive accuracy

of individual features building rules based on a single feature

(can be thought of as single level decision trees) [19]. As it

is used training and test datasets, it is possible to calculate a

classification accuracy for each rule and hence each feature.

Then, from classification scores, a ranked list of features is

obtained. Experiments with choosing a selected number of the

highest ranked features and using them with common machine

learning algorithms showed that, on average, the top three or

more features are as accurate as using the original set. This

approach is unusual due to the fact that no search is conducted.

4) Relief: This method uses instance based learning to

assign a relevance weight to each feature [20]. Each feature

weight reflects its ability to distinguish among the class values.

The feature weight is updated according to how well its values

distinguish the sampled instance from its nearest hit (instance

of the same class) and nearest miss (instance of opposite

class). The feature will receive a high weight if it differentiates

between instances from different classes and has the same

value for instances of the same class. For nominal features it

is defined as either 1 (the values are different) or 0 (the values

are the same), while for numeric features the difference is the

actual difference normalized to the interval [0..1].
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C. Machine Learning Models

The discrimination between samples of two classes may be

formulated as a supervised learning problem, which is defined

as the prediction of the value of a function for any valid

input after training a learner using examples of input and

target output pairs [37]. For the problem at hand, the function

has only two discrete values: benign or malignant. Hence the

problem can be modeled as a two-class classification problem.

A variety of MLCs have been applied in CADx ap-

proaches for Breast Cancer detection/classification. The

Artificial Neural Networks (ANN) [14] [23] [38] [39],

SVM [14] [22] [23] [37] [39] [40] and LDA [41] [42] seem

to be the most commonly used type of classifiers. Other less

popular, but perform very well are NB [43] [44] [45] and

kNN [25] [43] classifiers respectively.

A brief description of these MLCs is given here:
1) FFBP Neural Network Classifier: The FFBP neural

network is a particular model of ANN, which provides a

nonlinear mapping between its input and output according

to the back-propagation error learning algorithm. This model

has demonstrated to be capable of approximating an arbitrarily

complex mapping within a finite support using only a sufficient

number of neurons in few hidden layers (all layers using a

sigmoid function as kernel type) [22].
2) SVM Classifier: SVMs are based on the definition of an

optimal hyperplane, which linearly separates the training data.

In comparison with other classification methods, a SVM aims

to minimize the empirical risk and maximize the distances

(geometric margin) of the data points from the corresponding

linear decision boundary [23].
3) NB Classifier: The NB classifier is based on probabilis-

tic models with strong (Naive) independence assumptions [24].

It assumes that c is a class variable depending on n input

features: x1, x2, · · · , xn. The prediction of c can be described

by the following conditional model: p(c|x1, x2, · · · , xn) and

according to the Bayes’ theorem:

p(c|x1, x2, · · · , xn) =
p(c)p(x1, x2, · · · , xn|c)

p(x1, x2, · · · , xn)

where p(c) is the prior probability of c, p(x1, x2, · · · , xn|c)
is the conditional probability depending on c, and

p(x1, x2, · · · , xn) is the probability of input features. If each

feature xi is conditionally dependent, as the denominator

p(x1, x2, · · · , xn) does not depend on c, which is actually a

constant when features are given; the conditional probability

over the class variable c can be expressed as:

p(c|x1, x2, · · · , xn) =
1

z
p(c)

n
∏

i=1

p(xi|c)

where z is a normalization constant. The above NB classifier

can be trained based on the relative frequencies shown in the

training set to get an estimation of the class priors and feature

probability distributions. For a test sample, the decision rule

will be picking the most probable hypothesis (value of c)
which is known as the maximum a posteriori decision rule

using the above model.

4) LDA Classifier: LDA is a traditional method for clas-

sification [25]. The basic idea is to try to find an optimal

projection (decision boundaries optimized by the error crite-

rion), which can maximize the distances between samples from

different classes and minimize the distances between samples

from the same class. For the binary classification, observations

are classified by the following linear function:

gi(x) = WT
i x− ci 1 ≤ i ≤ 2

where WT
i is the transpose of a coefficient vector, x is a

feature vector and ci is a constant as the threshold. The values

of WT
i and ci are determined through the analysis of a training

set. Once these values are determined, they can be used to

classify the new observations (smallest gi(x) is preferred).

5) kNN Classifier: The kNN classifier is a nonparametric

technique called a ”lazy learning” because little effort goes

into building the classifier and most of the work is performed

at the time of classification. The kNN assigns a test sample to

the class of the majority of its k-neighbors; that is, assuming

that the number of voting neighbors is k = k1 + k2 + k3
(where ki is the number of samples from class i in the k-

sample neighborhood of the test sample, usually computed

using the Euclidean distance), the test sample is assigned to

class m if km = max(ki), i = 1, 2, 3 [26].

D. Proposed Method

The proposed method is supported on the combination of

five FSMs and MLCs respectively, for building Breast Cancer

classification schemes that provide the high performance over

the AUC curve.

The employed FSMs are filter methods, which use heuristics

(statistics) based on general characteristics of the data rather

than a MLC (as wrapper or embedded paradigm) to evaluate

the merit of features [12] [13]. As an optimal subset of features

is always relative to a certain evaluation function [16], the

selected FSMs were: CHI2 discretization [17] based on the

chi-square statistic function, IG [18] based on the information

measure, 1Rule [19] based on rules as a principal evaluation

function, Relief [20] based on the distance measure and

the recently developed RMean method [21] based on a

voting function (averaging each feature position) for indexing

relevant features (see Algorithm 2, which revisited here).

As it is shown in the Algorithm 1, the dataset D and the

total of features in the initial subset nS constituted the

starting point of the proposed method. Once, this method is a

multistep modelling procedure, the application of the k-fold

Cross Validation (CV) method [46] to the entire sequence

of modelling steps guarantee reliable results [47]. Thus,

it was applied 10 times 10-CV before features ranking to

avoid giving an unfair advantage to predictors, and before

classification step to prevent overfitting of classifiers to

the training set [46] (see Algorithm 1 step 3 and 13). The

application of FSMs on the processed dataset Scv produced

five different ranking of features (see Algorithm 1 step 4 to

8). Then, from each ranking of features, it were dynamically

built ranked subset of features with different size Sini.
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Algorithm 1 Proposed method

Require: D[f1, f2, f3, ..., fn] : n ≥ 2;

nS ← maximum number of features in the initial subset;

Ensure: C(best); Best classification scheme

1: C(best) = [];C(aux) = [];Sini = [];Scv = [];Dcv =
[];RCHI2 = [];RIG = [];R1R = [];RRel = [];L = [];

2: nF ← nS; Initializing nF
3: Dcv ←10-CV (D); Applying 10 times 10-CV

4: RCHI2 = eval(CHI2, Dcv); Ranking by CHI2

5: RIG = eval(IG,Dcv); Ranking by IG

6: R1R = eval(1R,Dcv); Ranking by 1R

7: RRel = eval(Relief,Dcv); Ranking by Relief

8: RRMean = eval(RMean,Dcv); Ranking by RMean

9: L = [RCHI2, RIG, R1R, RRel, RRMean]; List of ranking

10: for i = 1 : length(L) do

11: for j = 1 : trunc(Li/nS) do

12: Sini ← extract(nF,Li); Extract the first nF fea-

tures from Li

13: Scv ←10-CV (Sini); Applying 10 times 10-CV

14: C(i,j,FFBP ) ← eval(FFBP, Scv) Applying the

FFBP

15: C(i,j,SV M) ← eval(SVM,Scv) Applying the SVM

16: C(i,j,NB) ← eval(NB,Scv) Applying the NB

17: C(i,j,LDA) ← eval(LDA,Scv) Applying the LDA

18: C(i,j,kNN) ← eval(kNN, Scv) Applying the kNN

19: nF ← nF + nS; Updating the number of features

nF
20: end for

21: C(aux) ← C(aux) +max(C); Higher statistically

22: end for

23: C(best) ← max(C(aux)); Higher statistically

These ranked subsets of features were processed by the

10-CV method before feeding the FFBP neural network [22],

SVM [23], NB [24], LDA [25] and kNN [26] classifiers

respectively (see Algorithm 1 step 13 to 18). In the last step,

two important criteria are evaluated in order to select the best

classification scheme: (1) the higher obtained AUC value and

(2) if there is classification performances tied, the one using

less number of employed features is preferred. Both criteria

were conducted using the Wilcoxon Statistical Test, i.e. a

non-parametric alternative test to the paired t-test, which ranks

the differences in performances of two classifiers [27] [28].

This test provided a fairly comparison among all obtained

AUC performances, and therefore a reasonable selection of

C(best).

The implementation of the proposed method was in JAVA

language and the source code of all employed FSMs and

MLCs are available in the WEKA data mining software

version 3.6 [48].

E. Experimental Setup

This section outlines the experimental evaluation design

of the proposed method using two public Breast Cancer

Algorithm 2 RMean

Require: D[f1, f2, f3, ..., fn] : n ≥ 2;

Ensure: RMean;

1: RMean = [];RCHI2 = [];RIG = [];R1R = [];RRel =
[];Dcv = [];

2: Dcv ←10-CV (D); Applying 10 times 10-CV

3: RCHI2 ← eval(CHI2, Dcv); Ranking by CHI2

4: RIG ← eval(IG,Dcv); Ranking by IG

5: R1R ← eval(1R,Dcv); Ranking by 1R

6: RRel ← eval(Relief,Dcv); Ranking by Relief

7: RMean ← (RCHI2 + RIG + R1R + RRel)/4; Averaging

the features position throughout resultant rankings from

steps 3,4,5 and 6.

8: RMean ← sort(RMean ,
′ ascendant′); Sorting in ascen-

dant way the resultant ranking from the step 6.

databases. That involves the datasets creation and machine

learning models configurations are important aspects to be

described here.
1) Datasets Creation: A set of 23 image-based descrip-

tors (features) were extracted from the BCDR and DDSM

databases to be used in this work. Selected descriptors included

intensity statistics, shape and texture features, computed from

segmented calcifications and masses in both MLO and CC

mammography views. The intensity statistics and shape de-

scriptors were selected according to the radiologists experience

(similar to the clinician procedure) and the American College

of Radiology (BIRADS-Mammography atlas) [49], which

described in detail how to detect/classify pathological lesions.

Additionally, texture descriptors were the Halarick’s descrip-

tors extracted from the grey-level co-occurrence matrices [50].

An overview of the mathematical formulation for computing

features is presented below:

• Skewness:

f1 =
1
n

∑n
i=1(xi − x̄)3

[
√

1
n

∑n

i=1(xi − x̄)2
]3

with xi being the ith-value and x̄ the sample mean.

• Kurtosis:

f2 =
1
n

∑n

i=1(xi − x̄)4

[
√

1
n

∑n
i=1(xi − x̄)2

]2 − 3

with xi being the ith-value and x̄ the sample mean.

• Area Fraction (f3): is the percentage of non-zero pixels

in the image or selection.

• Circularity:

f4 = 4π
area

perimeter2

• Perimeter: f5 = length(E) with E ⊂ O being the edge

pixels.

• Elongation: f6 =
(

m
M

)

with m being the minor axis and

M the major axis of the ellipse that has the same normal-

ized second central moments as the region surrounded by

the contour.
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• Standard Deviation:

f7 =

√

√

√

√

1

n− 1

n
∑

i=1

(xi − x̄)2

with xi being the grey level intensity of the ith-pixel and

x̄ the mean of intensity.

• Roughness:

f8 =
perimeter2

4π ∗ area

• Minimum (f9) and Maximum (f10): the minimum and

maximum intensity value in the region surrounded by the

contour.

• Shape:

f11 =
perimeter ∗ elongation

8 ∗ area

• X Centroid:

f12 =
min(x) +max(x)

2

with x being the set of X coordinates of the object’s

contour.

• Entropy:

f13 =
L
∑

i=1

L
∑

j=1

p(i, j)log(p(i, j))

with L being the number of grey-levels, and p(i, j) being

the probability of pixels with grey-level i occur together

to pixels with grey-level j.

• X Center Mass (f14): normalized X coordinates of the

center of mass of O.

• Angular Second Moment:

f15 =

L
∑

i=1

L
∑

j=1

p(i, j)2

with L being the number of grey-levels, and p(i, j) being

the probability of pixels with grey-level i occur together

to pixels with grey-level j.

• Median:

f16 =

{

n+1
2 if length(X) is odd

X(n

2
)+X(n

2
+1)

2 if length(X) is even

with X being the set of intensities.

• Contrast:

f17 =
∑

i

∑

j

p(i, j)(i− j)2

with p(i, j) being the probability of pixels with grey-level

i occur together to pixels with grey-level j.

• Correlation:

f18 =

∑

i

∑

j [ijp(i, j)]− µxµy

σxσy

with µx, µy, σx and σy being the means and standard

deviations of the marginal distribution associated with

p(i, j).

• Mean:

f19 =
1

n

n
∑

i=1

xi

with n being the number of pixels inside the region

delimited by the contour and xi being the grey level

intensity of the ith pixel inside the contour.

• Inverse Difference Moment:

f20 =
∑

i

∑

j

1

1 + (i− j)2
p(i, j)

with p(i, j) being the probability of pixels with grey-level

i occur together to pixels with grey-level j.

• Y Center Mass (f21): normalized Y coordinates of the

center of mass of O.

• Area: f22 = |O| with O being the set of pixels that belong

to the segmented lesion.

• Y Centroid:

f23 =
min(y) +max(y)

2

with y being the set of Y coordinates of the object’s

contour.

Conformable to the number of patient cases of used

databases, it were created six datasets containing calcifications

and masses lesions with different configurations: (1) two

balanced datasets (same quantity of benign and malignant

instances), (2) two unbalanced datasets containing more

benign than malignant instances and (3) two unbalanced

datasets holding more malignant than benign instances,

representatives of BCDR and DDSM respectively. The BCDR

supplies several datasets for scientific purposes (Availaible on

http://bcdr.inegi.up.pt), we used the BCDR-F01 distribution

to form the BCDR1 dataset holding 374 features vectors;

BCDR2 and BCDR3 datasets with a total of 287 features

vectors respectively.

Due to the wide range of information in the DDSM database,

it were considered only two volumes of cancer and benign

cases (random selection) to form the DDSM1 dataset

holding 582 features vectors; DDSM2 and DDSM3 datasets

with a total of 491 features vectors respectively. Figure 1

shows a detailed description of the datasets creation workflow.

2) MLCs Configuration: For all MLCs with the exception

of the NB (which is parameterless), 10-CV method [46] was

performed on the training set for optimizing the classifiers

parameters.

The FFBP neural network was used with a total of hidden

layers determined according to the equation (attributes +

number of classes)/2; one output layer associated with the

binary classification (benign or malignant); transfer function

for all layers based on the sigmoid function and the number

of iterations (epochs) were optimized in the range of 100 to

1000 epochs (with an interval increment of 100 units).

The SVM classifier was used with the regularization parameter

C (cost) optimized in the range of 10−3 to 103 and the kernel
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Fig. 1. Datasets creation flowchart; B and M represent Benign and Malignant
class instances.

type based on a linear function, which provided better results

respect to others kernel such as: radial basis, polynomial and

sigmoid function (from our experimental experience).

The kNN classifier included the estimation of an optimal value

k for the size of the neighborhood varying from 1 to 20, and

the contribution of each neighbor was always weighted by the

distance to the instance being classified.

III. RESULTS AND DISCUSSION

According to the experimental setup section, a total of 750

ranked subsets of features containing image-based features

extracted from segmented calcifications and masses lesions

were analyzed using the proposed method and the straight-

forward statistical comparison based on the mean of AUC

performances over 100 runs highlighted interesting results for

balanced and unbalanced datasets respectively.

3) Performance on Balanced Datasets: The higher AUC

value obtained in the BCDR1 dataset was formed by the

SVM classifier and the RMean method using a total of 15

features (AUC value of 0.8365). This result was statistically

superior to the majority of the remaining classification

schemes. However, there were others schemes with similar

performances statistically at p=0.05 (see Table I). From these

results, it is possible to select the FFBP neural network in

combination with the CHI2 discretization and RMean method

with 5 features as the most appropriate classification schemes

in this dataset. They reached an AUC value of 0.8264 and

0.8272 using the minimum number of features respectively.

For DDSM1 dataset, the higher AUC value was obtained

by the combination of the LDA classifier and the RMean

method using 20 features (AUC value of 0.807). However,

this result did not provide statistical evidence to be better

than others combinations (see Table I). Similar to the

DDSM1 dataset, the combinations formed by the FFBP

neural network in conjunction with the Relief and RMean

methods using 10 features provided similar performances

TABLE I
CLASSIFICATION SCHEMES WITH NONSIGNIFICANT DIFFERENCE IN AUC

PERFORMANCES FOR BCDR1 AND DDSM1 BALANCED DATASETS

Dataset Best Scheme Other Scheme AUC p=0.05

BCDR1 SVM+RMean+15F

FFBP+CHI2+5F 0.8264 p=0.574

FFBP+RMean+5F 0.8272 p=0.494

FFBP+CHI2+10F 0.8219 p=0.359

SVM+Relief+15F 0.8831 p=0.603

(0.8365) LDA+RMean+15F 0.8284 p=0.295

LDA+RMean+20F 0.8279 p=0.286

DDSM1 LDA+RMean+20F
FFBP+Relief+10F 0.8061 p=0.592

FFBP+RMean+10F 0.8056 p=0.475

(0.807) SVM+RMean+20F 0.7939 p=0.139

TABLE II
CLASSIFICATION SCHEMES WITH NONSIGNIFICANT DIFFERENCE IN AUC

PERFORMANCES FOR BCDR2 AND DDSM2 UNBALANCED DATASETS

Dataset Best Scheme Other Scheme AUC p=0.05

BCDR2 SVM+RMean+10F
FFBP+RMean+10F 0.8352 p=0.573

LDA+CHI2+10F 0.8278 p=0.365

(0.8389) LDA+RMean+10F 0.8284 p=0.403

DDSM2 FFBP+RMean+5F FFBP+IG+10F 0.8405 p=0.682
(0.8406)

statistically (AUC value of 0.8061 and 0.8056 respectively).

These results were obtained using a less number of employed

features. Thus, both classification schemes were selected

as the most appropriated classification schemes in this dataset.

4) Performance on Unbalanced Datasets: The higher AUC

performance for BCDR2 dataset was formed by the SVM

classifier and the RMean method using 10 features, reaching

an AUC value of 0.8389. This result was not statistically

superior to obtained results by others classification schemes

TABLE III
CLASSIFICATION SCHEMES WITH NONSIGNIFICANT DIFFERENCE IN AUC

PERFORMANCES FOR BCDR3 AND DDSM3 UNBALANCED DATASETS

Dataset Best Scheme Other Scheme AUC p=0.05

BCDR3 LDA+RMean+5F FFBP+RMean+5F 0.8562 p=0.592
(0.8611)

DDSM3 LDA+RMean+20F

FFBP+Relief+10F 0.8061 p=0.592

FFBP+RMean+5F 0.78 p=0.094

SVM+Relief+10F 0.7879 p=0.139

SVM+Relief+15F 0.7853 p=0.126

SVM+RMean+10F 0.786 p=0.129

SVM+RMean+15F 0.783 p=0.128

(0.807) NB+Relief+10F 0.785 p=0.125

NB+RMean+10F 0.783 p=0.118

LDA+Relief+10F 0.7883 p=0.145

LDA+Relief+15F 0.7877 p=0.139

LDA+1R+20F 0.7845 p=0.12

LDA+RMean+10F 0.789 p=0.153

LDA+RMean+15F 0.7861 p=0.135
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using the same number of employed features(see Table II).

Therefore, the four combinations presented in the Table II

could be considered as the most appropriated schemes for

lesions classification in the BCDR2 dataset.

Besides, for DDSM2 dataset the best classification perfor-

mance was obtained by the combination of the FFBP neural

network classifier and the RMean method using 5 features;

reaching AUC value of 0.8406. However, this result did not

statistically outperform the obtained result by the combination

of the FFBP neural network classifier and the IG method

with 10 features, attainment an AUC value of 0.8405 (see

Table II). Despite the small and insignificant difference in term

of AUC performances, the first combination was selected as

the most appropriated classification scheme because it reached

this results using a less number of features.

The best classification performance for BCDR3 dataset was

provided by the combination of the LDA classifier and the

RMean method with 5 features, accomplishment an AUC score

of 0.8611 (see Table III). This result was not statistically

superior to the obtained result by the combination of the

FFBP neural network classifier and the RMean method with

5 features, which achieved an AUC score of 0.8562. As

both classification schemes reached these results using the

minimum number of employed features could be considered

as the most appropriated classification schemes for BCDR3

dataset.

In the DDSM3 dataset, the higher AUC value was obtained by

the combination of LDA classifier and the RMean method with

a total of 10 features (AUC value of 0.7889). This classifica-

tion result showed nonsignificant difference respect to others

combinations, which reached similar AUC performances (see

Table III). Despite the several combinations which can be

used as a good classification scheme for this dataset. Only the

scheme formed by the FFBP neural network and the RMean

method stretched the result using the minimum number of

features (5). Thus, it was considered as the most appropriated

classification scheme in the DDSM3 dataset (see Table III).

Regarding of the classifiers performance, results show that

the selection of the most appropriated classifier is dependent

on the dataset and the FSM. From Table I, II and III, it

possible to read that the best MLC was the FFBP neural

network classifier, appearing consistently on every appropri-

ated classification scheme for all datasets. These results were

expected since this classifier has demonstrated to be capable

of generalizing decision boundary in a more complex features

space [25]. Meanwhile the best FSM was the RMean method

(see Algorithm 2), which appeared consistently on every

successful classification scheme, providing in most cases the

minimal subset of features.

IV. CONCLUSIONS AND FUTURE WORK

In this work, it is made a statistical exploration of different

classification schemes within the context of Breast Cancer

classification. The main contribution it was developed a new

and robust method for building machine learning classifiers

that combines suitably several feature selection methods with

different evaluation function. This method was effective in

providing competitive classification schemes for balanced and

unbalanced datasets: the FFBP neural network and the RMean

method using 5 features was the best scheme for BCDR1,

BCDR3, DDSM2 and DDSM3 datasets, attainment an AUC

value of 0.8264, 0.8562, 0.8406 and 0.78 respectively. Also,

the FFBP neural network and the RMean method with 10

features in the DDSM1 dataset, reaching an AUC value of

0.8056, and the SVM classifier with the RMean method using

10 features for the BCDR2, stretching an AUC value of

0.8399. Regarding to MLCs and FSMs, the FFBP neural

network classifier and the RMean method were the best,

appearing consistently in the majority of successful schemes.

In future work, we plan to assess the performance using others

benchmarking datasets with different experimental setup: in-

cluding clinical and more image-based features to evaluate the

sensibility and generalization of the proposed method. Also,

it’s further integration in a real Breast Cancer CADx system.
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