
Study of Interoperability between
Meta-Modeling Tools

Heiko Kern
University of Leipzig

Augustusplatz 10

04109 Leipzig, Germany

Email: kern@informatik.uni-leipzig.de

Abstract—Modeling is a fundamental concept in software
engineering and other system development disciplines. Nowadays
the modeling process is supported by powerful modeling tools.
Generally speaking, tools which support the definition and usage
of self-defined languages are called meta-modeling tools. An
important requirement for meta-modeling tools is the interop-
erability among each other. For instance, interoperability helps
to build complex tool chains covering the whole development
process. Furthermore, interoperability can also avoid the vendor
lock-in effect. Thus, interoperability facilitates the replacement
of a tool by a new tool better fitting the customer needs. The
objective of this paper is to investigate the current status of
interoperability between meta-modeling tools. In more detail, we
study the degree of model exchange between meta-modeling tools
and look for typical exchange approaches. The study focuses on
meta-modeling tools and approaches which are being used in
practice or the real world, respectively.

I. INTRODUCTION

M
ODELING is a fundamental concept in software en-

gineering and other disciplines. A model represents a

system in an abstract way. The abstraction helps to improve

the understanding of a system and can facilitate the communi-

cation between different stakeholders. Beyond that, in modern

development approaches (e.g. Model-Driven Software Devel-

opment (MDSD) [22] or Domain-Specific Modeling [11])

models are increasingly used for automating development

tasks such as code generation, model transformation or model-

based testing.
Beside a theoretical foundation of modeling, a suitable

tool infrastructure is necessary to enable the practical usage

of MDSD approaches. Current modeling tools offer a vari-

ety of features which support the user during the modeling

process. Modeling tools supporting the definition as well as

the usage of self-defined languages are called meta-modeling

tools. The modeling languages in these tools are generally

defined by meta-models. Examples of such meta-modeling

tools are MetaEdit+ [11], Generic Modeling Environment [15]

or Microsoft Visio [4].
An important requirement for meta-modeling tools is the in-

teroperability among each other. Interoperability is the ability

of two or more tools to work together. For instance, often a tool

is dedicated to a specific task. Tools have to work together or

inter-operate to build complex tool chains covering the whole

development process. Another issue is the evolution of a tool

landscape. Interoperability can avoid the vendor lock-in effect.

Thus, interoperability facilitates the replacement of a tool by

a new tool better fitting the customer needs.

The objective of this paper is to investigate the current status

of interoperability between meta-modeling tools. Although

there are a variety of approaches, the current state of practice

in the area of modeling is unclear. In more detail, we want to

study the degree of model exchange between meta-modeling

tools and look for typical exchange approaches. The study

focus on meta-modeling tools and approaches which are used

in practice or the real world, respectively. We mainly consider

the import and export features of meta-modeling tools in order

to exchange models and meta-models. The objective can be

founded with the following two research questions:

– Question 1: What is the degree of interoperability?

The first research question investigates the degree of inter-

operability. We want to analyze between how many of the

involved tools an exchange of models is possible? Based on

our experience, we assume that the model exchange between

different meta-modeling tools is insufficient. This study will

prove this assumption.

– Question 2: What are the approaches to realize interop-

erability? In order to give a satisfying answer to this question,

research of approaches is necessary. There are already a variety

of approaches in theory and literature. However, in this study

we want to identify approaches used in practice.

The paper is structured as follows. In the subsequent sec-

tion, we give a foundation of the interoperability concept. In

section III we present a set of aspects which helps to scope

the investigation. Afterward in section IV, we describe the

methodology for the tool selection and analysis of these tools.

In section V we present the results of the study and discuss the

validity of these results. Finally, we conclude in section VI.

II. INTEROPERABILITY

Interoperability is in research and in practice a subject of

discussion since there are software systems. The word consists

of two parts: “inter-operate” and “ability”. Inter-operate means

that two systems can work together [6] and the suffix ability

expresses “the ability of a system [...] to work with or

use the parts or equipment of another system” [1]. A basis

for interoperability is the capability to exchange information

between two or more systems and to use the information

that has been exchanged [2]. Furthermore, interoperability is

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 1629–1637

DOI: 10.15439/2014F255

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1629

the basis to integrate systems. Integration is also an widely-

used term in software and system development and can be

defined as the combination and coordination of separate things,

elements or units into a whole, so that they work together

effectively [1], [3]. Regarding the concept of interoperability,

integrated systems must be interoperable in any form, but inter-

operable systems do not need to be integrated. Interoperability

extends the borders of already existing systems and enables

the connection to other systems. Here, interoperability is

often associated with loosely-coupled systems, where systems

keep their autonomy [17]. In contrast to this, integration is

characterized by a closely-coupled systems, where system are

interdependent and difficult to separate from each other.

Another term in this context is migration. Generally, mi-

gration denotes processes of spatial movement. In information

technology there are different application areas for migration,

such as software systems, databases, application systems or

hardware. A migration in the area of software systems is, for

instance, updating from one major software release to the next

highest version of the same software vendor. Already existing

data, settings or specific extensions have to be transferred to

the new software system.

The focus of this article is the interoperability of different

meta-modeling tools. In this context, interoperability deals

with the exchange of models and meta-models between meta-

modeling tools. The exchange is realized as a migration

of models and meta-models from one tool to another. The

migration from one to another tool should be an isomorphic

relation in order to preserve the structure and semantics of

models. The terms integration, interoperability and migration

can be used as synonyms in this paper.

III. SCOPE OF STUDY

There are a variety of problems and solutions concerning the

interoperability issue. This shows, for instance, the annotated

bibliography from Wicks [26] which contains a huge amount

of papers about the interoperability issue. In this section, we

define a set of aspects or dimensions which helps to scope the

research (questions) of this study. The finding and selection

of these aspects are based on a theoretical study of different

approaches and problems through literature analysis and the

authors’s knowledge. The dimensions and their properties are

not eligible for completeness but fit the objective of this paper.

A. Unification Mechanism

One of the main reason for missing interoperability is

heterogeneity between artifacts that have to be exchanged

(e.g. models and meta-models). This heterogeneity between

the models can be, for instance, of syntactic or semantic

nature. To achieve interoperability between the participating

models it is necessary to overcome this heterogeneity and

to find a unification between different structures. We can

distinguish between the following two fundamental unification

mechanisms.

1) Common Structure: A mechanism to realize interoper-

ability is to avoid heterogeneity a prior by defining a common

structure. The definition can be regarded as a development

process for a standard. Such a standard defines, for instance, a

common structure of models and meta-models, their semantics

and a specification for the exchange of models. If all systems

conform to a selected standard, interoperability is guaranteed

by this standard. Standards can address different aspects of

the exchange of models and languages. In the domain of

modeling, there are standards which define a whole language

(syntax, semantic and pragmatics). One example is the Unified

Modeling Language (UML) [7]. Additional to this, there are

standards which define a whole meta-modeling environment

(e.g. Meta Object Facility (MOF) [20] or Eclipse Modeling

Framework (EMF) [23]) and a corresponding exchange format

(e.g. XML Metadata Interchange (XMI) [21]). Meta-modeling

and modeling tools which are implementing MOF, UML and

XMI as serialization syntax can exchange models and meta-

models without problems (theoretically).

2) Transformation: Another mechanism is the transforma-

tion of different models and meta-models. A transformation

defines a mapping between different structures in order to

overcome heterogeneity. Similar to standards, transformation

can address semantic or syntactic issues. If there is no standard

in order to exchange data between tools, transformations are a

powerful approach to exchange models or meta-models. The

mechanism of a common structure and transformations are not

mutually exclusive. A proprietary meta-modeling environment

can implement a standard by using transformations in order to

create a model and meta-models conforming to this standard.

But this is only possible up to a certain degree.

B. Modeling Level

A meta-modeling tool consists of a modeling and a language

level. On the language level (also called as meta-modeling

level) a language engineer can define different modeling

languages by the creation of meta-models. These modeling

languages can be used by a modeler at the modeling level

to create models. Based on these two levels, we differentiate

between the following two cases of model exchange.

1) Model Level: The exchange on the model level includes

only the models themselves. The exchange of languages is

excluded on this level.

2) Language Level: Additionally to the exchange on the

model level, it is possible and necessary to exchange languages

between meta-modeling tools. The exchange of artifacts on

language level includes generally the exchange on model

level. A sub-aspect on this level is the language preservation.

Generally the source and target models and language should

be isomorphic. Language preservation can relate to the meta-

model and the concrete syntax of language.

C. Topology

Meta-modeling tools exchange their data by using different

topologies. The concept of topology originally stems from

the field of computer networks and is also used in software

1630 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

and system integration (e.g. Enterprise Application Integra-

tion [16]). The topology concept can be transferred to the

area of meta-modeling tool integration. We can distinguish

the following topologies.

1) Point-to-Point: A simple topology is a point-to-point

connection which connects two tools directly to each other.

In this case a tool exports their models and meta-models via

a file. The target tool imports this file and reads the models

and meta-models. If an external transformation is part of this

point-to-point connection, than we have an indirect point-to-

point connection. Otherwise, we talk about a direct point-to-

point connection.

2) Complex Topologies: If there are more than two meta-

modeling tools involved in the integration, a point-to-point

integration can be insufficient. For that reason, there are more

complex integration topologies such as star or bus. A star

topology is characterized by the fact that there is one common

exchange format or interface to exchange models and meta-

models between all participating tools. The realization of a star

solution often requires an additional integration component,

which is in the center of the integration architecture. This

component controls the integration process and serves as a

common structure for models and meta-models. Realizations

of more complex structure are, for instance, Model Bus [9] or

BPM-X-Converter 1.

D. Integration Layer

The integration of software requires access to artifacts that

should be exchanged between the software systems. Generally

there are different layers to access these artifacts. Integration

layers describe on which layer the exchange of artifacts is

realized. Based on the integration of software development

tools [25], we can differentiate between the following typical

integration layers.

1) Data: Models and meta-models can be represented as

data in files or databases. Hence, the integration can be realized

on the data layer. Many tools enable the export and import of

models and/or meta-models as files. In this case, no complex

infrastructure is necessary for building an integration solution.

The disadvantage of this approach is that the serialization

of models and meta-models as data are often complex. The

processing of these complex data structures implies a complex

solution (transformations and/or exchange formats).

2) Function: Above the data layer, many tools provide

an API with different functions. The usage of functions

are easier than operating directly on the data layer because

complex operation are encapsulated. Typical functions are the

selection and creation of model elements. There are integration

approaches which uses the function layer instead of the data

layer.

3) Presentation: The third layer is the presentation layer.

The exchange on presentation layer often only considers the

graphical representation of models. For instance, the export

as image considers only the graphical representation. In doing

1http://www.bpm-x.com/

TABLE I
SCOPE OF THE STUDY (GRAY =FOCUS)

Unification Mechanism Common Structure Transformation

Modeling Level Model Level Language Level

Topology Point-to-Point Complex Topology

Integration Layer Data Function Presentation

so, the import is unsatisfying because the access of single

model elements is impossible. A further example of exchange

at presentation layer is the approach of Object Linking and

Embedding (OLE).

E. Research Scope

Based on the dimensions described in this section, we setup

the scope of the study as follows. Table I shows an overview

of the selected investigation dimensions.

– Unification Mechanism: The study includes the investiga-

tion of common structures (standards) and transformation

approaches.

– Modeling Level: We investigate approaches on model and

language level but the focus lies on approaches on the

languages level while preserving the language structure.

– Topology: We study interoperability approaches that re-

alize a direct point-to-point connection between tools.

– Integration Layer: The study considers all layers but we

focus on data layer.

IV. SELECTION AND ANALYSIS OF TOOLS

A. Tool Selection

The selection of tools is an important aspect of this study

because the tools form the basis for later analysis. For the

tool search we mainly use the World Wide Web. Finding

meta-modeling tools is a difficult task because the term meta-

modeling tool is a theoretical term that is often used in

the context of the Model-Driven Engineering community.

Tool vendors uses different names for their meta-modeling

tools. Beside the term meta-modeling tool, we use different

synonyms such meta-case tool [24] or modeling tool. Most

meta-modeling tools are denoted as modeling tools with the

ability to define their own language. Hence, we also include

in our search the general word modeling tool. Based on the

initial set of tools, we filter the tools by the following criteria.

– Maturity level: The tools must fulfill a certain maturity

level. A tool must be installable and usable for later anal-

ysis. Many tool vendors provide a trial version of their

tool. The most tools are available as desktop applications

but there are also web-based tools.

– Concrete syntax: A further requirement concerns the

concrete syntax of models. We only select meta-modeling

tools that enable the definition of graphical modeling

languages.

– Modeling domain: The third criterion concerns the mod-

eling domain of tools. Generally, meta-modeling tools

are tools which allow the definition of domain-specific

HEIKO KERN: STUDY OF INTEROPERABILITY BETWEEN META-MODELING TOOLS 1631

languages in different domains. This implies that many

tools have a universal/generic character. However, many

modeling tools relate to a certain modeling discipline.

In this study we focus on the following domains: soft-

ware development, business process modeling, and data

modeling.

– Meta-modeling capability: The last criterion is the meta-

modeling capability. We can distinguish between the

heavyweight and lightweight approach [8]. The heavy-

weight approach enables the creation of a language

through the definition of a complete new meta-model

(e.g. MetaEdit+). The lightweight approach adapts an

already existing meta-model (e.g. UML profile mech-

anism). A tool must support the heavyweight meta-

modeling approach by using a three-level model hi-

erarchy consisting of model, meta-model and meta-

metamodel.

Table III in the appendix shows the modeling tools we found

during our search. Each tool in this list fulfill the first three

selection criteria. The third column in Table III shows the

meta-modeling capability of each tool. We only include tools

that support the heavyweight meta-modeling approach. The

last column indicates that a tool is included in this study.

Overall the study includes 20 tools which fulfill the defined

criteria.

B. Tool Analysis

The analysis starts with the installation of each tool. Af-

terwards, we investigate the import and export functionality.

Typically, there are different interface layers: user, function

and data interfaces. We concentrate on the user interface and

especially on the tool menus. Often tools provide a menu

entry for import and export of modeling artifacts. Some tools

have no extra import and export menu because they offer this

functionality in the load and save menu.

In addition to the user interface analysis, available documen-

tation is used to find out exchange possibilities. For instance,

we use product information and manuals because a lot of

tool vendors emphasize and describe their import and export

capabilities.

Some tools provide import and export capabilities in their

programming interface or provide a generator component

that can be used to implement export and import scripts.

These functions are excluded in the study. We only include

export and import interfaces that already exist. The exchange

possibilities have to be ready to use without any programming

of generators or functions.

Furthermore, we restrict the analysis of the exchange pos-

sibilities of a tool. We test the exchange mechanism in order

to understand the approach used, but we do not investigate

the quality of the model exchange. Table IV in the appendix

shows the result of this analysis. The table contains the import

and export capabilities of each tool. Based on this raw data,

we derive the results in the next section.

V. RESULTS

A. Unification Mechanism

1) Common Structure: Many tools use the approach of a

common structure in order to exchange their meta-models and

models. But the used formats are often a proprietary definition

which realize the saving and loading of models instead of

the model exchange between different tools. However, some

tools use the Visio format in order to exchange models and

language elements. In addition to the proprietary formats, there

are standards which allow only the exchange of models. These

models must conform to a certain (standard) language. For

instance, some tools enable the export and import of BPMN-

XML [19]. But these standards do not allow the exchange

of languages or meta-models. Finally, there is no common

format – with the exception of the Visio format – that is used

to exchange meta-models and models between different tools.

2) Transformation: The exploration of transformation ap-

proaches are difficult because most tools implement their

import and export process as a black box. Hence, we can only

investigate transformations which are explicit or visible during

the import or export. We found some tools which support

transformations during the exchange. The first approach is

used in Agilian, Visual Paradigm for UML and Business

Process Visual Architect. The transformation is realized by

a wizard which allows to configure a mapping between Visio

models and models of this tool. The mapping can only be

applied to certain modeling languages. A further tool which

supports a mapping during the exchange process is ARIS.

This tool allows a configurable import of Visio models. The

description of the configuration is realized in XML on lan-

guage level. Generally the transformations are not comparable

to powerful transformation approaches such as Eclipse Epsilon

Transformation Language (ETL) [14] or Atlas Transformation

Language (ATL) [10].

B. Modeling Level

1) Model Level: Some meta-modeling tools contain pre-

defined modeling languages. Based on these pre-defined lan-

guages, some tools offer a language-specific exchange. An

example is Agilian that allows the export of BPMN-XML and

Business Process Visual Architect that enables the import of

BPMN-XML. These specific languages are often standards

in a certain domain. Regarding the unification mechanism,

this approach follows the strategy of a common structure

to exchange models. The limitation to a certain language is

unsatisfying in the context of meta-modeling tools.

Additional to this, there is an approach allowing the generic

exchange of models between tools. The approach can ex-

change each model as a generic graph or tree. But the

interpretation of models which conform to this generic format

is unclear because of the missing language definition.

For instance, the following tools support exchange on the

model level:

– Agilian, Visual Paradigm for UML, Business Process

Visual Architect: These tools allow the import of Visio

1632 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

stencils, but the imported masters of a stencil are not

part of a target language. Masters are transformed into

a separated icon library. Thus, these tools allows only

the import of models conforming to a certain language.

Please note, a Visio stencil can be regarded as a meta-

model [13].

– ARIS: This tool allows the import of Visio models. It is

not possible to import stencils. ARIS offers a mapping

function which enables a mapping between Visio stencil

elements and certain ARIS language elements. Based on

this mapping, ARIS imports Visio models.

– Edraw Max: This tool enables the import of Visio models.

It is impossible to import stencil elements.

– Lucidchart: This tool allows the import and export of

Visio models. The export was not testable in the free

version. The import transforms only graphical elements

and no stencil elements.

– Dia: Dia allows the import and export of Visio models

without stencils.

C. Language Level

In contrast to the model level, there are tools which allow

the exchange of modeling languages and models conforming

to these languages. In this case, the exchange approach trans-

forms the source language into the target language. Based

on this transformation, all models conforming to the source

language are transformed into models, which are conformed

to the target language. Some tools provide the reverse order of

these transformations, that is, the tool imports model elements

and after that the tool creates the corresponding language

elements. But this reverse order leads to the problem that the

import only considers a certain set of language elements.

– ConceptDraw: ConceptDraw enables the import of Visio

models. Additionally to the import of models, Concept-

Draw can import language elements (Visio masters).

ConceptDraw indirectly imports the master elements via

the model import. ConceptDraw also allows the export

of models to Visio but there is no stencil support.

– iGrafix: This tool allows the import of Visio models

by using the clipboard and the tool also imports stencil

elements which are used by the imported model elements.

D. Degree of Interoperability

Table II shows the export and import connections of the

investigated tools. The vertical axis is the source tool and

the horizontal axis is the target tool. The source tool exports

models and the target tool imports models. For instance, there

is a directed connection from Visio to Concept Draw. That is,

Visio can export models and ConceptDraw can import these

Visio models. We differentiate the connections depending on

their modeling level. The rectangle (�) stands for an approach

that supports the exchange of languages (meta-models) and

models. The plus sign (+) represents an approach which

supports only the exchange on model level. This includes the

approach for the exchange of language specific-models and the

approach for the generic exchange of models. We combine

both signs (⊞), if a tool supports exchange of languages

and models as well as language-specific exchange or generic

exchange of models.

The diagonal in the matrix shows that each tool allows the

exchange of their own languages and models because each tool

can save and load their own language definitions and models.

Additionally, many tools allow the exchange on the model

level (language-specific or generic model exchange). There

are only three connections which allow the transformation of

languages and models. The matrix also shows that Visio plays

a key role because a lot of tools enable the import of Visio

models.

All in all, there are 20 x 20 = 400 directed connections in

this matrix. We assume that the export and import between the

same tool is a basic feature in order to save and load models

and languages. For this reason, we exclude the diagonal in

our calculation. Thus, we have 20 x 20 – 20 = 380 possible con-

nections. Out of these connections, there are 30 connections

between different tools. This leads to a ratio of 7.9%. There are

27 connections that allow the exchange on model level, a ratio

of 7.1%. Regarding the exchange on the language level, there

are only three connections. This is a ratio of 0.8%. Hence, the

degree of interoperability can be considered low.

E. Further Observations

Generally we identified different data formats for realizing

the exchange of model data. One known exchange format

for models is XML Metadata Interchange (XMI) [21]. We

consider XMI in our study but we are not focus on XMI

because their close relationship to MOF, EMF and UML.

Other meta-modeling tools do not use XMI for realizing the

exchange of their models and meta-models. Another mecha-

nism to exchange models is the usage of graph formats such

as Graph Exchange Language (GXL) [27] or GraphML [5].

Graph formats are suitable for exchange models because

models and meta-models can be regarded as graphs. For

instance, MetaEdit+ uses an adapted version of GXL for

serializing their models and meta-models, but no other tool

in the study can import this graph format. yEd can import

the GraphML format. A further observation is that some tools

provide Excel exports. This is not for exchange reasons, but

rather than a format to make reports. Beside the possibilities to

exchange meta-models and models, there are a lot of language-

specific formats, depending on the tool’s domain. For instance,

in this study many tools support typical formats from the

business modeling domain such as BPMN-XML, BPEL [18]

or XPDL [28].

Another observation is that there are more tools allowing

import than tools allowing the export of models. This could

be a strategic reason. Most tools support the import because

tool vendors want to increase their usage and often it is

necessary to import data in order to replace other tools. The

export is undesirable because the tool vendors try to bind their

customers to a certain tool.

The last observation concerns the transformation capabil-

ities. Some tools allow the definition of mappings between

HEIKO KERN: STUDY OF INTEROPERABILITY BETWEEN META-MODELING TOOLS 1633

TABLE II
MODEL AND LANGUAGE EXCHANGE (�=LANGUAGE LEVEL, +=MODEL LEVEL)

Tools A
g
il

ia
n

A
R

IS
B

A

A
to

m
3

B
u
si

n
es

s
P

ro
ce

ss
V

A

C
o
n
ce

p
tD

ra
w

C
u
b
et

to
T

o
o
ls

et

D
ia

E
d
ra

w
M

ax

E
n
te

rp
ri

se
A

rc
h
it

ec
t

G
M

E

iG
ra

fi
x

P
ro

ce
ss

L
u
ci

d
ch

ar
t

M
ar

am
M

et
a-

T
o
o
ls

M
et

aE
d
it

+

M
ic

ro
so

ft
V

is
io

P
o
w

er
D

es
ig

n
er

V
iF

lo
w

V
P

fo
r

U
M

L

V
M

S
D

K

y
E

D

Agilian ⊞ + + + +

ARIS BA ⊞ +

AToM3
�

Business Process VA ⊞

ConceptDraw � �

Cubetto Toolset �

Dia � +

Edraw Max �

Enterprise Architect + + + ⊞ +

GME �

iGrafix Process + �

Lucidchart � +

Maram Meta-Tools �

MetaEdit+ �

Microsoft Visio + + � + + + � + � + +

PowerDesigner + + ⊞

ViFlow �

VP for UML + + + + + ⊞

VMSDK �

yED �

models or languages in a simple and limited way. The tools

do not provide powerful transformation languages such as ATL

or ETL.

F. Threats to Validity

The interoperability between meta-modeling tools is be-

tween 0.8 and 7.9%. If we take a look at our study restrictions,

the interoperability could be higher than these measured

values. We focus on a limited set of tools in a selected

domain. Maybe other tools in other domains have a higher

interoperability degree. Furthermore we only looked for inter-

operability mechanisms that are provided by the tool itself.

Some meta-modeling tools provide a generator which allows

to generate every exchange format. Furthermore, we exclude

external tools, such as BPM-X-Converter, which allows the

migration of models between meta-modeling tools.
In contrast to this, we can argue for a lower value of

interoperability. We only investigated the opportunity to import

and export models. We cannot say anything about the quality

of these exchange mechanisms. Furthermore, some tools relate

very close to Visio. Hence, the import and export is easy for

these tools. This is maybe similar to MOF-implemented meta-

modeling tool. If we would not consider the Visio imports on

language level, the interoperability would go against zero.

VI. CONCLUSION

In this paper we presented a study about interoperability

between meta-modeling tools. The study included 20 tools in

the area of software development, business process modeling

and data modeling. In the first part of this paper we defined
the investigation scope. In the second part, we analyzed the

tools and presented the results.

Regarding the first research question about the degree of

interoperability, we can give the following answer. Depending

of the approach considered, the degree of interoperability is

low with values between 0.8% and 7.9%. The answer to the

second question is more complicated because of the different

approaches. Regarding the modeling level (section V-B), we

identified the following three approaches: (1) the exchange

of models which conform to a specific modeling language,

(2) the generic exchange of each model without their mod-

eling language, and (3) the exchange of models with their

language. Besides the aspect of the modeling level, there are

many other dimensions including many other approaches for

interoperability.

In our future work we want to increase the degree of

interoperability between meta-modeling tools. We assume a

main reason for the missing interoperability is the hetero-

geneity between the different meta-modeling languages of the

tools. Despite the heterogeneity, there are common concepts

which can be mapped to each other. These similarities and

differences are described in a comparative analysis between

different meta-modeling languages [12]. Based on this, we can

develop a transformation-based adapter approach in order to

enhance the model and meta-model exchange.

1634 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

APPENDIX

TABLE III
MODELING AND META-MODELING TOOLS (•=YES, −=NO)

Name Vendor Version Meta-modeling
approach

(light/heavy)

Included in
study

Agilian Visual Paradigm 4 •/• •

Altova UModel Altova 2012 •/− −

ArgoUML 0.34 •/− −

Archi University of Bolton 2.3 −/− −

ARIS Business Architect Software AG 7.1 •/• •

ARIS Express Software AG 2.3 −/− −

Artisan Studio Atego 7.4 •/− −

Astah Astah 6.6.3 •/− −

AToM3 McGill University 2008 −/• •

bflow∗ Toolbox 1.2.5a −/− −

Bizagi Process Modeler Bizagi 2.3 −/− −

BOUML Bruno Pagès −/− −

Business Process Visual Architect Visual Paradigm 5 −/• •

Cadifra UML Editor A. & F. Buehlmann 1.3.3 −/− −

CaseComplete Serlio Software 7.0 (2012) −/− −

ConceptDraw CS Odessa 9 −/• •

Cubetto Toolset Semture 1.7.1 −/• •

Database Design Tool 1.5 −/− −

DB Wrench Nizana Systems 2.3.0 −/− −

dbConstructor DBDeveloper Solutions −/− −

DbSchema Wise Coders Soluations −/− −

Dia 0.97.2 −/• •

Edraw Max EdrawSoft 6.3 −/• •

Enterprise Architect Sparx Systems 9.3 •/• •

ER Creator modelCreator Software 3.0 −/− −

ER/Studio Software Architect Embarcadero Technologies 1.1.0 •/− −

ER/Studio Business Architect Embarcadero Technologies 1.7.0 −/− −

Generic Modeling Environment Vanderbilt University 10.8 −/• •

Gliffy Gliffy −/− −

Grapholite Perpetuum Software 1.6.0.7 −/− −

iGrafix Process iGrafix 2011 −/• •

Intalio BPMS Designer Intalio 6.1.12 −/− −

Lucidchart Lucid Software −/• •

MagicDraw NoMagic 17.0.2 •/− −

Maram Meta-Tools University of Auckland – −/• •

MetaEdit+ MetaCase 5.0 −/• •

Microsoft Visio Microsoft 2010 (14) −/• •

Modelio Modeliosoft 2.1.1 •/− −

NClass Balazs Tihanyi 2.04 −/− −

Objecteering Objecteering Software 6.1 •/− −

objectiF microTOOL 7.1 •/− −

Open ModelSphere Grandite 3.2 •/− −

ORM Designer Inventic −/− −

Poseidon for UML Gentleware 8 −/− −

Papyrus Eclipse 1.12 •/− −

PowerDesigner Sybase 16.1 •/• •

Process Modeler itp commerce 5 −/− −

RISE RISE to Bloome Software 4.5 −/− −

Select Architect Select Business Solutions •/− −

SemTalk Semtation 4 −/− −

Signavio Process Editor Signavio 6.0 −/− −

SmartDraw SmartDraw Software −/− −

Topcased 5.2 •/− −

UML Lab Yatta Solutions 1.4.3 •/− −

UMLet 11.5.1 −/− −

ViFlow ViCon −/• •

Violet UML Editor 0.21.1 −/− −

Visual Paradigm for UML Visual Paradigm 9 •/• •

Visual Use Case TechnoSolutions 4.069 (2009) −/− −

Visualization and Modeling SDK Microsoft VS2012 −/• •

WinA&D Excel Software −/− −

Xcase Resolution Software 9.1 −/− −

yED yWorks 3.9.2 −/• •

HEIKO KERN: STUDY OF INTEROPERABILITY BETWEEN META-MODELING TOOLS 1635

TABLE IV
IMPORT AND EXPORT FORMAT OF META-MODELING TOOLS

Agilian
Import Rational Rose (mdl) files, Rational DNX files, BizAgi project file, specific XML, XMI (1.2, 2.1), Eclipse

UML2 (XMI 2.1), Visual Paradigm project file, MS Excel file with spcific schema, Visio drawings,
Visio ERD, Visio drawing/stencils into Agilian Stencil, NetBeans 6.x UML diagrams, Telelogic System
Architect, Telelogic Rhapsody, PowerDesigner project file

Export BPMN2.0-XML, specific XML, XMI (1.2, 2.1), Eclipse UML2 (XMI 2.1), Visual Paradigm project file,
MS Excel file with specific schema, VPP (ZIP project archiv)

ARIS Business Architect
Import XML with specific schema, UML (XMI1.1)
Export ADF (ARIS filter), XMI, XML, Visio (VDX), BPEL, ADB (ARIS database)
Business Process Visual Architect
Import BizAgi project file, XML, BPMN2.0-XML, XPDL2.1, Telelogic System Architect, Excel, Visio
Export BPMN 2.0 XML, XML, BPMN2.0-XML, XPDL2.1, Excel
ConceptDraw
Import Visio (VDX), MS PowerPoint
Export CDX file (XML), Visio (VDX), MS PowerPoint
Cubetto Toolset
Import –
Export ETZ format
Dia
Import Visio models, Dia, Dxf (specific XML file), SVG, Xfig
Export Visio models, Dia, Dxf (specific XML file), SVG, Xfig
Edraw Max
Import Visio
Export
Enterprise Architect
Import Database Schema, specific Visio models (Communication, Activity, Class, Object, Compontent, Deplay-

ment, Custom), Doors, XMI (UML 1.1, 1.3 or 2.x), ARCGIS, ODM (OWL/RDF), Rhapsody, Rational
Software Architect (EMX/UML2)

Export XMI 1.0 (UML1.3), XMI 1.1 (UML1.3), XMI 1.2 (UML1.4), XML 2.1 (UML2.0), MOF1.4 (XMI1.2),
MOF1.3 (XMI1.1), specfic XML, Ecore, OWL/RDF, BPMN2-XML

iGrafix Process
Import Visio models and metamodels
Export BPEL XML, XPDL, XML
Lucidchart
Import Visio models (vdx, vsd, vsdx)
Export Visio models (vdx)
MetaEdit+
Import GXL-adapted (models and meta-models)
Export GXL-adapted (models and meta-models)
Microsoft Visio
Import –
Export –
PowerDesigner
Import Excel, ERwin, XMI, Rational Rose (MDL), SIMUL8 file, specfic Visio models
Export UML2, XMI2.1 XML schema files
Visual Paradigm for UML
Import ERWin Data Modeler project files, BizAgi project file, System Architect business process diagram, XMI

(1.2, 2.1), Excel, Visio, Visio ERD, Visio diagram to Stencil, Rational Rose (MDL) files, Rational DNX
files, Rational Software Architect files, PowerDesigner project file, Telelogic Modeler

Export BPEL, XPDL, JPDL, BPMN2.0-XML, XMI (1.2, 2.1), Excel, SCXML
yEd
Import Graph Markup Language (GRAPHML), yWorks Binary Graph Format, Graph Modeling Language (GML,

XGML), Trivial Graph Format (TGF), Gedcom Data (GED)
Export –

1636 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

REFERENCES

[1] Webster’s Third New International Dictionary. Merriam Webster, 1986.
[2] IEEE Standard Computer Dictionary: A Compilation of IEEE Standard

Computer Glossaries. IEEE, 1991.
[3] Longman Dictionary of Contemporary English, 5th ed. Langenscheidt

ELT, February 2009.
[4] B. Biafore, Visio 2007 Bible. Wiley Publishing, April 2007.
[5] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. Marshall,

“GraphML Progress Report Structural Layer Proposal,” in Graph

Drawing, ser. Lecture Notes in Computer Science, P. Mutzel,
M. Jünger, and S. Leipert, Eds. Springer Berlin Heidelberg, 2002,
vol. 2265, pp. 501–512. [Online]. Available: http://dx.doi.org/10.1007/
3-540-45848-4_59

[6] David Chen (ed.), “Practices, principles and patterns for interoperability
(Deliverable D6.1),” Network of Excellence - Contract no.: IST-508 011,
Tech. Rep., May 2005.

[7] M. Fowler, UML Distilled: A Brief Guide to the Standard Object

Modeling Language, 3rd ed. Addison-Wesley, September 2003.
[8] D. Frankel, Model Driven Architecture: Applying MDA to Enterprise

Computing. Wiley Publishing, January 2003.
[9] C. Hein, T. Ritter, and M. Wagner, “Model-Driven Tool Integration with

ModelBus,” in First International Workshop on Future Trends of Model-

Driven Development, FTMDD, 2009, pp. 35–39.
[10] F. Jouault and I. Kurtev, “Transforming Models with ATL,” in

Proceedings of the 2005 International Conference on Satellite Events

at the MoDELS. Berlin, Heidelberg: Springer, 2006, pp. 128–138.
[Online]. Available: http://dx.doi.org/10.1007/11663430_14

[11] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full

Code Generation. Wiley-IEEE Computer Society, March 2008.
[12] H. Kern, A. Hummel, and S. Kühne, “Towards a Comparative

Analysis of Meta-metamodels,” in Proceedings of the Compilation

of the Co-located Workshops on DSM’11, TMC’11, AGERE!’11,

AOOPES’11, NEAT’11, VMIL’11, ser. SPLASH ’11 Workshops.
New York, NY, USA: ACM, 2011, pp. 7–12. [Online]. Available:
http://doi.acm.org/10.1145/2095050.2095053

[13] H. Kern and S. Kühne, “Integration of Microsoft Visio and Eclipse
Modeling Framework Using M3-Level-Based Bridges,” in 2nd ECMDA

Workshop on Model-Driven Tool and Process Integration at Fifth

European Conference on Model-Driven Architecture Foundations and

Applications 2009, Enschede, Netherlands, 2009.
[14] D. Kolovos, R. Paige, L. Rose, and F. Polack. (2014, April) The Epsilon

Book. [Online]. Available: http://www.eclipse.org/epsilon/doc/book/
[15] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,

G. Nordstrom, J. Sprinkle, and P. Volgyesi, “The Generic Modeling

Environment,” in Workshop on Intelligent Signal Processing, 2001.
[Online]. Available: http://www.cs.virginia.edu/~rp2h/home/research/
ReadingList/gmepaper.pdf

[16] D. S. Linthicum, Enterprise Application Integration. Addison-Wesley,
1999.

[17] A. Molina, H. Panetto, D. Chen, L. Whitman, V. Chapurlat, and
F. Vernadat, “Enterprise Integration and Networking: Challenges and
Trends,” Studies in Informatics and Control, vol. 16, no. 4, pp. 353–
368, 2007.

[18] Web Services Business Process Execution Language Version 2.0, OASIS
Std., April 2007. [Online]. Available: http://docs.oasis-open.org/wsbpel/
2.0/OS/wsbpel-v2.0-OS.html

[19] Business Process Model And Notation (BPMN), Version 2.0, Object
Management Group Std., January 2011. [Online]. Available: http:
//www.omg.org/spec/BPMN/2.0/PDF

[20] Meta Object Facility (MOF) 2.0 Query/View/Transformation

Specification, V1.1, Object Management Group Std., January 2011.
[Online]. Available: http://www.omg.org/spec/QVT/1.1/

[21] XML Metadata Interchange (XMI) Specification, Version 2.4.2,
Object Management Group Std., April 2014. [Online]. Available:
http://www.omg.org/spec/XMI/2.4.2

[22] T. Stahl and M. Völter, Model-Driven Software Development. Wiley,
May 2006.

[23] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse

Modeling Framework, 2nd ed., ser. The Eclipse Series. Addison-Wesley,
December 2008.

[24] J.-P. Tolvanen, “Incremental Method Engineering with Modeling Tools:
Theoretical Principles and Empirical Evidence,” Ph.D. dissertation,
University of Jyväskylä, 1998.

[25] A. I. Wasserman, “Tool integration in software engineering environ-
ments,” in Software Engineering Environments, ser. Lecture Notes in
Computer Science, F. Long, Ed. Springer, 1990, vol. 467, pp. 137–149.
[Online]. Available: http://dx.doi.org/10.1007/3-540-53452-0_38

[26] M. N. Wicks, “Tool Integration within Software Engineering
Environments: An Annotated Bibliography,” Heriot-Watt University,
Tech. Rep., August 2006. [Online]. Available: http://www.macs.hw.ac.
uk/cs/techreps/docs/files/HW-MACS-TR-0041.pdf

[27] A. Winter, B. Kullbach, and V. Riediger, “An Overview of the GXL
Graph Exchange Language,” in Software Visualization: International

Seminar Dagstuhl Castle, Germany, May 20–25, 2001 Revised Papers,
ser. Lecture Notes in Computer Science. Springer, 2002, pp. 324–336.

[28] Process Definition Interface – XML Process Definition Language,

Version 2.2, Workflow Management Coalition Std., August 2012.
[Online]. Available: http://www.xpdl.org/standards/xpdl-2.2/XPDL%
202.2%20(2012-08-30).pdf

HEIKO KERN: STUDY OF INTEROPERABILITY BETWEEN META-MODELING TOOLS 1637

