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Abstract—We have applied the methodology combining
Bayesian inference with Genetic algorithm (GA) to the problem
of the atmospheric contaminant source localization. The algo-
rithms input data are the on-line arriving information about
concentration of given substance registered by sensors’ network.
To achieve rapid-response event reconstructions the fast-running
Gaussian plume dispersion model is adopted as the forward
model. The proposed GA scan 5-dimensional parameters’ space
searching for the contaminant source coordinates (x,y), release
strength (Q) and atmospheric transport dispersion coefficients.
Based on the synthetic experiment data the GA parameters,
best suitable for the contamination source localization algorithm
performance were identified. We demonstrate that proposed
GA configuration can successfully point out the parameters of
abrupt contamination source. Results indicate the probability
of a source to occur at a particular location with a particular
release strength. We propose the termination criteria based on
the probabilistic requirements regarding the parameters’ value.

I. INTRODUCTION

A
CCIDENTAL atmospheric releases of hazardous material

pose great risks to human health and the environment.

In the event of an atmospheric release of chemical, but

also radioactive biological materials, emergency responders

need to quickly predict the current and future locations and

concentrations of substance in the atmosphere. In this context

it is valuable to develop the emergency system, which based

on the concentration of dangerous substance by the sensors’

network can inform about probable location of the release

source. Moreover, the contamination source’s location should

be found as soon as possible. The most obvious way is to

propose the simulation which gives the same substance point

concentrations like registered by the sensors. However, to

create the model realistically reproducing the real situation

based only on the sparse point-concentration data is not trivial.

This task requires specification of set of models’ parameters,

which depends on the applied model. The event reconstruc-

tion problem can be reformulated into a solution based on
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efficient sampling of an ensemble of simulations, guided by

comparisons with data.

A comprehensive literature review of past works on so-

lutions of the inverse problem for atmospheric contaminant

releases can be found in (e.g.[1]). The problem of the source

term estimation was studied in literature grounded both on

the deterministic and probabilistic approach. [2] implemented

an algorithm based on integrating the adjoint of a linear

dispersion model backward in time to solve a reconstruction

problem. [3] introduced dynamic Bayesian modeling, and the

Markov Chain Monte Carlo (MCMC) sampling approaches to

reconstruct a contaminant source. The effectiveness of MCMC

in the localization of the atmospheric contamination source

based on the synthetic experiment data was presented in [4],

[5]. The advantage of the Sequential Monte Carlo over the

MCMC in the estimation of the probable values of the source

coordinates was presented in [6].

The problem of finding the ’best fitted’ model’s param-

eters, for which a forward atmospheric dispersion model’s

output will reach agreement with real observations, can be

considered as the optimization problem. Metaheuristics, such

as genetic algorithms (GA), are broadly used to solve various

optimization problems. GA was designed to imitate some of

the processes that people can witness in natural environment

[7]. By observing nature people noticed that many beings

have evolved diametrically in the relatively short period of

time. The concept of GA was to use the power of evolution

to create a strong and universal tool reliable of solving

optimization problems. The GAs are highly relevant for in-

dustrial applications, because they are capable of handling

problems with non- linear constraints, multiple objectives, and

dynamic components - properties that usually appear in the

real-world problems (e.g. [8]). Since GA introduction and

propagation the GA have been often used as an alterna-

tive to the conventional optimization methods and has been

successfully applied in a variety of areas. For example it

was used in control engineering [9], finding hardware bugs

[11] and much more e.g. [10]. GA has been also used in
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Fig. 1. Distribution of the sensors and the release source within the considered
domain.

environmental sciences problem e.g. in the addressing air

quality problem [12].

Application of the metaheuristic algorithms like GA re-

quires defining the values of several algorithm components

and parameters. These parameters have large impact on perfor-

mance and efficiency of the algorithm (e.g., [13], [14], [15]).

Therefore, it is important to estimate the algorithm’s param-

eters best suitable for the considered optimization problem.

The optimal values for the parameters depend mainly on: a)

the problem; b) the domain of the problem to deal with; and c)

computational time that can be spend for solving the problem.

Usually, in the algorithm parameters tuning a compromise

between solution quality and computational time should be

achieved.

In this paper we apply the GA to the problem of localizing

the abrupt atmospheric contamination source based on point-

concentrations reported by the sensors network. Using the

synthetic experiment data we demonstrate the efficient GA

configuration best suitable for the algorithm performance.

A. Synthetic data

Our main goal is to conduct dynamic inference of an

unknown atmospheric release. To test the proposed methods

we require some concentration data. To satisfy this require-

ment we have performed the simulation with use of the

atmospheric dispersion second-order Closure Integrated PUFF

model (SCIPUFF) [16]. SCIPUFF is an ensemble mean dis-

persion model designed to compute the time-dependent field

of expected concentrations resulting from one or more sources.

The model solves the transport equations using a second-

order closure scheme and treats releases as a collection of

Gaussian puffs. In simulation we assumed that we have 10

sensors distributed over 15km x 15km area, the location of

sensors was chosen randomly within the domain (Fig. 1). The

atmospheric contamination source was located at x = 3 km,

y = 8 km, H = 25 m within the domain. The simulated

release was continuous with rate Q = 8000g/s and started one

TABLE I
CONCENTRATION [g/m3] REPORTED BY SENSORS IN SUBSEQUENT TIME

INTERVALS

Sensor t=1 t=2 t=3 t=4 t=5 t=6

S1 0 0 0 0 0 0
S2 0 3.62E-09 4.93E-09 6.98E-09 4.15E-09 6.65E-09
S3 9.15E-09 2.88E-08 1.97E-08 1.88E-08 1.69E-08 1.62E-08
S4 3.83E-12 1.77E-11 4.89E-12 6.53E-12 2.31E-12 7.77E-12
S5 1.14E-08 1.83E-08 1.25E-08 1.20E-08 1.10E-08 1.03E-08
S6 2.91E-06 4.85E-04 4.77E-04 4.71E-04 4.43E-04 4.49E-04
S7 3.28E-05 3.27E-05 3.21E-05 3.13E-05 3.01E-05 2.87E-05
S8 2.29E-11 2.15E-10 1.05E-10 1.17E-10 7.56E-11 1.14E-10
S9 0 0 0 0 0 0
S10 0 0 0 0 0 0

hour before first sensors measurements. The wind was directed

along x axis with speed 5m/s. Further, in this paper we

assume that the only algorithm input information we have, are

reported every 15 minutes (in subsequent time steps) during

1.5 hour concentrations of dispersed substance registered by

10 sensors (Table I). We run algorithm searching for the source

of contamination just after first information from sensors (t=1)

and update the obtained probabilities with use of the developed

algorithms by subsequent sensors registrations.

II. RECONSTRUCTION PROCEDURE

A. Bayesian inference

The Bayes’ theorem, as applied to an emergency release

problem, can be stated as follows:

P (M |D) ∝ P (D|M)P (M) (1)

where M represents possible model configurations or pa-

rameters and D are observed data. For our application, Bayes’

theorem describes the conditional probability P (M |D) of

certain source parameters (model configuration M ) given

observed measurements of concentration at sensor locations

(D). This conditional probability P (M |D) is also known as

a posteriori distribution and is related to the probability of

the data conforming to a given model configuration P (D|M),
and to the possible model configurations P (M), before taking

into account the measurements. The probability P (D|M),
for fixed D, is called the likelihood function, while P (M)-
a priori distribution [17]. To estimate the unknown source

parameters M using (1), the posteriori distribution P (M |D)
must be sampled. P (D|M) quantifies the likelihood of a set

of measurements D given the source parameters M .

Value of likelihood for a sample is computed by running a

forward dispersion model with the given source parameters M
and comparison of the model predicted concentrations in the

points of sensors location (within a considered domain) with

actual observations D. The closer the predicted values are to

the measured ones, the higher is the likelihood of the sampled

source parameters.

As the sampling procedure we use an GA to obtain the

posterior distribution P (M |D) of the source term parameters

given the concentration measurements at sensor locations. This

way we completely replace the Bayesian formulation with a
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sampling procedure to explore the model parameters’ space

and to obtain a probability distribution for the source location.

B. The likelihood function

A measure indicating the quality of the current GA pop-

ulation is expressed in terms of a likelihood function. This

function compares the predicted from model and observed data

at the sensor locations as:

λ(M) = −

∑N

i=1
[log(CM

i )− log(CE
i )]2

2σ2

rel

, (2)

where λ is the likelihood function, CM
i are the predicted by

the forward model concentrations at the sensor locations i, CE
i

are the sensor measurements, N is the number of sensors, σ2

rel

is an error parameter which can be updated accordingly to the

expected errors in the observations at given observational time

interval, here fixed to 0.2.

C. Posterior distribution

The posterior probability distribution (1) is computed di-

rectly from the resulting GA generations and is estimated as:

P (M |D) =
1

n

n
∑

i=1

δ(Mi −M), (3)

which represents the probability of a particular model config-

uration M giving results that match the observations at sensor

locations. Equation (3) is a sum over the entire GA generation.

Thus δ(Mi −M) = 1 when Mi = M , and 0 otherwise. If in

the generation many chromosomes have the same configura-

tion P (M |D) increases through the summation increasing the

probability for those contamination source parameters.

D. Forward dispersion model

A forward model is needed to calculate the concentration

CM
i at the points i of sensor locations for the tested set of

model parameters M at each GA step. As a testing forward

model we selected the fast-running Gaussian plume dispersion

model (e.g. [18]).

The Gaussian plume dispersion model for uniform steady

wind conditions can be written as follows:

C(x, y, z) =
Q

2πσyσzU
exp

[

−
1

2

(

y

σy

)2
]

× (4)

{exp

[

−
1

2

(

z −H

σz

)2
]

+ exp

[

−
1

2

(

z +H

σz

)2
]

}

where C(x, y, z) is the concentration at a particular location,

U is the wind speed directed along x axis, Q is the emission

rate or the source strength and H is the height of the release; y
and z are the distance along horizontal and vertical direction,

respectively. In the equation (4) σy and σz are the standard

deviation of concentration distribution in the crosswind and

vertical direction. These two parameters are defined empiri-

cally for different stability conditions [19], [20]. In this case

we restrict the diffusion to the stability class C (Pasquill type

stability for rural area). In scanning algorithm we assumed

no
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Fig. 2. Flow chart of the stochastic reconstruction procedure

that we do not know exact behavior of the plume and consider

those coefficients as unknown. Thus, the parameters σy and σz

are taken as: σy = z1 ·x·(1+x·4·10−5)−0.5, σz = z2 ·x where

values z1 and z2 are sampled by algorithm within interval

[0.001, 0.35].
To summarize, in this paper the searched model’s parameter

space is

M = (x, y,Q, z1, z2) (5)

where x and y are coordinates of the release’s source, Q
release strength and z1, z2 are terms in the turbulent diffusion

parametrization.

E. Genetic algorithm

The localization of the contamination source within the

predefined domain requires the recognition of the atmospheric

dispersion model parameters for which the model output at

the sensors location meet the real data. In this context we can

say that the problem can be seen as the optimization problem

for which GA can be applied.

Fig. 2 presents the concept of GA’s application in the

Bayesian estimation of the unknown model parameters. The

algorithm starts with the defining the initial population. The

population is composed from the predefined number of chro-

mosomes, P (τ) = xτ
1
, . . . , xτ

n, for the generation τ , being

initially randomly drawn from the admissible set of val-

ues. This set is explicitly defined by the space of explored

parameters. GA chromosome is configured as binary value

representing the real value of searched parameters. The quality
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Algorithm 1 Rank Selection

a s c S o r t M B y L i k e l i h o o d F u n c t i o n ( ) ;
M P r o b a b i l i t y R a n g e = 0 ;
FOR i =1 t o N LOOP %N−p o p u l a t i o n s i z e

M( i ) . rank = i −1; %M−chromosome

p r o b a b i l i t y = 2∗ (N−M( i ) . rank ) / N∗ (N+ 1 ) ;
M P r o b a b i l i t y R a n g e += p r o b a b i l i t y ;

M( i ) . p r o b a b i l i t y = M P r o b a b i l i t y R a n g e ;
END LOOP
FOR i =1 t o N LOOP

randVal = drawNumberFrom0To1 ( ) ;
FOR j =1 t o N LOOP

IF M( j ) . p r o b a b i l i t y >= randVal
n e w P o p u l a t i o n ( i ) = M( j ) ;
break ;

END IF
END LOOP

END LOOP

Algorithm 2 Hard tournament selection

FOR i =1 t o N LOOP
FOR j =1 t o TS LOOP

tournam entGroup ( j )=
= drawSpec im enFrom Popula t ion ( ) ;

END LOOP
s o r t T o u r n a m e n t G r o u p B y L i k e l i h o o d F u n c t i o n ( ) ;
n e w P o p u l a t i o n ( i ) = ge tBes tT ournam entSpec im e n ( ) ;

END LOOP

of each chromosome in current population is evaluated based

on the cost, or objective/likelihood function. Various objective

functions can be applied; its form depends upon the problem

being solved. We use the function presented by eq. (2). The

’improvement’ of the current population can be done by the

various genetic operators.

Information on the quality of population’s chromosomes

is used to perform selection. The portion of the population

that is replaced in each generation is done based rank on the

likelihood function (Eq.2) value obtained during the evaluation

of the population (various in each algorithm iteration). Then,

the crossover is performed. Crossover is process of replacing

parents by their children in the current population. Children

are created by blending of the parents at the randomly chosen

crossover point. The number of crossovers that occurs within

the population is determined by the crossover probability.

Subsequently the current population is mutated. It changes

the chromosome’s features. By giving a chance of changing

chromosome’s individual bits mutation allows the algorithm

to search for the entire solution’s space and not to converge

to local extremes. The number of mutations that occurs is

determined by the mutation probability. After performing the

selection crossover and mutation the new generation (τ + 1),

being subject to the new evaluation, is established. After

some number of generations the algorithm converges - it is

expected that the best chromosome represents a near-optimum

(reasonable) solution. The process stops when the termination

criterion is fulfilled. The most common termination criterion

is limited number of generations, but in this paper we present

Algorithm 3 Multi-point Crossover.

FOR i =1 t o N LOOP %N−p o p u l a t i o n s i z e

IF drawNumberFrom0To1 ( ) <= CP
c u r r e n t P o p u l a t i o n ( i ) . i s P a r r e n t ( t r u e ) ;

END IF
END LOOP

WHILE e x i s t s T w o N o t U s e d P a r e n t s ( ) LOOP
f i r s t P a r e n t = p o p P a r e n t ( ) ;
s e c o n d P a r e n t = p o p P a r e n t ( ) ;

x C r o s s P o i n t = drawNumberFrom0ToParameterXLength ( ) ;
y C r o s s P o i n t = drawNumberFrom0ToParameterYLength ( ) ;
q C r o s s P o i n t = drawNumberFrom0ToParameterQLength ( ) ;
z 1 C r o s s P o i n t= drawNumberFrom0ToParameterZ1Length ( ) ;
z 2 C r o s s P o i n t= drawNumberFrom0ToParameterZ2Length ( ) ;

tmpXBin1 = f i r s t P a r e n t . ge tXParam eterBinaryFo rm ( ) ;
tmpYBin1 = f i r s t P a r e n t . ge tYParam eterBinaryFo rm ( ) ;
tmpQBin1 = f i r s t P a r e n t . ge tQParam eterBinaryFo rm ( ) ;
tmpZ1Bin1 = f i r s t P a r e n t . ge tZ 1Param et er Bi n ar yF or m ( ) ;
tmpZ2Bin1 = f i r s t P a r e n t . ge tZ 2Param et er Bi n ar yF or m ( ) ;

tmpXBin2 = s e c o n d P a r e n t . ge tXParam eterBinaryFo rm ( ) ;
tmpYBin2 = s e c o n d P a r e n t . ge tYParam eterBinaryFo rm ( ) ;
tmpQBin2 = s e c o n d P a r e n t . ge tQParam eterBinaryFo rm ( ) ;
tmpZ1Bin2 = s e c o n d P a r e n t . ge tZ 1Param ete r Bi na r yFo rm ( ) ;
tmpZ2Bin2 = s e c o n d P a r e n t . ge tZ 2Param ete r Bi na r yFo rm ( ) ;

f i r s t C h i l d X = tmpXBin1 ( 0 , C r o s s P o i n t )+
+ tmpXBin2 ( C r o s s P o i n t + 1 ) ;

f i r s t C h i l d Y = tmpYBin1 ( 0 , C r o s s P o i n t )
+ tmpYBin2 ( C r o s s P o i n t + 1 ) ;

f i r s t C h i l d Q = tmpQBin1 ( 0 , C r o s s P o i n t )+
+ tmpQBin2 ( C r o s s P o i n t + 1 ) ;

f i r s t C h i l d Z 1 = tmpZ1Bin1 ( 0 , C r o s s P o i n t )+
+ tmpZ1Bin2 ( C r o s s P o i n t + 1 ) ;

f i r s t C h i l d Z 2 = tmpZ2Bin1 ( 0 , C r o s s P o i n t )+
+ tmpZ2Bin2 ( C r o s s P o i n t + 1 ) ;

s econdChi ldX = tmpXBin2 ( 0 , C r o s s P o i n t )+
+ tmpXBin1 ( C r o s s P o i n t + 1 ) ;

s econdChi ldY = tmpYBin2 ( 0 , C r o s s P o i n t )+
+ tmpYBin1 ( C r o s s P o i n t + 1 ) ;

s econdChi ldQ = tmpQBin2 ( 0 , C r o s s P o i n t )+
+ tmpQBin1 ( C r o s s P o i n t + 1 ) ;

s econdChi ldZ 1 = tmpZ1Bin2 ( 0 , C r o s s P o i n t )+
+ tmpZ1Bin1 ( C r o s s P o i n t + 1 ) ;

s econdChi ldZ 2 = tmpZ2Bin2 ( 0 , C r o s s P o i n t )+
+ tmpZ2Bin1 ( C r o s s P o i n t + 1 ) ;

f i r s t C h i l d = f i r s t C h i l d X + f i r s t C h i l d Y + f i r s t C h i l d Q
+ f i r s t C h i l d Z 1 + f i r s t C h i l d Z 2 ;

s e c o n d C h i l d = secondChi ldX+ secondChi ldY+ secondChi ldQ
+ secondChi ldZ 1 + secondChi ldZ 2 ;

c u r r e n t P o p u l a t i o n ( f i r s t P a r e n t . g e t I d ( ) ) = f i r s t C h i l d ;
c u r r e n t P o p u l a t i o n ( s e c o n d P a r e n t . g e t I d ( ) ) = s e c o n d C h i l d ;

END LOOP

other possibility.

In this paper the scanned parameters space M is five-

dimensional i.e. M ≡ {x, y,Q, z1, z2}. Correspondingly each

population’s chromosome M(i) stores the following informa-

tion:

• x, y - coordinates of contamination’s source in [m],

• Q - strength of release in [g/s],

• z1, z2 - terms in the turbulent diffusion parametrization.
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Fig. 3. Example of the chromosome representing the searched model’s
parameters

In the problem presented in this paper the parameters M are

searched within the intervals x ∈ 〈0, 15000〉, y ∈ 〈0, 15000〉,
Q ∈ 〈1, 8000〉, z1 ∈ 〈0.001, 0.350〉 and z2 ∈ 〈0.001, 0.350〉.
The parameters value precision P for parameters x,y equals

Px,y = 1 [m], for Q: PQ = 1 [g/s], and Pz1 = Pz2 = 0.001.

The example of the encoded chromosome presents Fig. 3.
1) Selection: There are many ways of dealing with GA

selection e.g. roulette selection, rank selection, hard and soft

tournament. For the problem presented in this paper the

all mentioned methods were tested. The best results were

achieved with selection based on rank and hard tournament

selection. Results obtained applying these two selections are

compared further in this paper. In the rank selection the

better likelihood function results in the lower rank value

leading to higher probability of being drawn to the next

population. Pseudo code presents Algorithm 1. In the case

of hard tournament selection of size 2, as the result of the

tournament from each pair of the selected chromosomes one

with the better objective function value passes to the next

population. Pseudo code presents Algorithm 2.
2) Crossover: Similarly to the previous operator there are

many ways of dealing with GA crossover e.g. single point

crossover, multi point crossover, uniform crossover, arithmetic

crossover. For a given problem the best results were achieved

with by applying the multi-point crossover. Procedure begins

with performing, for each chromosome, the test for being a

parent according to the crossover probability CP. From the

parents’ population the unexploited pair is chosen, then one

crossover point for each parameter encoded in the chromosome

is drawn, i.e. five points for the problem presented. Parents are

split at the crossover points for each encoded parameter, then

(in term of each encoded parameter) bits are swap resulting

in two children. Pseudo code presents Algorithm 3.
3) Mutation: The latter applied genetic operator is muta-

tion. The most frequently used are uniform mutation and not-

uniform mutation. For the given problem the best results were

achieved with uniform mutation in which all chromosome’s

bits are mutated with the mutation probability MP. Pseudo

code presents Algorithm 4.

In the reconstruction of the atmospheric contamination

source the following GA configuration was applied:

• Size of population N=150;

• Selection:

– rank selection,

– hard tournament of size 2;

• Multi-point crossover with probability CP = 0.75, with

5 crossover points (5 is a number of searched parameters);

• Uniform mutation with probability MP = 0.02.

Algorithm 4 Uniform Mutation

FOR i =1 t o N LOOP %N−p o p u l a t i o n s i z e

FOR j =1 t o L LOOP %L−l e n g t h o f chromosome

%b i n a r y form

IF drawNumberFrom0To1 ( ) <= MP
c u r r e n t P o p u l a t i o n ( i ) . swapBi tValue ( j ) ;

END IF
END LOOP

END LOOP

TABLE II
NUMBER OF GENERATIONS USED IN THE RECONSTRUCTION ALGORITHM

WITH THE RANK SELECTION, CP = 0.75 AND MP = 0.02.

Time step Generation’s number Forward dispersion model’s runs

t=1 14 21 000
t=2 12 18 000
t=3 1 1 500
t=4 17 25 500
t=5 1 1 500
t=6 21 31 500

Summary 66 99 000

TABLE III
NUMBER OF GENERATIONS USED IN THE RECONSTRUCTION ALGORITHM

WITH THE HARD TOURNAMENT OF SIZE 2 SELECTION, CP = 0.75 AND

MP = 0.02.

Time step Generation’s number Forward dispersion model’s runs

t=1 140 210 000
t=2 124 186 000
t=3 62 93 000
t=4 97 145 500
t=5 113 169 500
t=6 216 324 000

Summary 752 1 128 000

The size of population, crossover probability and mutation

probability were selected based on the numerical tests pre-

sented in [21].

III. RESULTS

We assume that the concentration from the sensors arrives

subsequently in six time steps (Table I). We start to search

for the source location (x, y), release rate (Q) and model

parameters z1 and z2 after first sensors’ measurements. Thus,

reconstruction algorithm is run with obtaining the first mea-

surements from the sensors (t = 1 at Table I). We assume

that initially we have no a priori information about the

parameters’ values. So, the initial value of each parameter is

draw randomly from the predefined interval with use of the

uniform distribution.

Then generation is evaluated with use of the likelihood func-

tion (Eq. 2). The subsequent generations are iteratively updated

by the applied genetic operators until the stop criterion is met.

Of course there arises question how to specify the termination

criteria? The usual criterion applied in GA is fixed number of

generations. For the problem presented in this paper the time of

giving the answer is crucial, so the constant number of genera-

tions is not optimal. In the task of the estimation of the source

of the atmospheric contamination the most important is to
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Fig. 4. Distribution of the x and y coordinates estimates during the GA runs for the given generation in 1st time step (rank selection).

T=1 T=2

Fig. 5. Probability distributions of the models parameters x, y, and Q for the
last generations in 1st and 2nd time step (rank selection). Vertical red lines
represent the target value.

T=3 T=4

Fig. 6. Probability distributions of the models parameters x, y, and Q for the
last generations in 3rd and 4th time step (rank selection). Vertical red lines
represent the target value.
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T=5 T=6

Fig. 7. Probability distributions of the models parameters x, y, and Q for the
last generations in 5th and 6th time step (rank selection). Vertical red lines
represent the target value.

estimate its location, to undertake the necessary action. Thus,

crucial is assessment of the x and y coordinates of the source.

Applying the Bayesian approach we can ask what probability

of estimation of these parameters will be acceptable. So, after

applying the last genetic operator, i.e. mutation, the histograms

of x and y parameters encoded in the current chromosomes

generation are evaluated. If many chromosomes have the same

parameters configuration the probability of certain parameter’s

value increases. Consequently, the reconstruction algorithm is

terminated when certain values of parameters x and y will be

obtained with probability greater than 0.8. If this condition

is fulfilled the a posteriori distributions of all parameters are

calculated. Obtained a posteriori distributions are considered

as the a priori distributions in the subsequent time step.

Consequently, in the next time step, when new data from

the sensors arrive the initial population is drawn uniformly

from the a priori distribution i.e. a posteriori distribution from

previous time step.

The number of generations required to fulfill the termination

criterion in subsequent time steps for the rank selection is

presented in Table II and for the hard tournament selection

in Table III. Comparing the Tables it is obvious that the

rank selection is much more effective. Fig. 4 illustrates the

distribution of the estimated by the GA contamination source

coordinates x and y in subsequent generations in the first time

step. It is seen that at the beginning for the 1st generation

the chromosomes are equally distributed within the scanned

domain. However, the applied genetic operators improve pop-

(A) (B)

Fig. 8. Cumulative probability distributions of the models parameters x, y,
and Q averaged over all time steps (A) rank selection, (B) hard tournament
selection. Vertical red lines represent the target value.

ulation quality for further generations and the chromosomes

gradually focus around the true source location. Finally, for

19th generation the estimated by the GA contamination source

location approaches to the target location. Figs. 5, 6 and 7

present the a posteriori distributions for x, y and Q parameters

obtained in the succeeding time steps. This distributions were

obtained based on the chromosomes configurations in the

last generation at given reconstruction algorithm iteration.

Based on the searched parameters value, encoded in the final

chromosomes population, the histogram for each parameter

has been assessed. Obtained histograms shows which values of

the parameters were the most frequent in the final generation,

which directly is reflected in its probabilities.

Fig. 5 presents that the first sensors measurements allow

to estimate the x and y parameters close to the target values,

while the release strength Q is approached in the second time

step. The probability distributions in subsequent time steps

reflect how the sensor’s data support or not the obtained dis-

tributions. The exact values of parameters differ in subsequent

time steps. Below, as the estimated parameter value we provide

the central value of the histogram bar with highest probability

and as the error the half of the bar width. In the 6th time step

the following parameters are estimated P (x = 2625±75) = 1,

P (y = 7725 ± 75) = 1 and P (Q = 8120 ± 40) = 0.95.

To effectively compare the results given by all proposed

algorithms we have estimated the joint marginal distribution

of x, y and Q parameters. Fig. 8ab present the a posteriori

distribution averaged over all time steps for the GA algorithm
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with rank selection and with the hard tournament selection,

respectively. The algorithm applying rank selection as the most

probable has pointed the parameters P (x = 3075±75) = 0.48,

P (y = 7725 ± 75) = 0.48 and P (Q = 8120 ± 40) = 0.52,

while the algorithm applying the hard tournament the parame-

ters P (x = 2925±75) = 0.33, P (y = 7725±75) = 0.64 and

P (Q = 7000± 40) = 0.67. Fig. 9ab presents the probability

distributions of the z1 and z2 parameters for the both selection

methods. The algorithm applying rank selection returned the

following values P (z1 = 0.04375 ± 0.00175) = 0.48,

P (z2 = 0.00175 ± 0.00175) = 0.79 and algorithm applying

the hard tournament P (z1 = 0.05075 ± 0.00175) = 0.48,

P (z2 = 0.00175±0.00175) = 0.8. We do not know the target

values for these coefficient, as far the SCIPUFF model used

to generate the synthetic concentration data do not allows to

specify its directly. In the reconstruction procedure we could

of course fix these coefficients according to the stability class

pointed by the terrain and wind speed which in this case could

be the stability class C for which z1 = 0.22 and z2 = 0.2.

But our numerical tests showed that we obtain better results

when we do not restrict the dispersion coefficients to the one

given value. The ’freed’ the dispersion coefficients in some

acceptable interval assumption allows to better fit the Gaussian

plum to the ’real’ data.

Comparison of the obtained results leads to the conclusion

that algorithms applying both selection methods return similar

results for the x and y parameters, at the same time the

algorithm using the hard tournament selection as the most

probable denotes Q = 7000 which differs from the true release

rate for 1000g/s, while for the rank selection algorithm hits

the target value. Consequently, we can pointed the algorithm

applying the rank selection as more effective, as far it requires

∼ 11 times less computational time than the hard tournament

selection to return comparable results.

IV. CONCLUSION

We have presented a methodology to reconstruct a source

causing an area of contamination, based on a set of mea-

surements. The method combines Bayesian inference with

the genetic algorithm and produces posterior probability dis-

tributions of the parameters describing the unknown source.

Developed dynamic data-driven event reconstruction model

couples data and pollutant dispersion simulations through

Bayesian inference. This approach successfully provide the

solution to the stated inverse problem i.e. having the downwind

concentration measurement and knowledge of the wind field

algorithm found the most probable location of the source and

its strength.

We have proposed the termination criteria reflecting the

probabilistic aspect of the obtained solution i.e. the GA is

terminated when some of the searched parameters are pointed

with satisfactorily probability. This approach allows to opti-

mize the algorithm’s computational time. We show that in the

presented problem the rank selection is more efficient than the

hard tournament selection.

Fig. 9. Cumulative probability distributions of the models parameters z1
and z2 averaged over all time steps (A) rank selection, (B) hard tournament
selection. Vertical red lines represent the value usually accepted in the Pasquili
stability class C.

The probabilistic aspect of the solution optimally combines

a probable answer with the uncertainties of the available

data. Among several possible solutions, the Bayesian source

reconstruction is solely able to find values of the model

parameters that are more consistent with the currently available

data.
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