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Abstract—The paper illustrates the concept of the map with
logarithmically invertible decomposition. We introduce families
of multivariate cryptosystems such that there security level is
connected with discrete logarithm problem in Cremona group.
The private key of such cryptosystem is a modification of graph
based stream ciphers which use stable multivariate maps. Modi-
fied version corresponds to a stable map with single disturbance.
If the disturbance (or initial condition) allows fast computation
then modified version is almost as robust as original one. Methods
of modification improve the resistance of such stream ciphers
implemented on numerical level to straightforward linearisation
attacks.

I. INTRODUCTION

T
HE FORMAL concepts of multivariate map with loga-

rithmically invertible decomposition is introduced by the

author in Extended Abstracts Of Central European Confer-

ence on Cryptology, 2014. In this paper the examples of a

cryptosystem based on this idea will be presented. The com-

plexity estimates of an encryption and a decryption procedures

are given. The construction uses walks on graphs D(n,K)
or A(n,K) for purpose of Multivariate Cryptography. Such

walks firstly used for the constructions of fast stream ciphers.

The multivariate maps induced by such walks turn out to

be fast cubical transformations of the plainspace (variety of

vertices or variety of flags (see [1], [2]). It makes them useful

for a design of stream ciphers and key exchange protocols. It

was shown [3], [4] that the inverses of encryption maps are

also cubical transformations. This fact restricts their use in

public key cryptography. In [5] more general idea of multi-

variate map corresponding to symbolic walk on the graph has

been introduced. Paper [6] suggests the deformation of such

nonlinear map by two affine transformations and the use of

deformated transformation in Multivariate Cryptography, but

important questions of estimation of degrees, orders, densities

are still under investigation.

Currently symbolic walks are used for the development of

stream ciphers with high resistance to plaintext - ciphertext

attacks of the adversary.

Current paper contains description of algorithms which

allows a repetition of chosen walks on the graph D(n,K)

and A(n,K). This rout makes the bridges towards discrete

logarithm problem for cyclic subgroups of Cremona group.

Preliminaries on Multivariate Cryptography are collected in

the section 2 which contains definitions of special multivariate

maps. Section 3 is devoted to information on problems of

Extremal Graph Theory which leads to discovery of graphs

D(n, Fq) and A(n, q). The descriptions of graphs D(n,K)
and their connected components together with cryptographical

applications are given in section 4. The graph based explicit

construction of requested multivariate transformations is given

in section 5. It comes together with the decryption of multi-

variate public key based on graphs D(n,K).

The last section is the conclusion.

II. ON MULTIVARIATE CRYPTOGRAPHY AND SPECIAL

MULTIVARIATE TRANSFORMATIONS

Multivariate cryptography (see [7]) is one of the directions

of Postquantum Cryptography, which concerns with algo-

rithms resistant to hypothetic attacks conducted by Quantum

Computer. The encryption tools of Multivariate Cryptography

are nonlinear multivariate transformations of affine space Kn,

where K is a finite commutative ring. Nowadays this modern

direction of research requires new examples of algorithms with

theoretical arguments on their resistance to attacks conducted

by ordinary computer (Turing machine) and new tasks for

cryptanalists.

Recall, that Cremona group C(Kn) is a totality of invertible

maps f of affine space Kn over a Commutative ring K into

itself, such that the inverse map f−1 is also a polynomial one.

Let us refer to the sequence of maps f(n) from C(Kn),
n = 1, 2, . . . as the family of bounded degree, if the degree of

each transformation is bounded by the finite parameter s.

Assume that a transformation f = f(n) is written in the

form: xi → fi(x1, x2, . . . , xn), i = 1, 2, . . . , n, where each

fi ∈ Kn is determined by the list of their monomial terms

with respect to some chosen order.

A family of elements f(n) ∈ C(Kn), n > 1 is called stable

if each nonidentity multiple iteration of f(n) with itself has the

same degree with f(n). Let |g| be the order of g ∈ C(Kn).
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We say, that f(n) is a family of increasing order if |f(n)|
for n.

Let us consider the discrete logarithm problem for a stable

family fn of increasing order. We have to solve the equation

f(n)
y
= b(n) with respect to an integer unknown y. Notice,

that deg(f(n)) = deg(b(n)). It means, that studies of degrees

(f(n))k, k = 1, 2, . . . do not bring us any new information for

the task execution. If the order of an element f(n) is growing

fast with the growth of n, then discrete logarithm problem can

be NP - hard.

We say that a family f(n) ∈ C(Kn) has an invert-

ible decomposition of speed d if f(n) can be written as a

composition of elements f1(n), f2(n), . . . , fk(n)(n) and this

decomposition will allow us to compute the value of y = f(x)
and the re-image of given y in time k(n)O(nd) (see the

authors extended abstract for Central European Conference on

Cryptology 2014).

In the case d = 1 we say that invertible decomposition is of

linear speed. The complexity of computation of the value of

each f i(n) in a given point x is O(nd). We refer to the family

of multivariate maps hn+1 : Kn+1 → Kn+1 as a family with

logarithmically invertible decomposition of speed t with the

initial function f(x1, x2, . . . , xn) if there exists decomposition

hn+1 = hn+1,1hn+1,2 . . . hn+1,k(n) such that the knowledge

about it allows us to solve the equation

hn+1
α(x1, x2, . . . , xn, f(x1, x2, . . . , xn)) =

(b1, b2, . . . , bn+1) for unknowns α, x1, x2, . . . , xn in time

k(n)O(nt).
We say that function u : Z+ → Z+ is computationally

equivalent to ns, s ≥ 0 and write u(ns if C1n
s ≤ u(n) ≤

C2n
s for some positive constants C1 and C2.

Examples of stable families f(n) ∈ C(Kn) of bounded

degree and increasing order defined in terms of algebraic

graph theory are given in [4], [8], [9], [11]. An example of

stable transformations of linear degree and increasing order is

proposed in [12] (see also survey [10], [13] and 14] for extra

examples).

III. EXTREMAL ALGEBRAIC GRAPHS CORRESPONDING TO

SPECIAL FAMILIES OF MULTIVARIATE MAPS AND THEIR

USAGE IN SYMMETRIC CRYPTOGRAPHY

Recall, that the girth is the length of minimal cycle in the

simple graph. Studies of maximal size ex(C3, C4, . . . , C2m, v)
of the simple graph on v vertices without cycles of length

3, 4, . . . , 2m, i. e. graphs of girth > 2m, form an important

direction of Extremal Graph Theory (see [15]).

As it follows from famous the Even Circuit Theorem by P.

Erdős we have inequality

ex(C3, C4, . . . , C2m, v) ≤ cv1+1/n,

where c is a certain constant. The bound is known to be

sharp only for n = 4, 6, 10. The first general lower bounds

of kind ex(v, C3, C4, . . . Cn) = Ω(v1+c/n), where c is some

constant < 1/2 were obtained in the 50th by Erdős via studies

of families of graphs of large girth, i.e. infinite families of

simple regular graphs Γi of degree ki and order vi such that

g(Γi) ≥ clogkivi, where c is the independent of i constant.

Erdős proved the existence of such a family with arbitrary

large but bounded degree ki = k with c = 1/4 by his famous

probabilistic method.

First two explicit families of regular simple graphs of large

girth with unbounded girth and arbitrarily large k appeared

in 90th: the family X(p, q) of Cayley graphs for PSL2(p),
where p and q are primes, which has been defined by G.

Margulis [10] and investigated by A. Lubotzky, Sarnak and

Phillips [17] and the family of algebraic graphs CD(n, q)
[18]. Graphs CD(n, q) appear as connected components of

graphs D(n, q) defined via a system of quadratic equations

[19]. The best known lower bound for d 6= 2, 3, 5 has been

deduced from the existence of above mentioned families of

graphs ex(v, C3, C4, . . . , C2d) ≥ cv1+2/(3d−3+e) where e = 0
if d is odd, and e = 1 if d is even.

Recall, that family of regular graphs Γi of degree ki and

increasing order vi is a family of graphs of small world if

diam(Γi) ≤ clogki
(vi) for some independent constant c, c >

0, where diam(Γi) is a diameter of graph Gi. The graphs

X(p.q) form a unique known family of large girth which is

a family of small world graphs at the same time. There is a

conjecture known since 1995 that family of graphs CD(n, q)
for odd q is an other example of such kind. Currently, it is

proved that the diameter of CD(n, q) is bounded from above

by polynomial function d(n), which does not dependent from

q. Expanding properties of X(p, q) and D(n, q) can be used

in Coding Theory (magnifiers, superconcentrators, etc). The

absence of short cycles and high girth property of both families

can be used for the construction of LDPC codes [20]. This

class of error correcting codes is an important tool of security

for satellite communications. The usage of CD(n, q) as Tanner

graphs producing LDPC codes leads to better properties of

corresponding codes in the comparison to the usage of Cayley

- Ramanujan graphs (see [21]).

Both families X(p, q) and CD(n, q) consist of edge transi-

tive graphs. Their expansion properties and the property to be

graphs of large girth also hold for random graphs, which have

no automorphisms at all. To make better deterministic approx-

imation of random graph we can look at regular expanding

graphs of large girth without edge transitive automorphism

group.

Below We consider an optimization problem for simple

graphs which is similar to the problem of finding maximal

size for graph on v vertices with the girth ≥ d.

Let us refer to the minimal length of a cycle, through

the vertex of the given vertex of the simple graph Γ as a

cycle indicator of the vertex. The cycle indicator of the graph

Cind(Γ) will be defined as a maximal cycle indicator of

its vertices. Regular graph will be called a cycle irregular

graph if its indicator differs from the girth (the length of

minimal cycle). The solution of the optimization problem of

computation of maximal size e = e(v, d) of the graph of an

order v with the size greater than d, d > 2 has been found

very recently.
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It turns out that

e(v, d) ⇔ O(v1+[2/d])

and this bound is always sharp (see [22] or [23] and further

references).

We refer to the family of regular simple graphs Γi of degree

ki and order vi as a family of graphs of large cycle indicator,

if

Cind(Γi) ≥ clogki
(vi)

for some independent constant c, c > 0. We refer to the

maximal value of c satisfying the above inequality as speed of

growth of the cycle indicator for a family of graphs Γi. As it

follows from the written above evaluation of e(v, d) the speed

of growth of the cycle indicator for the family of graphs of

constant but arbitrarily large degree is bounded above by 2.

We refer to such a family as a family of cyclically irregular

graphs of large cycle indicator if almost all graphs from the

family are cycle irregular graphs.

The following theorem was proved in [23]:

There is a family of almost Ramanujan cyclically irregular

graphs of large cycle indicator with the speed of cycle indicator

2, which is a family of graphs of small word graphs.

The explicit construction of the family A(n, q) like in

previous statement is given in [22], [23]. Notice, that members

of the family of cyclically irregular graphs are not edge

transitive graphs. The LDPC codes related to new families are

presented in [24], computer simulations demonstrate essential

advantages of new codes in comparison to those related to

CD(n, q) and D(n, q).

A. On the stream ciphers corresponding to special families of

multivariate maps

Graphs D(n, q), A(n, q) and CD(n, q) have been used in

symmetric cryptography together with their natural analogs

D(n,K), A(n,K) and CD(n,K) over general finite com-

mutative rings K since 1998 (see [1]). The theory of directed

graphs and language of dynamical system have been very

useful for studies of public key and private key algorithms

based on graphs D(n,K), CD(n,K) and A(n,K) (see [10],

[25], and further references).

There are several implementations of symmetric algorithms

for cases of fields (starting from [7]) and arithmetical rings

([19], in particular). Some comparison of public keys based

on D(n,K) and A(n,K) are considered in [21].

The general scheme is the following one. We can use a

family of elements f(n) with invertible decomposition of

speed d of increasing order for purposes of symmetric cryp-

tography. We assume that the variety Kn is a plainspace of the

encryption algorithm, the list of (f(n, i), i = 1, 2, . . . , k(n), is

a password. Then the computation of the value c of encryption

function f(n, 1)f(n, 2) . . . f(n, k(n)) in the given plaintext

p ∈ Kn and the reimage of the ciphertext c require time

O(nd). Usually the parameter k(n) can be chosen free. In fact,

in practical cases k(n) is either constant or linear function in

variable n (see surveys [20]. [23], [25] on the use graph based

multivariate functions as symmetric encryption functions). To

hide the graph nature of f(n) correspondents (Alice and Bob)

can create a new encryption map h(n) as a conjugation of f(n)
with special invertible affine transformation τ = τ(n) (degree

equals 1) of Kn. In case of private keys both correspondents

know the invertible decompositions and family τ(n) of affine

transformation as part of the key.

IV. ON THE EXPLICIT CONSTRUCTIONS

A. Description of graphs A(n,K)

The graph A(n,K), where K is a finite commutative ring,

is defined by the following way. This is a bipartite graph

with the point set P = {x1, x2, . . . , xn)|xi ∈ K} = Kn

and the line set L = {[y1, y2, . . . , yn]|yi ∈ K|} = Kn and

such that a point x = (x1, x2, . . . , xn) is incident to a line

y = [y1, y2, . . . , yn] if and only if equations xi − yi = y1x1
hold for even i and relations xj − yj = x1yj hold for an

odd j, j ≥ 3. We identify such an incidence relation with the

corresponding bipartite graph I = A(n,K). We refer to the

first coordinate x1 = ρ(x) of a point x and the first coordinate

y1 = ρ(y) of a line y of the line as the colour of the vertex

(point or line). The following property holds for the graph:

there exists a unique neighbour Nt(v) of a given vertex v of

a given colour t ∈ K.

As it follows from the definition the projective limit

of A(n,K), n → ∞ is well defined. The points p =
(p1, p2, . . . , pn, . . . ) and lines l = [l1, l2, . . . , ln, . . . ] are

tuples with finite number of nonzero coordinates. A point

and a line are incident when infinite number of equations

p2 − yl = l1p1, p3 − l3 = p1l2, . . . hold.

B. Description of graphs D(n.K) and their connected com-

ponents

We define the family of graphs D(k,K), where k > 2 is

positive integer and K is a commutative ring, such graphs

have been considered in [15] for the case K = Fq .
Let PD and LD be two copies of Cartesian power KN ,

where K is the commutative ring and N is the set of positive

integer numbers. Elements of PD will be called points and

those of LD lines.

To distinguish points from lines we use parentheses and

brackets. If x ∈ V , then (x) ∈ PD and [x] ∈ LD. It will

be also advantageous to adopt the notation for co-ordinates

of points and lines introduced in [30] for the case of general

commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′

2,2, p2,3, . . . ,

pi,i, p
′

i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′

2,2, l2,3, . . . ,

li,i, l
′

i,i, li,i+1, li+1,i, . . .].

The elements of P and L can be thought as infinite ordered

tuples of elements from K, such that only finite number of

components are different from zero.
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Now, we introduce a linguistic incidence structure

(PD, LD, ID) defined by infinite system of equations as fol-

lows. We say that the point (p) is incident with the line [l],
and we write (p)I[l], if the following relations between their

co-ordinates hold:

li,i − pi,i = l1,0pi−1,i

l′i,i − p′i,i = li,i−1p0,1 (6)

li,i+1 − pi,i+1 = li,ip0,1

li+1,i − pi+1,i = l1,0p
′

i,i

(These four relations are defined for i ≥ 1, p′1,1 = p1,1,

l′1,1 = l1,1). The incidence structure (PD, LD, ID) we de-

note as D(K). Now we speak of the incidence graph of

(PD, LD, ID), which has the vertex set PD ∪ LD and edge

set consisting of all pairs {(p), [l]} for which (p)I[l].
For each positive integer k ≥ 2 we obtain a symplectic quo-

tient (PD,k, LD,k, ID,k) as follows. Firstly, PD,k and LD,k are

obtained from PD and LD, respectively, by simply projecting

each vector into its k initial coordinates. The incidence ID,k
is then defined by imposing the first k−1 incidence relations

and ignoring all others. The incidence graph corresponding to

the structure (PD,k, LD,k, ID,k) is denoted by D(k,K).
To facilitate notation in the future results on "connectivity

invariants", it will be convenient for us to define p−1,0 =
l0,−1 = p1,0 = l0,1 = 0, p0,0 = l0,0 = −1, p′0,0 = l′0,0 = −1,

p′1,1 = p1,1, l
′

1,1 = l1,1) and to assume that our equations are

defined for i ≥ 0.

Notice, that for i = 0, the written above four conditions are

satisfied by every point and line, and for i = 1 the first two

equations coincide and give l1,1 − p1,1 = l1,0p0,1.

Let k ≥ 6, t = [(k + 2)/4], and let u =
(uα, u11, · · · , utt, u

′

tt, ut,t+1, ut+1,t, · · · ) be a vertex of

D(k,K) (α ∈ {(1, 0), (0, 1)}, it does not matter whether u
is a point or a line). For every r, 2 ≤ r ≤ t, let

ar = ar(u) =
∑

i=0,r

(uiiu
′

r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at). Similarly, we assume that

a = a(u) = (a2, a3, · · · , at, . . . ) for the vertex u of infinite

graph D(K).
Proposition 4.1: Let u and v be vertices from the same

component of D(k,K). Then a(u) = a(v). Moreover, for any

t− 1 field elements xi ∈ Fq , 2 ≤ t ≤ [(k+2)/4], there exists

a vertex v of D(k,K) for which

a(v) = (x2, . . . , xt) = (x).

V. ON FLAG SYSTEMS OF GRAPHS A(n,K) AND D(n.K),
WALKS ON THEM AND MULTIVARIATE MAPS

Graphs D(n,K) and A(n,K) have somme common proper-

ties. We refer to the first coordinate x1,0 = ρ(x) (x1 = ρ(x) of

a point x from graph D(n,K) (graph A(n,K), respectively)

and the first coordinate y1,0 = ρ(y) (y1 = ρ(y)) of a line y as

the colour of the vertex (point or line). The following property

holds for the graph: there exists a unique neighbour Nt(v) of

a given vertex v of a given colour t ∈ K.

A flag of the incidence system D(n,K) or D(K) (A(n,K)
or A(K)) is an unordered pair {(x), [y]} such that (x)I[y].
Obviously, the totalities of flags FD(n,K) or (FA(n,K))
of the bipartite flag D(n,K) (or A(n,K), respectively)

are isomorphic to the variety Kn+1. So, flag {(x), [y]} of

D(n,K) is defined by the tuple (x10, x11, . . . , y01). Notice,

that Ny1({x}) = [y].
We consider an operator NPα({(x), [y]}), α ∈ K mapping

flag {(x), [y]} of the incidence structure G(n,K) (where G is

D or A)) into its image {(x′), [y]}, where x′) = Nα([y]).
Similarly, an operator NLα({(x), [y]}) maps {(x), [y]} into

{(x), Nα(x)}).
Let α1, α2, . . . , αk and β1, β2, . . . , βk be chosen sequences

of elements from the commutative ring K. The composition

E = NPα1
NLβ1

NPα2
NLβ2

. . . NPαk
NLβk

transforms flag {(x), [y]} into the new flag {(x′), [y′]}.

The process of recurrent computations of E({(x), [y]} =
{(x′), [y′]} corresponds to the walk in a graph G(n,K) with

the original vertex (x) and the final point (x′). Notice, that

[y′] = Nα(x
′).

Let us assume now that we have two finite families of poly-

nomials of K[z1, z2] : φ1(z1, z2), φ2(z1, z2), . . . , φk+1(z1, z2)
and ψ1(z1, z2), ψ2(z1, z2), . . . , ψk(z1, z2). We assume that

their density is restricted by independent constant d and their

degree is bounded by the linear function αn+ β.

The transformation Ẽ shifts a flag {(x), [y]} into its image

for the map

NPφ1(x1,y1)NLψ1(x1,y1)NPφ2(x1,y1)NLψ2(x1,y1) . . .

. . . NPφk(x1,y1)NLψk(x1,y1).

Additionally, we assume that the system of equations

φk(z1, z2) = a , ψk(z1, z2) = b has exactly one solution inde-

pendently from the choice of a and b (boundary requirement).

The written above condition insure that the reimage of {x′, [y′]
for Ẽ is uniquely determined. Really, parameters x1 and y1
are determined by the system of equations.

It allows us to compute each expression of kind φi(x1, y1)
and ψj(x1, y1) and to obtain the reverse walk in the graph

with the origin x′ and final point x. So, we get the original

flag (x), [y] with [y] = Ny1(x). The code of our flag is

(x1, x2, . . . , xn, y1).
Let f = fn be the transformation of affine space Kn+1

into itself which maps flag (x1, x2, . . . , xn, y1) into the im-

age for Ẽ defined by the family of bivariate polynomials

from K[z1, z2]. Assume that fn is written in a standard

form xi → fi(x1, x2, . . . , xn, y1), i = 1, 2, . . . , n, y1 =
fn+1(x1, x2, . . . , xn, y1).

Let gn
i : Kn+1 → Kn+1 be the transformation moving

z = (z1, z2, . . . , zn, u1) into NPφiz1,u1

(z) and hn
j be the

transformation moving z into NLψjz1,u1

(z). Obviously, f =

gn
1hn

2gn
2hn

2 . . . gn
khn

k is the invertible decomposition of

f of speed O(n). Notice, that generally speaking it is not true

that each gn
i or hn

i is invertible. The following statement is a
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direct corollary of results [3] in the case G(n,K) = D(n,K),
and results of [4] in the case of G(n, k) = A(n,K).

Theorem 5.1: The G(n,K) graph based transformations

fn : Kn+1 → Kn+1 defined above for φj(z1, z2) = z1 + aj
and ψj(z1, z2) = z2 + bj where aj , bj ∈ K, j = 1, 2, . . . , k
are stable cubical maps.

It means that we always have O(n4) monomial terms

for the map fn. Notice that fn is given by its invertible

decomposition. The following statement is a direct corollary

from the theorem.

Proposition 5.1: Let us consider the specialization f̃n of fn
given by relations y0,1 = h(x1,0) (y1 = h(x1 in case of graphs

A(n,K), respectively), where h(x) ∈ K[x] is a polynomial

expression of degree t, such that equation of kind h(x1,0) = b,
b ∈ K ( h(x1) = b) has no more than one solution. Then

degree of f̃n is bounded by t3.

Remark 5.1:

We can change variables x1,0 and x1 of the proposition for

y01 and y1, respectively.

Recall, that M is a multiplicative subset of commutative ring

K if it is closed under multiplication and does not contain zero.

Let us consider the following special choice of coefficients aj
and bj . The following statement is proved in [23] (see also

[13], [14]).

Theorem 5.2: Let fn : Kn+1 → Kn+1 be G(n,K)
graph based transformation fn : Kn+1 → Kn+1 defined

for φj(z1, z2) = z1 + aj and ψj(z1, z2) = z2 + bj , where

aj , bj ∈ K, j = 1, 2, . . . , k in theorem 1.

Let M be a multiplicative set of K and a1, b1 ∈M , ai+1−
ai ∈M , bi+1−bi ∈M for i = 1, 2, . . . , k−1. Then the order

of a transformation fn is going to infinity with the growth of

n.

Remark 5.2: In the case of graph D(n,K) we can change

polynomial h(x1,0 for the h(x1,0, a2(x), a3(x), . . . , at(x)),
where h(z1, z2, . . . zt) ∈ K[(z1, z2, . . . zt], t = [(n+ 2)/4].

We can look at fn as function with invertible decomposition

with initial relation y0,1 = h(x1,0 (case of D(n,K)) or y1 =
h(x1) (case of A(n,K). Really, invertible decomposition of

fn allows to solve

(fn)
s(x1,0, h(x1,0, x1,1, . . . , )) = (c1,0, c0,1, c1,1, c2,1, . . . )

or

(fn)
s(x1, h(x1, x2, . . . , xn)) = (c1, c

′

1, c2, . . . , cn) can be

solved fast in some special simple cases.

For simplicity of writing we assume that G(n,K) =
D(n,K). Let us consider the system of equation (∗): x10 +
αks = c1,0, h(x1,0) + βks = c0,1

We can eliminate parameter s: βkx1,0 + αkβks = βkc1,0
h(x1,0)αk + αkβks = c1,0αk.

So, we get an equation of kind c0,1αk − βkc1,0 =
h(x1,0)αkx1,0βk (*)

Let us assume that h(x1,0)αkx1,0βk = c has not more than

one solution for each c ∈ K.

Under this condition we can solve (*) for x1. So, if αk or

βk differs from 0 we can find parameter s.
Assume that characteristics of ring K is a large prime p.

Let us consider the following two simple cases:

(a) αk = 0 but βk is a regular ring element. It is clear that

in this case x1,0 is known and we can find parameter s with

arbitrarily chosen function h(x).
(b) βk = 0 and equation h(x1,0) = c has no more than one

solution. In this case one can find x1,0 and find parameter s
from the first equation.

We say that multivariate map gn : Kn+1 = Kn+1 is

symmetrical if deg(gn) = deg(gn)
−1. Obviously, each stable

transformation is symmetrical. It is clear that in the case (a)

we get a stable transformation of Kn into itself. In case of

deg(gn) 6= deg(gn)
−1 we refer to gn as assymetrical map.

The following cryptosystem can be used.

Alice chooses a function h(x1,0, a2(x), a3(x), . . . , at(x)) of

finite degree t and invertible affine transformation: τ1 : Kn →
Kn, which sends x onto xA+b. Assume that it will be extended

till Kn+1 via the rule τ1 : z → az + l(τ1(x)) = z′, where l
is some linear function from x. Let τ be an expanded linear

transformation.

Alice takes the symbolic tuple (x1,0, x1,1, . . . , z) applies τ
and gets the vector u1,0, u1,1, . . . , z

′ = u. She will treat this

tuple as a flag from FD(n,K).
She writes the equation z′ = h(x1, x2) and rewrites it in

the form z = h′(x1, x2).
Alice choses the pseudorandom strings α1, α2, . . . αk and

β1, β2, . . . , βk of ring elements.

She generates defined above transformation fn : Kn+1 →
Kn+1. Alice computes symbolically fn(u) = w and applies

τ−1 to w.

She forms a stable cubical transformations E = gn =
τfnτ

−1 and writes it in standard form

x10 →x′1,0 = g1,0(x1,0, x1,1, . . . , z)

x11 →x′1,1 = g1,1(x1,0, x1,1, . . . , z)

...

z →z′ = g0,1(x1,0, x1,1, . . . , z)

In the case of the first n rules Alice uses the specialisation

z = h′(x) and writes g̃′1,0(x) = g1,0(h
′(x, x1,0, x1,1 . . . ),

g̃′1,1(x) = g1,1(h
′(x), x1,0, x1,1, . . . ), . . . , in a standard form.

The specialisetion gives us a restriction E′ of our encryption

map on the point set isomorphic to Kn.

Bob gets these n rules from Alice together with initial

condition z = h′(x1,0, x1,1, . . . ).
He takes his plaintext (x) = (p1,0, p1,1, . . . ) and applies the

restricted map E′ iteratively s times.

Thus, he gets consecutively E′i(p), i = 1, 2, . . . , s and

computes recursively

z1 =g0,1(p1,0, p1,1, . . . , h
′(p),

z2 =g0,1(E(p, z1)),

...

zs =g0,1(E
s−1p, zs−1).

He sends Alice his expanded ciphertext as a pair c = E′s(p)
and parameter zs.
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For the decryption Alice applies transformation τ to the c
concateneted with zs and gets c1. She computes E−1(c1) =
c2. Computation τ−1(c2) gives her the plaintext p.

Let us consider some obvious properties of defined above

cryptosystem in special cases (a) and (b).

(a) We can see that our encryption is of symmetrical degree.

Let deqh = t, then our map fn has a degree bounded by t3.

If parameter t is a constant then the map E′ is computable in

polynomial time. Notice, that linearisation attacks are possible,

they allow to compute E′−1
. This fact is not yet a breaking of

the system, because E′ is a stable map which order is growing

with the growth of parameter n.

Thus, finding the solution for E′s = H(x) can be a difficult

task. The discrete logarithm problem for cyclic subgroup of

Cremona group of increasing order appears there. Notice, that

only one value of H(x) can be given for chosen by Bob

parameter s. Algorithm can be used in dynamical mode: every

session Alice changes encryption base and every time Bob

changes parameter s.
Notice, that s = s(n) can be a function from parameter n.

Bob can encrypt for polynomia time s(n)O(nt
3

). Alice can

decrypt because of the logarithmical invertibility of the map.

(b) Let us just consider a simple example

h(x1,0, a2(x), . . . , at(x)) = (d(a2(x), a3(x), . . . , at(x))x1,0+

+ b(a2(x), . . . , at(x))
r + c(a2(x), a3(x), . . . , (atx)),

d, b, c are multivariate functions, r is odd and equation xr = α
in K has not more than one solution for each parameter α. If

we skip degenerate cases, our encryption function E′ will be

assymetric. It means that even finding the inverse E′ can be

a hard task in this case.

We presnt here a well known case of the pair (r,K) which

satisfies to written above property (see the description of Imai-

Matsumoto method in [26]). Let K = Fqn be an extention

of the field Fq of characteristic 2. We take r as a parameter

of kind qβ + 1 for some parameter β, such that the greatest

common divisor of qβ+1 and qn−1 is 1. Then map x→ xr is

one to one correspondence and equation xr = α has a unique

solution.

VI. CONCLUSIONS

Known methods of symmetric encryption according to cho-

sen walks on flags of bipartite graphs A(n,K) and D(n,K)
use special colouring of their points and lines. The increasing

girth and good expansion properties of these graphs lead to

good mixing properties of the stream cipher based on stable

transformation. The weakness of such method is an option of

cubical linearisation attacks based on the fact that decryption

map is also cubical (complexity of the attack is O(n10), so

its costly, but possible. There were several implementations of

such algorithms for practical use in academic networks and

ORACLE based university management systems for various

cases of fields and rings: [2], [27], [28] devoted to ciphers

used in The University of South Pacific (Fiji), [30], [31],

[35] discussed algorithms used at Sultan Qaboos University

(Oman), [31], [32], [35] were used in University of Maria

Curie - Sklodovska (Poland), algorithm of [29] and [34] were

used in teaching process of Kiev Mohyla Academy (Ukraine)

and University of British Columbia (Canada), respectively.

Private key algorithm, presented in this paper allows to

modificate discussed above programs with essential increase of

resistence to linearisation attack without damage of theoretical

speed (O(n) in the case of keys of constant length and O(n2)
for passwords of length O(n)). We can create encryption maps

of large symmetric degree or assymetrical maps with inverses

of high degree.

In a public mode we introduce the multivariate cryptosys-

tems such that their security is connected with discrete loga-

rithm problem for large cyclic subgroups of Cremona group.

We hope that a new class of multivariate cryptosystems can

be an interesting objects for cryptanalitical studies.
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