
An Optimized Version of the K-Means Clustering
Algorithm

Cosmin Marian Poteras,
University of Craiova

Faculty of Automation,

Computers and Electronics

Blvd. Decebal nr. 107,

Craiova, Romania

Email: cpoteras@software.ucv.ro

Marian Cristian Mihăescu
University of Craiova

Faculty of Automation,

Computers and Electronics

Blvd. Decebal nr. 107,

Craiova, Romania

Email: mihaescu@software.ucv.ro

Mihai Mocanu
University of Craiova

Faculty of Automation,

Computers and Electronics

Blvd. Decebal nr. 107,

Craiova, Romania

Email: mmocanu@software.ucv.ro

Abstract—This paper introduces an optimized version of the
standard K-Means algorithm. The optimization refers to the
running time and it comes from the observation that after a
certain number of iterations, only a small part of the data
elements change their cluster, so there is no need to re-distribute
all data elements. Therefore the implementation proposed in this
paper puts an edge between those data elements which won’t
change their cluster during the next iteration and those who
might change it, reducing significantly the workload in case of
very big data sets. The prototype implementation showed up to
70% reduction of the running time.

I. INTRODUCTION

T
HE MORE data volumes continue to grow in complexity

and diversity, the harder it is to structure and manipulate

them. Finding data with similar characteristics and labeling

it accordingly has become one of the greatest challenges in

nowadays data analyzing applications. Grouping data based on

common characteristics is what we call clustering. Clustering

algorithms fall into the unsupervised classification techniques

category. They classify a set of objects into a subset of clus-

ters based on similarities between them. Differences between

clusters have to be obvious and clearly expressed.
Clustering can be applied to a wide range of domains

like: marketing [1] (market analysis and recommendations,

methodological weaknesses), medicine [2] (medical image

segmentation), e-business [3] (comments analysis on news

portal) or e-learning [4][5] (prediction of students’ academic

performance).
There is no secret recipe for choosing the best clustering

algorithm. The choice should be based on experimental studies

and data description possibly mixed with some human intu-

ition unless there is no obvious mathematical model.

Some of the problems raised by clustering algorithms which

worth investing research efforts are: scalability, handling het-

erogeneous data, execution time complexity when dealing with

very large data sets, multi-dimensional data, etc.

The standard K-Means algorithm represents one of the

most popular unsupervised exclusive clustering algorithms. It

has been successfully applied to medical image segmentation

as shown in [6] where the authors propose an algorithm

for the segmentation of three-dimensional (3-D) image data

based on a combination of adaptive K-Means clustering and

knowledgebased morphological operations.

K-Means is based on the minimization of the average

squared Euclidean distance between the data items and the

cluster’s center (called centroid). The results of the algorithm

are influenced by the initial centroids. Different initial con-

figurations might lead to different final clusters. The cluster’s

center is defined as the mean of the items in a cluster.

This paper focuses on the execution of the K-Means algo-

rithm, namely it tries to improve the running time when deal-

ing with high volumes of data. The standard implementation

of K-Means consists of successive iterations. Each iteration

requires visiting the entire data set in order to assign data

objects to their corresponding cluster. At the end of each

iteration, new centroids are being computed so that the next

iteration will employ the new centroids. After a certain number

of such iterations, the centroids will keep the same and the

algorithm stops.

The optimization proposed by this paper relies on the

observation that after performing a number of iterations, just

a small part of the data set might change the cluster it belongs

to. Our implementation traces a border between that part of

the data set which could possibly switch to another cluster

and the data that will hold the cluster it belongs to, during the

next iteration. As K-Means algorithm’s execution advances,

the centroids come closer to their final position. The more

iterations are performed, the less the centroids deviate from

their current position, resulting in less data objects to be

checked against. Similar to the classical implementation, the

final clusters are sensitive to the initial configuration (initial

centroids).

The rest of the paper is structured as follows: section

II presents previous results in speeding up the K-Means

algorithm, section III describes the proposed optimization for

the K-Means algorithm, section IV experimentally evaluates

the potential of the proposed optimization, while section V

concludes the paper and presents our future research inten-

tions.

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 695–699

DOI: 10.15439/2014F258

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 695

Algorithm 1 Standard K-Means algorithm

1. Choose k data objects representing the cluster centroids;

2. Assign each data object of the entire data set to the cluster

having the closest centroid

3. Compute new centroid for each cluster, by averaging the

data objects belonging to the cluster

4. If at least one of the centroids has changed, go to step 2,

otherwise go to step 5

5. Output the clusters.

II. RELATED WORK

Researches have shown special interest for speeding up the

K-Means algorithm, by either reducing the computation com-

plexity or by adopting K-Means implementations for parallel

and distributed platforms.

In [7] the authors propose an efficient implementation of

the Lloyd’s (K-Means) algorithm called the filtering algorithm

which employs kd-trees for storing the data elements.

In [8], the authors propose an algorithm which reduces the

computations for determining the closest centroid of a data

element, by making use of the observation that if a data

element gets closer to the centroid defined at the previous

iteration, it won’t switch the cluster it belongs to.

Other strategies [9][10][11][12][13] focused on parallelizing

the K-Means algorithm and take advantage of powerful paral-

lel and distributed environments, addressing issues specific to

those environments, like data availability, synchronization, etc.

and adapting the K-Means algorithm to different distributed

architectures (client-server, peer-to-peer, etc). The results were

satisfactory for very big data sets.

The highly-parallel GPUs haven’t been ignored either. Pa-

pers [14][15] propose parallel implementations of K-Means to

be run on GPUs.

III. OPTIMIZED K-MEANS METHOD

Before proceeding with our optimized K-Means, let us

examine first the standard K-Means algorithm. It consists of

repetitive steps, as presented in algorithm 1.

Let us have a look at the algorithm and try to identify what

step causes the most computations. Obviously in case of very

large data sets, step number 2 would require the biggest time

frame in the algorithm’s execution. The bigger the data set,

the wider the time frame of step 2’s execution as it visits

each data object and performs some computations on it. The

question that arises here is: do we need to visit the entire

data space? Figure 1 illustrates the centroids’ evolution in a

standard K-Means execution.

The data objects are represented by 2D points. The algo-

rithm starts with centroids A1, B1 and C1, which change their

position with each iteration, successively to Ai, Bi and Ci,

where i=1..6 until they no longer change. If we take a closer

look, we can easily see that as the execution progresses, the

centroids get very close to their final position. Actually, it

happens very often that after only few iterations, the centroids

undergo their trip to the very close neighborhood of their

final position. This observation leads us to the conclusion that

most of the data objects belonging to a cluster whose centroid

slightly moves, should not be affected by the move; they will

remain part of the same cluster during the next iteration. The

less the centroid moves, the less points get affected by the

move.

Being able to determine which of the data objects could

be affected by a move, could lead us to a very important

improvement on step number 2 as we no longer need to visit

the entire data set, but just a small list of data objects (let us

call that the ’border’ list). Before deciding which data objects

should be placed into the ’border’ list we need to establish the

criteria that need to be fulfilled by a data element so that it

can be considered a ’border’ element. Let us consider Figure

2 which assumes the iteration i is to be computed.

Let point P be part of cluster C. All other points have been

omitted on purpose for the ease of presentation. Point P is

part of cluster C as the distance from P to C (dPC)is less than

the distance to A (dPA) and less than the distance to B (dPB).

We want to know, how far away is point P from jumping to

another cluster. That would obviously be:

eP = min(dPA-dPC, dPB - dPC) (1)

We’ve labeled as eP the distance from P to the closest edge.

We can say that point P is eP-away from switching the cluster.

At the end of iteration i, centroids need to be updated based

on the new clusters’ configuration. Let us assume that centroid

A moved to A’, centroid B moved to B’ and centroid C moved

to C’.

In the context shown in figure 2, the worst case scenario for

pointP would be: point C got farther away from P by |CC’|

while point A got closer by |AA’| and point B got closer by

|BB’|. What would be the condition for P to stay in cluster C?

Obviously that would be

eP > |CC’| + |AA’| (2)

and

eP > |CC’| + |BB’| (3).

To simplify a little the algorithm and reduce the computa-

tions, we can blend conditions (2) and (3):

eP > 2 * max(|AA’|, |BB’|, |CC’|). (4)

That being said, we’ve just found a way of determining

whether a point is part of the ’border’ list or not.

But, we’re still not ok because checking the inequality for

each of our data elements at each iteration gets us back to

where we started. To avoid such computations, we can map

all of our data elements into wider intervals for the value of

e, as shown in algorithm 2:

The algorithm 2 groups points with close values of e

so that instead of visiting each data element and checking

against their close-to-the-edge distance, we can do that that

for the entire group. This compromise is the key of the entire

optimization. The WIDTH constant has a big influence on the

optimization. If the value of WIDTH is to small, then the

696 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 1. Example of centroids evolution

Fig. 2. Edge condition for data elements

Algorithm 2 Optimized K-Means algorithm

1. Define constant WIDTH

2. Define intervals Ii = [i * WIDTH, (i+1) * WIDTH) and tag

them with value i * WIDTH

3. Mark the entire data set to be visited

4. For each point to be visited

5. Compute e = min(dPCl
- dPCw

) where Cw is the center of

the winner (closest) cluster and Cl, l=1..k, l6= w stands for

all other centroids

6. Map all points with i * WIDTH < e < (i+1) * WIDTH to

interval i * WIDTH where i is a positive integer

7. Compute new centroids Cj, where j=1..k and their maximum

deviation D = max(|CjCj’|)

8. Update Ii’s tag by subtracting 2 * D (points owned by this

interval got closer to the edge by 2 * D)

9. Pick up all points inside intervals whose tag is less or equal

to 0, and go to 4 to revisit them

number of intervals will increase and the workload involved

by checking and updating the intervals at each iteration can

increase significantly. If the value of WIDTH is to big, then the

number of points for each interval increases, and even though

the number of intervals is reduced, the performance loss is

obvious when a big interval is marked for re-visiting.

One can easily observe that the quality of the final clusters

is not affected by the proposed optimization. At each iteration,

the composition of clusters is exactly the same as if we would

have run the standard K-Means.

IV. PROTOTYPE EVALUATION

To validate the potential of our K-Means optimization,

we’ve implemented a prototype that runs on data sets com-

posed of 2D points having their coordinates greater than 0

and less than 1. There have been randomly generated data sets

of different sizes ranging from 100,000 points to 5,000,000

points. The random numbers generator used for generating

the points coordinates, made use of an uniform distribution.

The data sets were split into 4, 8 or 12 clusters. The points

belonging to each cluster have been grouped into 0.1 wide

intervals (WIDTH = 0.1). The running time of the optimized

algorithm was compared to the running time of the standard

K-Means processing of the same data sets in exactly the same

conditions (same centroids, same execution environment).

Experiments were conducted on a machine consisting of an

Intel i7-4700MQ CPU, 8 GB RAM memory. Many runs were

carried out for each use case, and the running times were

averaged. Let us have a look at the results.

Table I presents the running time for both optimized and

standard versions of the K-Means algorithm where the data

COSMIN MARIAN POTERAS, CRISTIAN MIHAESCU, MIHAI MOCANU: AN OPTIMIZED VERSION OF THE K-MEANS CLUSTERING ALGORITHM 697

TABLE I
OPTIMIZED K-MEANS VS. STANDARD K-MEANS RUNNING TIMES - 4

CLUSTERS

Data

set size

Running Time Stan-

dard K-Means (ms)

Running Time Opti-

mized K-Means (ms)

Improved

by(%)

100,000 6300 1967 68.77

250,000 14382 4528 68.51

500,000 40321 11402 71.72

750,000 55088 15943 71.05

1,000,000 73957 21436 71.01

2,000,000 140339 42962 69.38

5,000,000 420516 116630 72.26

TABLE II
OPTIMIZED K-MEANS VS. STANDARD K-MEANS RUNNING TIMES - 8

CLUSTERS

Data

set size

Running Time Stan-

dard K-Means (ms)

Running Time Opti-

mized K-Means (ms)

Improved

by(%)

100,000 75664 28418 62.44

250,000 148472 57485 61.28

500,000 629777 224277 64.38

750,000 1004100 359230 64.22

1,000,000 1096291 396923 63.79

2,000,000 2798319 1006918 64.01

5,000,000 9685205 3355996 65.34

sets were divided into 4 clusters.

The running time has been reduced by up to 72.26%

Table II, presents the running time for both optimized and

standard versions of the K-Means algorithm where the data

sets were divided into 8 clusters. The running time has been

reduced by up to 64.48%, which is less than the improvement

shown in case of only 4 clusters. That can be explained by the

fact that the more clusters we use, the higher the chances are

for a bigger maximum centroid deviation (max(|CiCi), where

i = 1..K), which decrease the chances of fulfilling inequality

(4) causing more points to become part of the ’border’ area.

Table III, presents the running time for both optimized and

standard versions of the K-Means algorithm where the data

sets were divided into 12 clusters. The best improvement we

have got here rises up to 53.42% which again, is less than

the improvement we have got for 4 and 8 clusters. These

results confirm that a higher number of clusters results in wider

’border’ areas, reducing the computational gain.

V. CONCLUSIONS AND FUTURE WORK

The paper introduces an optimized version of the K-Means

algorithm. The optimization refers to the running time. Opti-

mization comes from the considerable reduction of the data

space that is re-visited at each loop.

The algorithm defines a ’border’ area made of those points

that are close enough to the edge of their cluster so that the

next centroids move could cause them to switch clusters.

A prototype implementation of a domain specific data set

has been evaluated. The implementation assumes the data set

TABLE III
OPTIMIZED K-MEANS VS. STANDARD K-MEANS RUNNING TIMES - 12

CLUSTERS

Data

set size

Running Time Stan-

dard K-Means (ms)

Running Time Opti-

mized K-Means (ms)

Improved

by(%)

100,000 53879 27388 49.16

250,000 186923 90140 51.77

500,000 323584 158888 50.89

750,000 681331 317328 53.42

1,000,000 809675 377522 53.37

2,000,000 1650657 776873 52.93

5,000,000 4835146 2324173 51.93

is made of 2D points with their coordinates between 0 and 1.

The data set has been generated using a uniform distribution

generator.

Running times for 4, 8 and 12 centroids have been compared

to the running times of the standard K-Means algorithm,

showing a reduction ranging from 49.16% to 72.26 %. At

this stage we can not confirm that the improvement shown by

the prototype will be held in all real-world use cases, but the

results are certainly encouraging.

Our future research will focus on the domain-independent

implementation and evaluation of the algorithm. The algo-

rithm’s scalability as well as data sensitivity (form and dis-

tribution) are to be analyzed with the purpose of concluding

upon what would be the best and the worst environments (data

and configuration) for the algorithm.

A natural question would be if the algorithm can be im-

proved. One can easily note that the grouping intervals’ width

might be a point of vulnerability for the performance gain.

The lower the width, the more intervals are to be checked; the

higher the width, the more points are to be checked when their

interval’s distance to the edge goes bellow 0. A tradeoff has

to be made here, therefore we will also focus on designing an

auto-calibration algorithm for the interval width.

Implementations for parallel and distributed environments,

as well as integration with existing frameworks (Hadoop,

Mahout) are also on our goals list as they could lead our way

towards big data sets.

REFERENCES

[1] Dolnicar, S, Using cluster analysis for market segmentation - typi-
cal misconceptions, established methodological weaknesses and some
recommendations for improvement, Australasian Journal of Market
Research, 2003, 11(2), 5-12.

[2] Ng, H.P., Ong, S.H.; Foong, K.W.C.; Goh, P.S.; Nowinsky, W.L. -
Medical Image Segmentation Using K-Means Clustering and Improved
Watershed Algorithm, 7th IEEE Southwest Symposium on Image Anal-
ysis and Interpretation, March 26-28, 2006, Denver, Colorado, pages
61-66

[3] Hongwei Xie, Li Zhang ; Jingyu Sun ; Xueli Yu - Application of K-
means Clustering Algorithms in News Comments - The International
Conference on E-Business and E-Government, May 2010, Guangzhou,
China, pages 451-454

[4] kK Oyelade, O. J, Oladipupo, O. O, Obagbuwa, I. C - Application
of K-Means Clustering algorithm for prediction of Students’ Academic
Performance, (IJCSIS) International Journal of Computer Science and
Information Security, Vol. 7, No. 1, 2010, pages 292–295

698 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

[5] Burdescu, D.D.; Mihaescu, M.C., "Enhancing the Assessment Envi-
ronment within a Learning Management Systems," EUROCON, 2007.
The International Conference on "Computer as a Tool", vol., no.,
pp.2438,2443, 9-12 Sept. 2007

[6] Chang Wen Chen, Jiebo Luo, Kevin J. Parker - Image Segmentation
via Adaptive K-Mean Clustering and Knowledge-Based Morphological
Operations with Biomedical Applications, IEEE Transactions on Image
Processing, VOL. 7, NO. 12, DECEMBER 1998, pages 1673 - 1683

[7] T. Kanungo, D.M. Mount, K.D. Piatko, N.S. Netanyahu, R. Silver-
man, A. Y. Wu - An efficient k-means clustering algorithm: analysis
and implementation, Pattern Analysis and Machine Intelligence, IEEE
Transactions on (Volume:24, Issue: 7), pages 881-892, July 2002, ISSN
0162-8828

[8] Fahim A.M., Salem A.M., Torkey F.A., Ramadan M.A. - An Efficient
Enhanced K-means Clustering Algorithm Journal of Zhejiang University
SCIENCE A, ISSN 1009-3095 (Print); ISSN 1862-1775 (Online), pages
1626 - 1633, 2006 7(10)

[9] Souptik Datta, Chris Giannella, Hillol Kargupta - K-Means Clustering
Over a Large, Dynamic Network, Proceedings of the Sixth SIAM
International Conference on Data Mining, April 20-22, 2006, Bethesda,
MD, USA. SIAM 2006 ISBN 978-0-89871-611-5, pages 153 - 164

[10] Yufang Zhang, Zhongyang Xiong, Jiali Mao, Ling Ou - The Study of
Parallel K-Means Algorithm, Proceedings of the 6th World Congress on
Intelligent Control and Automation, June 21 - 23, 2006, Dalian, China,

pages 5868 - 5871
[11] Jing Zhang, Gongqing Wu, Xuegang Hu, Shiying Li, Shuilong Hao -

A Parallel K-means Clustering Algorithm with MPI, 4th Internation
Symposium on Parallel Architectures, Algorithms and Programming,
ISBN 978-0-7695-4575-2, pages 60-64, 2011

[12] Fazilah Othman, Rosni Abdullah, Nur’Aini Abdul Rashid, and Rosalina
Abdul Salam - Parallel K-Means Clustering Algorithm on DNA Dataset,
Parallel and Distributed Computing: Applications and Technologies,
Lecture Notes in Computer Science Volume 3320, 2005, pp 248-251

[13] Jitendra Kumar, Richard T. Mills, Forrest M. Hoffman, William W.
Hargrove - Parallel k-Means Clustering for Quantitative Ecoregion
Delineation Using Large Data Sets, Proceedings of the International
Conference on Computational Science, ICCS 2011, Procedia Computer
Science 4 (2011) 1602-1611

[14] Reza Farivar, Daniel Rebolledo, Ellick Chan, Roy Campbell - A
Parallel Implementation of K-Means Clustering on GPUs, Proceedings
of the International Conference on Parallel and Distributed Processing
Techniques and Applications, PDPTA 2008, Las Vegas, Nevada, USA,
July 14-17, 2008, 2 Volumes. CSREA Press 2008 ISBN 1-60132-084-1,
pages 340-345

[15] Mario Zechner, Michael Granitzer - Accelerating K-Means on the
Graphics Processor via CUDA, The First International Conference on
Intensive Applications and Services INTENSIVE 2009, 20-25 April,
Valencia, Spain, pages 7-15, ISBN 978-1-4244-3683-5

COSMIN MARIAN POTERAS, CRISTIAN MIHAESCU, MIHAI MOCANU: AN OPTIMIZED VERSION OF THE K-MEANS CLUSTERING ALGORITHM 699

