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Abstract—We used decision tree as a model to discover the
knowledge from multi-label decision tables where each row has
a set of decisions attached to it and our goal is to find out one
arbitrary decision from the set of decisions attached to a row. The
size of the decision tree can be small as well as very large. We
study here different greedy as well as dynamic programming
algorithms to minimize the size of the decision trees. When
we compare the optimal result from dynamic programming
algorithm, we found some greedy algorithms produce results
which are close to the optimal result for the minimization
of number of nodes (at most 18.92% difference), number of
nonterminal nodes (at most 20.76% difference), and number of
terminal nodes (at most 18.71% difference).

I. INTRODUCTION

N
OW a days, multi-label decision tables have gained

attention in problem of semantic annotation of im-

ages [1], music categorization into emotions [2], functional

genomics [3], and text categorization [4]. Furthermore, it is

natural to have such data sets in optimization problems such

as finding a Hamiltonian circuit with the minimum length in

the traveling salesman problem [5], finding nearest post office

in the post office problem [5]; in this case we give input with

more than one optimal solutions.

In multi-label decision tables, each row is labeled with a

set of decisions. It is common to have such tables in our real

life because we do not have enough number of attributes of

the domain to separate rows. Thus we have objects with equal

values of conditional attributes but with different decisions.

In literature, often, decision trees and other classifiers for

multi-label data are considered for prediction (multi-label

classification problem) [6], [7], [8], [9]. However, in this paper

our aim is to study decision trees for multi-label decision tables

for knowledge representation, and as algorithms for problem

solving.

In [10] we studied a greedy algorithm for construction of

decision trees for multi-label decision tables using the heuristic

based on the number of boundary subtables. Besides, in [11]

we have studied this algorithm in the cases of most common

decision, and generalized decision approaches (in that paper,

we considered decision tables with one-valued decisions as

multi-label decision tables where sets of decisions attached to

rows have one element).

This paper is a continuation of the conference publica-

tion [11]. We have introduced new greedy heuristics ‘mis-

classification error’, ‘absent’, ‘combined’ whose performances

are as good as the previous one. Also we adapt, ‘multi-

label entropy’, ‘sorted entropy’ heuristics from literature. We

compared the performance among themselves for the cost

function of number of nodes, number of nonterminal nodes

and number of terminal nodes. We have done experiments

using modified data sets from UCI Machine Learning Repos-

itory [12]. Based on the results of the experiments, we have

presented rankings among the algorithms in the form of critical

difference diagram [13]. Furthermore, we have shown the

average relative difference between greedy and optimal results

to describe how close they are. Hence, our goal is to choose

some of the greedy heuristics which are close to the optimal

results.

This paper consists of six sections. Section II contains the

related background study of this problem. Section III contains

the important definitions related to our study. After that, in

Sect. IV, we presented the dynamic and greedy algorithms

for construction of decision trees, then in Sect. V we gave

comparison among algorithms using Friedman test. Section VI

contains results of experiments and Sect. VII concludes the

paper.

II. RELATED WORK

In literature, often, problems that are connected with multi-

label data are considered for classification: multi-label learning

[14], multi-instance learning [9] etc. In multi-label learning,

the output for each instances can be a set of decisions, whereas

in our framework, we chose only one decision as output for

each instance. In multi-instance learning, bag of instances

are labeled rather than individual example which is far away

from our problem. There is also semi-supervised learning [15]

where some examples are labeled but some are not labeled, but

we deal with examples that are labeled with multiple decisions.

Furthermore, some learning problems deal with many-

valued data sets in different ways such as partial learning [16],

ambiguous learning [17], and multiple label learning [18].

These problems consider only one label as correct and others

as incorrect, but we consider all labels that are attached to an

object as correct labels for that object. In [16], [18], the authors

showed probabilistic methods to solve the learning problem

whereas in [17], the author used standard heuristic approach

to exploit inductive bias to disambiguate label information.
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Additionally, these papers only focus on classification results

rather than optimization of data model.

In this paper, we consider the problem of knowledge repre-

sentation and optimization of data model. Therefore, our goal

is to choose a data model which will be optimized and will

give us one arbitrary decision from the set of decision attached

with each row.

III. MAIN DEFINITIONS

A. Multi-label Decision Tables

A multi-label decision table T is a rectangular table filled

by nonnegative integers. Columns of this table are labeled with

conditional attributes f1, . . . , fn. If we have strings as values

of attributes, we have to encode the values as nonnegative

integers. We do not have any duplicate rows, and each row is

labeled with a nonempty finite set of natural numbers (set of

decisions). We denote the number of rows in the table T by

N(T ). We denote row i by ri where i = 1, . . . , N(T ). For

example, r1 means the first row, r2 means the second row and

so on.

TABLE I
A MULTI-LABEL DECISION TABLE T 0

T 0 =

f1 f2 f3
r1 0 0 0 {1}
r2 0 1 1 {1,2}
r3 1 0 1 {1,3}
r4 1 1 0 {2,3}
r5 0 0 1 {2}

If there is a decision which belongs to the set of decisions

attached to each row of T , then we call it a common decision

for T . We will say that T is a degenerate table if T does not

have rows or it has a common decision. For example, T ′ is

a degenerate table as shown in Table II, where the common

decision is 1.

TABLE II
A DEGENERATE MULTI-LABEL DECISION TABLE, T ′

T ′ =

f1 f2 f3
r1 0 0 0 {1}
r2 0 1 1 {1,2}
r3 1 0 1 {1,3}

A table obtained from T by removing some rows is called

a subtable of T . There is a special type of subtable called

boundary subtable. The subtable T ′ of T is a boundary

subtable of T if and only if T ′ is not degenerate but each

of its proper subtable is degenerate. We denote the number

of boundary subtables of the table T by nBS(T ). Below are

examples of all boundary subtables of T0:

T1 =

f1 f2 f3 d

r2 0 1 1 {1, 2}
r3 1 0 1 {1, 3}
r4 1 1 0 {2, 3}

T2 =
f1 f2 f3 d

r1 0 0 0 {1}
r4 1 1 0 {2, 3}

T3 =
f1 f2 f3 d

r3 1 0 1 {1, 3}
r5 0 0 1 {2}

T4 =
f1 f2 f3 d

r1 0 0 0 {1}
r5 0 0 1 {2}

The subtable of T which consists of rows that have values

a1, . . . , am at the intersection with columns fi1 , . . . , fim is

denoted by T (fi1 , a1), . . . , (fim , am). Such nonempty subta-

bles (including the table T ) are called separable subtables of

T . For example, if we consider subtable T 0(f1, 0) for table

T 0 (see Table I), it will consist of rows 1, 2, and 5. Similarly,

T 0(f1, 0)(f2, 0) subtable will consist of rows 1, and 5 (see

Table III).

TABLE III
EXAMPLE OF SUBTABLES OF MULTI-LABEL DECISION TABLE T 0

T 0(f1, 0) =

f1 f2 f3
r1 0 0 0 {1}
r2 0 1 1 {1,2}
r5 0 0 1 {2}

T 0(f1, 0)(f2, 0) =
f1 f2 f3

r1 0 0 0 {1}
r5 0 0 1 {2}

The set of attributes (columns of table T ), such that each of

them has different values is denoted by E(T ). For example,

if we consider table T 0, E(T 0) = {f1, f2, f3}. Similarly,

E(T 0(f1, 0)) = {f2, f3} for the subtable T 0(f1, 0), because

the value for the attribute f1 is constant (=0) in subtable

T 0(f1, 0). For fi ∈ E(T ), we denote the set of values from

the column fi by E(T, fi). As an example, if we consider

table T 0 and attribute f1, then E(T 0, f1) = {0, 1}.

The minimum decision which belongs to the maximum

number of sets of decisions attached to rows of the table T
is called the most common decision for T . For example, the

most common decision for table T 0 is 1. Even though both

1 and 2 appears 3 times in the sets of decisions, but 1 is

the minimum decision, so we choose 1 as the most common

decision. We denote the number of rows for which the set

of decisions contains the most common decision for T by

Nmcd(T ). For the table T 0, Nmcd(T
0) = 3.

B. Decision Tree

A decision tree over T is a finite tree with root in which each

terminal node is labeled with a decision (a natural number),

and each nonterminal node is labeled with an attribute from

the set {f1, . . . , fn}. A number of edges start from each non-

terminal node which are labeled with different non-negative

integers (e.g. two edges labeled with 0 and 1 if the nonterminal

node is labeled with binary attribute).
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Let Γ be a decision tree over T and v be a node of Γ. There

is one to one mapping between node v and subtable of T i.e.

for each node v, we have a unique subtable of T . We define a

subtable T (v) of T corresponding to the node v. If node v is

the root of Γ then T (v) = T i.e. the subtable T (v) is the same

as T . Otherwise, T (v) is the subtable T (fi1 , δ1) . . . (fim , δm)
of the table T where attributes fi1 , . . . , fim and numbers

δ1, . . . , δm are respectively node and edge labels in the path

from the root to node v.

We will say that Γ is a decision tree for T , if for any node

v of Γ:

• if T (v) is degenerate then v is labeled with the common

decision for T (v),
• if T (v) is not degenerate then v is labeled with an at-

tribute fi ∈ E(T (v)), and if E(T (v), fi) = {a1, . . . , ak},

then k outgoing edges from node v are labeled with

a1, . . . , ak.

An example of a decision tree for the table T can be found

in Fig. 1. If v is the node labeled with the attribute f3, then

subtable T (v) corresponding to the node v will be the subtable

T (f1, 0) of table T . Similarly, the subtable corresponding to

the node labeled with 2 will be T (f1, 0)(f3, 0).

f1

3 f3

1 2

1 0

0 1

Fig. 1. A decision tree for the multi-label decision table, T 0

The number of nodes in the decision tree Γ is denoted by

N(Γ). The number of terminal and nonterminal nodes in the

decision tree Γ are denoted by N t(Γ), and Nn(Γ) respectively.

C. Impurity Functions and Uncertainty Measures

In greedy algorithm, we need to choose attributes to divide

the decision table into smaller subtables until we get degen-

erate table which then be used to label the terminal node.

To choose which partition to consider for tree construction,

we need to evaluate the quality of partition. Impurity function

is the criterion for the evaluation of quality of partition. We

assume that, the smaller the impurity function value, the

better is the quality of partition. We can calculate impurity

function based on uncertainty measure value for the considered

subtables corresponding to the partitioning. The uncertainty

measure evaluates the uncertainty of the considered subtable.

If we have a common decision, then there is no uncertainty in

the data, hence we get uncertainty measure as zero, otherwise

we will get positive values for it. We have used six different

uncertainty measures, and four different impurity function

types for our experiments.

1) Uncertainty Measures: Uncertainty measure U is a

function from the set of nonempty multi-label decision tables

to the set of real numbers such that U(T ) ≥ 0 for any decision

table T , and U(T ) = 0 if and only if T is degenerate.

Let T be a multi-label decision table having n conditional

attributes, N = N(T ) rows and its rows be labeled with

sets containing m different decisions d1, . . . , dm. For i =
1, . . . ,m, let Ni be the number of rows in T that has been

attached with sets of decisions containing the decision di, and

pi =
Ni

N
. Let d1, . . . , dm be ordered such that p1 ≥ · · · ≥ pm,

then for i = 1, . . . ,m, we denote the number of rows in T
such that the set of decisions attached to row contains di, and

if i > 1 then this set does not contain d1, . . . , di−1 by N
′

i ,

and p
′

i =
N

′

i

N
. We have the following six uncertainty measures

(we assume 0 log
2
0 = 0):

• Misclassification error: me(T ) = N(T ) − Nmcd(T ). It

measures the difference between total number of rows

and number of rows with the most common decision.

• Sorted entropy: entSort(T ) = −
∑m

i=1
p

′

i log2 p
′

i (see

[17]). First we sort the probability for each decision.

Then, for each row, we keep the decision having max-

imum probability and discard others. After that, we

calculate entropy for this modified decision table.

• Multi-label entropy: entML(T ) = 0, if and only if T is

degenerate, otherwise, it is equal to −
∑m

i=1
(pi log2 pi+

qi log2 qi), where, qi = 1 − pi. (see [19]). It measures

entropy for multi-label decision table.

• nBS(T ): number of boundary subtables in T . We calcu-

late number of boundary subtables using brute force ap-

proach by checking all possible subtables of T (see [10]).

• Absent: abs(T ) = q1 · · · qm, where qi = 1 − pi. It

measures the absent probability qi, and multiplies all of

qi’s.

• Combined: comb(T ) = me(T ) + B2 + B3, where B2

and B3 are the number of boundary subtables with two

rows and three rows, respectively. It is the combination

of uncertainty measures.

2) Impurity Functions: Let fi ∈ E(T ), and E(T, fi) =
{a1, . . . , at}. The attribute fi divides the table T into t
subtables: T1 = T (fi, a1), . . . , Tt = T (fi, at). We now define

an impurity function I which gives us the impurity I(T, fi)
of this partition. Let us fix an uncertainty measure U from

the set {me , entSort , entML, nBS, abs, comb}, and type

of impurity function from {weighted sum (ws), weighted max

(wm), divided weighted sum (Div_ws), multiplied weighted

sum (Mult_ws)}. Then:

• wm: I(T, fi) = max1≤j≤tU(Tj)N(Tj). For this type, we

take the maximum among all the uncertainties of tables

T1, . . . , Tt multiplied by the weights of its number of

rows.

• ws: I(T, fi) =
∑t

j=1
U(Tj)N(Tj). For this type, we

take the sum over all the uncertainties of tables T1, . . . , Tt

multiplied by the weights of its number of rows.

• Div_ws: I(T, fi) = (
∑t

j=1
U(Tj)N(Tj))/ log2 t. For

this type, we divide the weighted sum impurity type

(wt_sum) by the logarithmic function of number of

branches (log
2
t).
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• Mult_ws: I(T, fi) = (
∑t

j=1
U(Tj)N(Tj)) · log2 t. For

this type, we multiply the weighted sum impurity type

(wt_sum) by the logarithmic function of number of

branches (log
2
t)

As a result, we have 24 (4 types multiplied by 6 uncertainty

measures) impurity functions.

IV. ALGORITHMS FOR DECISION TREE CONSTRUCTION

In this section, we consider dynamic programming algo-

rithm and greedy algorithms. Dynamic programming algo-

rithm gives us optimal solution whereas greedy algorithms

give us suboptimal solutions. As dynamic programming is

highly time consuming, we need to choose some greedy algo-

rithms which will be fast enough as well as their performances

will be comparable to the optimal one.

A. Dynamic Programming Algorithm

We now describe an algorithm Ad which, for a given multi-

label decision table constructs a decision tree with minimum

size (number of nodes, or number of nonterminal nodes,

or number of terminal nodes). This algorithm is based on

dynamic programming approach [20], [5], and the complexity

of this algorithm in the worst case is exponential.
Let T contains n conditional attribute f1, . . . , fn. The set

of all separable subtables of the table T including the table

T is denoted by S(T ). The first part of the algorithm Ad

constructs the set S(T ) (see Algorithm 1). For each subtable

from S(T ), the second part of the algorithm Ad constructs a

decision tree with minimum size (see Algorithm 2). Note that

here size refers to either the number of nodes in the tree, or

the number of nonterminal nodes in the tree, or the number

of terminal nodes in the tree.

Algorithm 1 Construction of the set of separable subtables

S(T )

Require: A multi-label decision table T with conditional

attributes f1, . . . , fn.

Ensure: The set S(T )
Assign S(T ) = {T}, and mark T as not treated;

while (true) do

if No untreated tables in S(T ) then

Return S(T );
else

Choose a table Ts in S(T ) which is not treated;

if E(Ts) = φ then

Mark the table Ts as treated;

else

Add to the set S(T ) all subtables of the form

Ts(fi, δ), where fi ∈ E(Ts), and δ ∈ E(Ts, fi)
which were not in S(T ), mark the table Ts as

treated, and new subtables Ts(fi, δ) as untreated.

end if

end if

end while

After that, Ad returns the minimum size of the optimal tree

which corresponds to the table T .

Algorithm 2 Construction of a decision tree with minimum

size for each table from S(T )

Require: A multi-label decision table T , with conditional

attributes f1, . . . , fn, and the set S(T ).
Ensure: Decision tree Ad(T ) for T .

while (true) do

if T has been assigned a decision tree then

Return this tree as Ad(T );
else

Choose a table Ts in the set S(T ) which has not been

assigned a tree yet and which is either degenerate or all

separable subtables of the table Ts already have been

assigned decision trees.

if Ts is degenerate then

Assign to the table Ts the decision tree consisting of

one node. Mark this node with the common decision

for Ts;

else

For each fi ∈ E(Ts) and each δ ∈ E(Ts, fi),
we denote the decision tree assigned to the table

Ts(fi, δ) by Γ(fi, δ). We now define a decision tree

Γfi with a root labeled by the attribute fi where

fi ∈ E(Ts), and E(Ts, fi) = {δ1, . . . , δr}. The root

has exactly r edges d1, . . . , dr which are labeled by

the numbers δ1, . . . , δr, respectively. The roots of

the decision trees Γ(fi, δ1), . . . ,Γ(fi, δr) are ending

points of the edges d1, . . . , dr, respectively. Assign

to the table Ts one of the trees Γfi , fi ∈ E(Ts),
having minimum size.

end if

end if

end while

B. Greedy Algorithms

Let I be an impurity function. For a given multi-label

decision table T , the greedy algorithm AI constructs a decision

tree AI(T ) for T (see Algorithm 3).

It constructs decision tree sequentially in a top-down fash-

ion. It greedily chooses one attribute at each step based on

uncertainty measure and type of the impurity function. We

have total 24 algorithms. The complexities of these algorithms

are polynomially bounded above by the size of the table. In

case of ‘number of boundary subtables’ uncertainty measure,

we will only consider those tables where the maximum number

of decisions are bounded.

V. COMPARISON OF ALGORITHMS

To compare the algorithms statistically, we use Friedman

test with the corresponding Nemenyi post-hoc test as sug-

gested in [13]. Let we have k greedy algorithms A1, . . . , Ak

for constructing trees and M decision tables T1, . . . , TM . For

each decision table Ti, i = 1, . . . ,M, we rank the algorithms

A1, . . . , Ak on Ti based on their performance scores (from the

point of view of cost functions: number of nodes, or number of

nonterminal nodes, or number of terminal nodes of constructed
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Algorithm 3 Greedy algorithm AI

Require: A multi-label decision table T with conditional

attributes f1, . . . , fn.

Ensure: Decision tree AI(T ) for T .

Construct the tree G consisting of a single node labeled

with the table T ;

while (true) do

if No node of the tree G is labeled with a table then

Denote the tree G by AI(T );
else

Choose a node v in G which is labeled with a subtable

T ′ of the table T ;

if U(T ′) = 0 then

Instead of T ′, mark the node v with the common

decision for T ′;

else

For each fi ∈ E(T ′), we compute the value of the

impurity function I(T ′, fi);
Choose the attribute fi0 ∈ E(T ′), where i0 is the

minimum i for which I(T ′, fi) has the minimum

value; Instead of T ′, mark the node v with the

attribute fi0 ;

For each δ ∈ E(T ′, fi), add to the tree G the node

vδ and mark this node with the subtable T ′(fi0 , δ);
Draw an edge from v to vδ and mark this edge with

δ.

end if

end if

end while

trees), where we assign the best performing algorithm as the

rank 1, the second best as the rank 2, and so on. We break ties

by computing the average of ranks. Let rji be the rank of the

j-th of k algorithms on the decision table Ti. For j = 1, . . . , k,
we correspond to the algorithm Aj the average rank

Rj =
1

M
·

M
∑

i=1

rji .

For a fixed significant level α (in our work α = 0.05), the

performance of two algorithms is significantly different if

the corresponding average ranks differ by at least the critical

difference

CD = qα

√

k (k + 1)

6M

where qα is a critical value for the two-tailed Nemenyi test

depending on α and k (see [13]).

We can also compare performance scores of algorithms

A1, . . . , Ak with optimal results obtained by dynamic pro-

gramming algorithm. For j = 1, . . . , k and i = 1, . . . ,M ,

we denote, by Nij the number of nodes of the decision tree

constructed by the algorithm Aj on the decision table Ti. For

i = 1, . . . ,M, we denote the minimum possible number of

nodes of a decision tree for Ti by Nopt
i . Thus, we can compute

the average relative difference in percentage for number of

nodes as

ARD
N
j =

1

M

M
∑

i=1

Nij −Nopt
i

Nopt
i

× 100%.

Similarly, for number of nonterminal nodes (Nn(Γ)), we

have

ARD
Nn

j =
1

M

M
∑

i=1

Nn
ij −Nnopt

i

Nnopt
i

× 100%.

Similarly, for number of terminal nodes (Nt(Γ)), we have

ARD
Nt

j =
1

M

M
∑

i=1

N t
ij −N topt

i

N topt
i

× 100%.

VI. EXPERIMENTAL RESULTS

We consider 16 decision tables from UCI Machine Learning

Repository [12]. There were missing values for some attributes

which were replaced with the most common values of the

corresponding attributes. Some conditional attributes have

been removed that take unique value for each row. To convert

such tables into multi-label decision table format, we removed

the more conditional attributes from these tables. As a result

we obtained inconsistent decision tables which contained equal

rows with different decisions. Each group of identical rows

was replaced with a single row from the group which is

labeled with the set of decisions attached to rows from the

group. The information about obtained multi-label decision

table can be found in Table IV. Modified decision table has

been renamed in Table IV by the name of initial table plus an

index equal to the number of removed conditional attributes.

Table IV also contains the number of rows (column “Rows”),

the number of attributes (column “Attr”), and the spectrum

of the corresponding decision table (column “Spectrum”).

Spectrum of a multi-label decision table is a sequence #1,

#2,. . . , where #i, i = 1, 2, . . ., is the number of rows labeled

with sets of decisions with the cardinality equal to i.

TABLE IV
CHARACTERISTICS OF MULTI-LABEL DECISION TABLES

Decision Rows Attr Spectrum

table T #1 #2 #3 #4 #5 #6

balance-scale-1 125 3 45 50 30
breast-cancer-1 193 8 169 24
breast-cancer-5 98 4 58 40
cars-1 432 5 258 161 13
flags-5 171 21 159 12
hayes-roth-data-1 39 3 22 13 4
lymphography-5 122 13 113 9
mushroom-5 4078 17 4048 30
nursery-1 4320 7 2858 1460 2
nursery-4 240 4 97 96 47
spect-test-1 164 21 161 3
teeth-1 22 7 12 10
teeth-5 14 3 6 3 0 5 0 2
tic-tac-toe-4 231 5 102 129
tic-tac-toe-3 449 6 300 149
zoo-data-5 42 11 36 6
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Fig. 2. CDD for number of nodes of decision trees constructed by greedy algorithms

We have six uncertainty measures (me, nBS, abs, comb,
entSort, entML) and four types of impurity functions (ws,

wm, Div_ws, Mult_ws), so total 24 greedy algorithms have

been compared. In the critical difference diagram (CDD), we

showed the names of the algorithms as combined name of

heuristic and impurity function types separated by ‘_’. For

example, if the algorithm name is wm_nBS, this means

it uses wm as a type of impurity function and nBS as

uncertainty measure.
Figure 2 shows the CDD containing average (mean) rank

for each algorithms on the x-axis for significant level of

α = 0.1. When Nemenyi test cannot identify significant dif-

ference between some algorithms, the algorithms are clustered

(connected). It is clear from Figure 2 that, 18 algorithms from

the 24 algorithms are clustered in the first group (left most

algorithms is the best ranked algorithm) which are the leaders

among all greedy algorithms for minimization of number of

nodes in decision trees, and the best ranked algorithm is

ws_abs. We have shown the best three algorithms having

minimum ARD in Table V. If we look at the ARD table, we

can see the best algorithm that is closer to the optimal results

is ws_abs, and the average relative difference is only 18.92%.
Also, we can see from Figure 3 that, 17 algorithms among

24 algorithms are leaders for minimization of number of non-

terminal nodes in decision trees, and the best ranked algorithm

is ws_abs. We have shown the best three algorithms having

minimum ARD for minimization of number of nonterminal

nodes in Table VI, and the ARD for ws_abs is only 20.76%

relative to the optimal results.

Now, for the minimization of number of terminal nodes, we

can see from Figure 4 that 19 algorithms from 24 algorithms

are in the best group, and the best ranked algorithm is

Mult_ws_entML. Also from ARD Table VII, we can see

that Mult_ws_entML is closer to the optimal results by only

18.71%.

TABLE V
ARD IN PERCENTAGE BETWEEN RESULTS OF GREEDY AND DYNAMIC

ALGORITHMS FOR TOTAL NUMBER OF NODES

Algorithm ARD

ws_abs 18.92%
Mult_ws_entML 19.73%
ws_entML 20.58%

TABLE VI
ARD IN PERCENTAGE BETWEEN RESULTS OF GREEDY AND DYNAMIC

ALGORITHMS FOR NUMBER OF NONTERMINAL NODES

Algorithm ARD

ws_abs 20.76%
ws_entML 22.6%
ws_entSort 23.7%
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wm_me
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Fig. 3. CDD for nonterminal nodes of decision trees constructed by greedy algorithms

TABLE VII
ARD IN PERCENTAGE BETWEEN RESULTS OF GREEDY AND DYNAMIC

ALGORITHMS FOR NUMBER OF TERMINAL NODES

Algorithm ARD

Mult_ws_entML 18.71%
ws_abs 21%
ws_entSort 22.49%

VII. CONCLUSION

In this paper, we studied greedy algorithms for decision tree

construction which are based on various impurity functions.

We compared these algorithms to find out which algorithm

gives us minimum number of nodes, minimum number of

nonterminal nodes and minimum number of terminal nodes.

We also considered the average relative difference between

optimal results and results obtained by the greedy algorithms.

We found that, for the best greedy algorithm, it is at most

18.92% ARD for the minimization of number of nodes, at most

20.76% ARD for the minimization of number of nonterminal

nodes, and 18.71% ARD for the minimization of terminal

nodes, which are promising results. In future, our goal is to

compare the above best greedy algorithm for the problem of

prediction i.e. to minimize the prediction error.
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