
Stormgen - A Domain Specific Language to create
ad-hoc Storm Topologies

Siddharth Santurkar, Abhishek Arora and K Chandrasekaran
Department of Computer Science and Engineering

National Institute of Technology, Karnataka, Surathkal, India
siddharth.santurkar@ieee.org; abhishekarora185@gmail.com; kchnitk@ieee.org

Abstract—Large-scale distributed data processing has gained
significant momentum in research in the past decade. With the
introduction of MapReduce, many frameworks have been devel-
oped that either implement MapReduce or provide additional
functionalities useful in a larger domain. While the framework
introduced in the MapReduce paper performs batch-processing
of data, Apache Storm performs real-time computation on data.
Storm does this with the help of Topologies, and the constituents
of the Topology are developed using General-purpose Program-
ming Languages (GPL). A Domain-specific Language (DSL) can
provide a higher level of abstraction over GPLs and model the
specialized features of a particular domain in a better way. In this
paper, we propose the development of Storm Topology generator
(Stormgen), a DSL for Storm Topology development, and show
how the specifications of this DSL can be utilized during the code
generation of exact Storm Topology components in Java. The
parser and code generator for Stormgen’s syntax are developed
using the Eclipse Modelling Framework. The practical use of
Stormgen is illustrated with a case study which considers the
modelling of a Topology for the Word Count application.

Index Terms—Domain-specific modelling, Languages, Eclipse
Modelling Framework, Apache Storm, Code generation

I. INTRODUCTION

T
HE ADVENT of big data analysis created a need for
making systems that handled such data in a fault tolerant

and distributed manner. Google’s paper [1], which introduced
the MapReduce programming model, and Yahoo! [2], with its
Hadoop framework, succeeded in meeting this need. Several
additions and improvements to Hadoop and other such frame-
works have been made, owing to the diversity in the meaning
and purpose of the data being analysed. In the case of real
time, event-based and unbounded data, such a task must be
approached in a manner different from that advocated by the
frameworks named above. Apache S4 and Apache Storm, apart
from a few other frameworks, have made this possible.

MapReduce eases the development of parallel batch-
processing programs that conform to the map-reduce program-
ming paradigm. Storm [3] can be used for real-time processing
of data for a wide set of data processing use cases, some of
which are listed below:

1) Stream processing, which includes processing of mes-
sages, updating of databases, etc.

2) Continuous computation, where data streams can be
queried continuously and results can be streamed into
clients.

3) Distributed Remote Procedure Calls (RPC), where the
processing of a complicated query can be distributed
and parallelized.

All these features can be easily implemented using the simple,
yet, powerful primitives provided by Storm.

Storm involves the creation of a Topology [4] of computa-
tion, i.e. a graph with nodes and directed edges. The directed
edges between nodes provide the paths that can be used by the
event stream between the said nodes. Each node performs a
stream transformation, i.e. accepts an input stream and emits a
modified stream. There are also a special set of nodes that are
dedicated to fetching the input data stream from an external
source, if not creating the streams by themselves.

Hence, the developer has to write the code for each node in
the Topology, and assemble the nodes with their connecting
edges to finally obtain the graph. All this needs to be done
using the Storm Application Programming Interface (API) [5],
which is supported by multiple programming languages (Java
Virtual Machine (JVM) based and non-JVM based) such as
Java, Ruby, Scala, Python, etc. Commonly, various data mining
and machine learning tools are deployed on Storm nodes,
which generally fit the use cases mentioned above.

The Storm framework is developed under the Eclipse Public
License, and is available to open use by companies and other
organizations. Git and Altassian JIRA are used for version
control and issue tracking, respectively, under the Apache
incubator program. Some organizations that have employed
Storm are Twitter, Groupon, Alibaba, The Weather Channel
and FullContact.

DSLs [6] are small, simple and highly-focused specification
languages developed for a clear and small problem domain.
They are tailored to a specific application domain. They offer
substantial gains in expressiveness and ease of use compared
to the use of GPLs in the same domain. By employing well-
known concepts, abstractions and notations derived from the
problem domain, they are easy to learn, understand and use,
both by developers and domain experts.

Further, DSLs facilitate the use and reuse of domain knowl-
edge. They are not constrained to be like programming lan-
guages. One of the main advantages is that they transcend the
boundaries of programming. They tend to be more descriptive
and verbose than GPLs. Hence, using DSLs, domain experts
can directly contribute to the development effort by validating,
modifying and even independently developing DSL programs.

Proceedings of the 2014 Federated Conference on
Computer Science and Information Systems pp. 1621–1628

DOI: 10.15439/2014F278
ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1621

Every time a Storm Topology needs to be created, hundreds
of lines of Java code will have to be written by the developer.
Anyone who needs to deploy their application on Storm would
first have to learn how to develop Storm Topologies using
general purpose languages. This could waste a lot development
effort and time, that could instead be used for improving the
application at hand.

For these reasons, any DSL for the Storm domain should
create a simple, quick and reliable means for assembling a
Storm Topology and deploying the intended application. Of
course, the domain knowledge of Storm and its concepts is still
necessary, and the application should be deployable within the
scope of the DSL. Further, the creation of the Storm Topology
in an ad-hoc manner using the DSL can be used for testing
the application on this framework.

XText [7] is an open-source framework for developing
programming languages and domain-specific languages. It
provides a parser, abstract syntax tree generator and a Java
code generator. It is a part of the Eclipse modelling project.
We used XText to create Stormgen.

The rest of the paper is organized as follows: the related
work in this area is given in Section 2. A domain specific
meta-model for Topology development in Storm, which is used
for developing the abstract syntax of Stormgen, is discussed
in Section 3. Based on this meta-model, the textual concrete
syntax of Stormgen is presented in Section 4. The transforma-
tions from the specifications required for Code generation are
elaborated in Section 5. A case study is presented in Section
6, where Stormgen is used to develop a Storm Topology for
the popular "Word Count" problem. Finally the conclusions
and possible future improvements are discussed in Section 7.

II. RELATED WORK

XText, as a tool to develop DSLs, is gaining large popularity
in the research community, due to its simplicity, stability and
facilities. In [8], XText was used to create a DSL called SEA_L
which is used in Semantic Web enabled Multi-agent Systems.
This paper follows a similar analysis performed in [8] to
present the DSL developed.

Other instances where DSLs have been created using XText
includes [9]. In this work, the XText framework was used to
describe the implementation of an assembler editor for the
development of assembly code. The editor supports specific
assembler instructions. The other features provided by this ed-
itor are content monitoring, detection of repeated instructions,
and prediction to assist user input. Our DSL also comes with
such an editor. XText comes with a customizable user-interface
component, which can be used to create an Eclipse-like IDE
for the DSL being created. This way, all the useful Eclipse
development features can be provided to our DSL.

In yet another research work [10] selected dependability of
multi-agent system (MAS) as the domain. The key requirement
in this domain is an efficient verification of a Topology
model of a power system. As a result, they developed a
DSL as a reliability evaluation solution offering a significant
rise in the level of abstraction towards MAS utilized by the

system. They made use of Eclipse Ecore, as it becomes a
common denominator, in which both meta-models and abstract
syntax trees are defined. Eclipse Ecore is a meta-modelling
framework, part of the Eclipse Modelling Project, and we have
made use of this to prepare our meta-models.

Where distributed fault-tolerant systems are concerned, as
discussed in [11], Pig Latin is a DSL that is used to create and
execute MapReduce jobs on Hadoop. The Pig Latin syntax has
the declarative style of SQL and the low-level, procedural style
of MapReduce. This language is especially useful for an expert
in RDBMS systems and SQL to perform MapReduce jobs
without requiring knowledge of the MapReduce programming
paradigm and Hadoop. Hence, it lies at a very high level of
abstraction. However, our DSL does not provide that level of
abstraction, as a user cannot fully exploit the various features
of Storm, if restricted only to an SQL-like interface. Instead,
a user with knowledge of the features of Storm can develop
a Topology that can best fit the problem at hand. Esper is the
Pig Latin equivalent in Storm, i.e. it provides streaming of
SQL queries on top of Storm.

Other DSLs for Storm [4] include Redstorm [12], Scala
DSL, Clojure DSL, etc. Each of these DSLs require knowledge
of programming languages like Scala, Ruby and Clojure. Our
DSL aims to alleviate the use of GPLs and provides simple
constructs close to plain English to develop the Topology. We
have evaluated Stormgen against Redstorm at the end of this
paper.

III. ABSTRACT SYNTAX

The abstract syntax of a DSL describes the domain concepts
and their relations without any consideration of their meaning.
In terms of Model-driven development, a domain model or
data model represents the data we want to work with. The
data model is generally independent of application logic. The
meta-model is used to describe the structure of the domain
model. The abstract syntax is described by a meta-model. This
constitutes the analysis phase of the development of the DSL.

As mentioned earlier, a Storm Topology consists of a
collection of nodes that do some processing and transformation
on the incoming data stream. Broadly, there are 2 types of
nodes that can exist in a Storm Topology:

1) Spouts

These are nodes that create an input stream of data for
the Topology either by generating it randomly on the fly,
or by connecting to a third party source of events through
a streaming API (for example, the Twitter streaming API
[13]). The Spout collects the events from the source and
emits them to the rest of the Topology. It can never have
a stream input to it from any other node. In essence, it
is the source vertex of the Topology. A directed graph,
however, can have multiple source vertices. Similarly, a
Topology can have multiple Spouts of different types.

2) Bolts

These are nodes in the Topology that do some com-
putation or processing on the incoming data stream(s)
and emit the data to the downstream operators. Bolts at

1622 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 1. Spouts and Bolts in a Storm Topology, as given in [4]

the end of the Topology do not emit data downstream.
Bolts can do anything from filtering of data, execution
of functions, communication with databases, database
operations such as aggregations, joins, etc. They can
perform either simple or complex stream processing.

A Topology can finally be assembled by adding Spouts and
Bolts and the necessary edges between nodes. Fig. 1. shows
a sample Topology.

Eclipse Modelling Framework (EMF) comes with two meta-
models; Ecore [14] and Genmodel. The Ecore meta-model is
used to store the information of the defined classes, whereas
the Genmodel is used to store all the information required for
code generation. EMF was chosen as the modelling platform
mainly because it makes the domain model explicit, providing
clear visibility. Moreover, EMF takes care of interface gener-
ation and the factory for object creation.

Ecore specifies a set of elements that could be used in the
development of the meta-model. These elements are similar to
some of the elements in the UML Class diagram:

1) EClass: This represents a class element. It can have zero
or more attributes and references.

2) EAttribute: This represents an attribute, consisting of a
name and type.

3) EReference: This represents an end-point of association
between 2 EClasses.

4) EDataType: This represents the data type of an attribute.
For example, java.util.ArrayList.

Our abstract syntax provides EClasses called Bolt, Spout
and Topology. Fig. 2. shows the Ecore meta-model [14] for
our model. The Storm API [5] provides interfaces to create
Spouts and Bolts. For every Spout and Bolt a class has to be
created and must override all the interface methods.

The aim of the final DSL is to provide very simple im-
plementations of all the well-known characteristics of Spouts
and Bolts. All the well-known features are captured in the API

EAttribute. The Property EAttribute allows the user to define

any data member (variable) and the Operation EAttribute lets
the user define any function (method).

Some of the important features of the Bolt API are listed
below

1) Prepare, which is used for the pre-deployment configu-
ration of the Bolt.

2) Execute, which receives a tuple from the input stream,
does some processing on the stream, and emits the result
to the output collector.

3) Output Field Declarer (OPFields), which declares what
logical type or key the fields in the emitted tuples
assume.

Similarly, some of the important features of the Spout API
are listed below

1) Open, which is used for the pre-deployment configura-
tion of the Spout.

2) NextTuple, which connects to the source of the data
stream, parses the stream into tuples, and emits them
to the rest of the Topology.

3) Output Field Declarer (OPFields), which declares what
logical type or key the fields in the emitted tuples
assume.

Finally, the Topology assembly is done with the help of
a TopologyBuilder class of the Storm API. The builder can
either add Spouts or Bolts. As Bolts will have incoming edges,
the adjacent upstream node needs to be specified as well.
While adding a Spout to the Topology, the logical name and
the instance of the class containing the source code should be
provided. As any given node can be replicated multiple times
during deployment, this number is provided as well while
adding the Spout. While adding the Bolt, the same parameters
as in the case of the Spout need to be provided. The logical
name of the upstream operator needs to be defined using the
"grouping" EAttribute.

IV. TEXTUAL CONCRETE SYNTAX

The textual concrete syntax of Stormgen is provided with
XText [15]. XText is a language development framework to
provide textual modelling languages. It can be used for cre-
ating a sophisticated Eclipse-based development environment.
XText is based on Extended Backus Naur Form (EBNF) [16]
rules. Hence, the design phase in the development of Stormgen
constitutes the description of the EBNF rules.

As explained in the Related work section, we make use
of the XText features in order to create an Eclipe-IDE user
interface for Stormgen. This way, auto completion, syntax
colouring, rename refactoring, bracket matching, auto edit,etc
are provided for the syntax. By defining EBNF rules, the
constraints discussed in the Abstract Syntax section of Stor-
mgen’s meta-model are realized. With these capabilities, the
new DSL possesses both the structure and the static semantics
of the Storm domain. The structure is defined by the method
signatures and the semantics by the constraint code.

The rest of this section discusses the structure of the
grammar used to specify Stormgen.

CHANDRASEKARAN K, SIDDHARTH SANTURKAR, ABHISHEK ARORA: STORMGEN-A DOMAIN SPECIFIC LANGUAGE 1623

Fig. 2. Meta-model for Stormgen

Every Stormgen file should include the specifications of all
the 3 major entities in the DSL, i.e. Spout, Bolt and Topology
or they can contain a subset of the entire specification (For 1
or more entities).

In the beginning of the domain model all the non-Storm
library related imports need to be specified. Due to the use of
various JVM Elements here such as the Identifiers, Function
parameters, and blocks of Java code, we made use of Xbase
[17] to specify all the terminals in our grammar.

Once the imports have been specified, the rest of the file
should model either a Spout, Bolt or Topology. Example 4.1
shows the implementation of this feature.

Example 4.1 (Imports and file header):

Domainmodel:

importSection=XImportSection?

elements+=AbstractElement*;

AbstractElement:

PackageDeclaration | Bolt | Spout

| Topology;

In the case of a Bolt, the meta-model constraints have to
be followed. Every Bolt needs to have a well-defined name,
followed by the type of Bolt primitive it is trying to imple-
ment. For example, it could implement the BaseRichBolt or
IRichBolt types provided by the Storm Bolt API. The user can
then optionally include basic members and methods following

Java-like syntax. The rest of the code should include all of
the abstract methods of the API. Example 4.2 demonstrates
the Bolt syntax.

Example 4.2 (Bolt syntax):

Bolt:

’Bolt{’

’Name:’ name=ValidID,

(’Type:’ superType=JvmTypeReference)?,

(’Members:’ (features+=Property)+)?,

(’Methods:’ (operations+=Operation)+)?,

(’Prepare:’ pr=Prepare)?,

’Execute:’ ex=Execute,

(’Cleanup:’ cl=Cleanup)?,

(’OutputFields:’ op=OPFields)?,

(’Config:’ cf=Config)?

’}’

Within the Bolt API, while the implementation of the
Execute feature is mandatory, the rest of the features are not.
Within the Execute attribute, the emit function (outputting a
tuple downstream) is called by defining the ’emit’ keyword,
followed by the sequence of parameters to emit.

Example 4.3 (Bolt API emit statement):

Execute:

’execute {’

1624 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

(’emit (’(params+=ValidID

(’,’ params+=ValidID)*)’)’)

’}’;

The Spout syntax has a similar structure to the Bolt syntax,
as shown in Example 4.4

Example 4.4 (Spout syntax):

Spout:

’Spout{’

’SpoutName:’ name=ValidID,

(’Type:’ superType=JvmTypeReference)?,

(’Members:’ (features+=Property)+)?,

(’Methods:’ (operations+=Operation)+)?,

(’Open:’ ope=Open)?,

’NextTuple:’ nt=NextTuple,

(’Ack:’ ac=Ack)?,

(’OutputFields:’ op=OPFields)?,

(’Fail:’ fa=Fail)?,

’}’

Like the Bolt, the Spout needs to be provided by name and
type. The Spout could implement IRichSpout or BaseRich-
Spout types. The Spout can also have optional Properties and
Features. Within the Spout API, the NextTuple feature needs
to be included, but the rest are optional. The emit property is
defined in the NextTuple function.

Finally, the grammar for building the Topology is given in
Example 4.5.

Example 4.5 (Topology Syntax):

Topology :

’Topology’ name=ValidID ’{’

build+= BuildStatement*

’}’

;

BuildStatement:

AddSpout | AddBolt;

AddSpout:

’addSpout{

’SpoutName:name=XStringLiteral’,

’SpoutInstance:clas=QualifiedName’,

’Parallelism:num=XNumberLiteral

’}’;

AddBolt:

’addBolt{

’BoltName:name=XStringLiteral’,

’BoltInstance:clas=QualifiedName’,

’Parallelism:num=XNumberLiteral

’Upstream:(Name:up=XStringLiteral,

Type:(type = ’shuffle’|

type= ’fields’)+

’}’

Config : (’default’|’custom’)

The Topology grammar lets the user add any number of
Bolts and Spouts to the Topology. Apart from specifying the
primitive arguments of both Bolt and Spout, the logical name
of the adjacent upstream node to every Bolt is provided.
Additional configuration information needs to be applied to
the Topology, such as the number of Worker processes per
node, code concerning the submission of the Topology to
the Storm daemon processes, etc. Using the default option
with the ’Config’ field (as shown in Example 4.5), the default
configuration is generated for ad-hoc Topologies.

XText can generate EBNF rules from a given meta-model
but we prefer to define EBNF rules manually to supply
some preferred syntactical restrictions and constraints such as
defining relations in a specific order (XText cannot extract the
order from the meta-model because the meta-model does not
have such an attribute by itself), defining at least one or more
than one relation, etc.

V. CODE GENERATION

It is not sufficient to complete the DSL definition only
by specifying the notations and their representations. The
complete definition requires that the semantics of the DSL’s
concepts are mapped to Java constructs. The mapping is pro-
vided through model to code transformations where the final
executable software code for exact Storm Topology creation is
obtained. Code generation for the instance models are provided
by the Xtext Framework [15].

Many of the existing model driven engineering approaches
accomplish code generation by writing strings to text files.
XTend is a flexible and expressive dialect of Java, which
compiles into readable Java compatible source code. XTend
prepares a compiled output of Java source code that is similar
to the equivalent hand-written code, both in structure and
performance. Unlike other JVM languages XTend has no
interoperability issues with Java.

Like XPand [19], XTend [18] is a template engine, which
allows creating textual output using EMF models. XTend
requires an EMF meta-model and one or more templates
to translate the model into text. Once the requirements are
provided and an EMF model [20] is defined, the code generator
can be deployed. XTend traverses the abstract tree created by
XText and generates the code along the way.

However, compared to XPand, XTend has the following
additional benefits as explained in [21]

1) XTend is fast because XTend code is translated to
Java code without adding overheads or dependencies at
runtime.

2) XTend is debuggable as XTend code is translated to
Java code. Hence, advanced Java debugging tools can
be used. Additionally the Eclipse debugger provides the
option to debug either the XTend source code or the
generated Java code.

3) Better Integrated Development Environment (IDE) sup-
port.

4) As templates in XTend are expressions which yield
some value, multiple templates can be composed and

CHANDRASEKARAN K, SIDDHARTH SANTURKAR, ABHISHEK ARORA: STORMGEN-A DOMAIN SPECIFIC LANGUAGE 1625

the results can be passed around and processed.
5) Better extendibility.

Hence, the code generation for Stormgen is done using
XTend.

Every EClass in the meta-model has a corresponding def-
inition in the grammar. The grammar rules have to then be
mapped during code generation into various components of
the target generated program. As mentioned in the previous
section, the 3 main components that have to be included
in the Domain model are Spout, Bolt and Topology. The
code generator has an "inferrer" defined for each of these 3
components.

The IRichBolt interface is used to implement the Bolt in
the model. So during generation, the corresponding statement
needs to be included, along with the required import. This is
followed by the generation of the constructors.

Example 5.1 (Generating constructors):

members += e l e m e n t . t o C o n s t r u c t o r [
f o r (f e a t u r e : e l e m e n t . f e a t u r e s)
{

p a r a m e t e r s += t o P a r a m e t e r
(f e a t u r e . name , f e a t u r e . t y p e)

}
body = [

f o r (f e a t u r e : e l e m e n t . f e a t u r e s)
{

append (" t h i s . "+ f e a t u r e . name+
"="+ f e a t u r e . name+" ; ")

}
]

]

Properties have to be translated into corresponding Java
class member variables and Operations have to be translated
to corresponding Java class functions

Finally the Bolt API attributes are translated into Java func-
tions, which override the functions in the IRichBolt interface.
All the attributes have to be appended with correct function
call and arguments, having imported the corresponding argu-
ments from the Storm library.

The Spout code is generated in a similar manner to that of
the Bolt. The IRichSpout interface is implemented to provide
all the necessary functions to override. The constructor of the
Spout class is generated. All the instances of the Property
EClass are translated into Java class members and all the
instances of the Operation EClass are translated into Java class
functions. Finally all the overridden methods are defined with
the required prototype and the fully qualified arguments.

Topology has different grammar constructs from Bolt and
Spout. Hence the code generation is slightly different. In order
to build a Topology, a TopologyBuilder instance from the
Storm API needs to be created. The Topology Builder instance
can then be used to add Spouts and Bolts, constituting the
assembly process. The adjacent upstream nodes for the Bolts
are also specified. This builder instance is implicitly created,

and the DSL provides EClasses like AddSpout and AddBolt
to add the Spouts and Bolts to this implicit instance.

Over and above this, there is a lot of code that is used to
configure the Topology for a local mode execution. All this is
hard-coded into the generator, and generated for every possible
Topology created using this DSL.

VI. CASE STUDY: WORD COUNT

Word count [22] is a very popular problem that is especially
used to understand the functioning of various distributed, fault-
tolerant data processing systems, including Storm.

In word count, a very large document is provided as input
to the framework and the expected output is a report of the
frequency of every single word in the document. This is a
fairly simple application to develop, and we will be using this
example to underline the simplicity and power of Stormgen.

First we need to analyse the problem and understand how it
can be modelled into the Storm domain. In essence, the Storm
domain involves the creation of Topologies using Spouts and
Bolts. So we now need to understand what components are
required to develop a solution to this problem.

We need a real time data stream for processing. So we
decided to simulate the same by constructing a Random-
SentenceGenerator Spout which has a list of sentences, and
randomly emits a sentence every time the ’NextTuple’ routine
is called by the framework.

Now that our data stream consists of Tuples, each being
a randomly selected sentence, these sentences need to be
split (removal of whitespaces) into words. To carry out this
operation we construct a SplitSentence Bolt which accepts
an input tuple containing a sentence, splits the sentence into
words and emits each word downstream. This operation of
splitting the sentence is written directly in Java.

The SplitSentence Bolt subscribes directly to the Random-
SentenceGenerator Spout. As the process of splitting sentences
doesn’t need to be done at any specific instance of the
SplitSentence Bolt, normal shuffle grouping is used to group
the tuples to the instances of this Bolt.

Now that the SplitSentenceBolt generates a stream of words,
these words need to be counted. For this, we construct the
WordCounter Bolt, which accepts a word and increments the
word’s count, which is stored in a local Hash Map. This
Bolt is the final Bolt in the Topology and does not emit any
data subsequently. This Bolt subscribes to the SplitSentence
Bolt. However, there should be a constraint enforced here. If
different instances of the same word go to different instances
of the WordCounter Bolt, then obviously the total count
reported by each Bolt will be wrong. So it is important to
ensure that all instances of the same word should go to the
same instance of the Bolt to ensure a correct count. This can
be achieved by using the Field stream grouping in Storm.

For convenience, in the DSL for our domain model, we have
created 4 files:

1) RandomSentenceSpout.strgen
2) SplitSentenceBolt.strgen
3) WordCounterBolt.strgen

1626 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 3. The word count Topology

4) WordCountTopology.strgen

Note that all the entities could also be defined in a single
Stromgen file.

Fig. 3. shows how the Topology looks like. In the Word-
CountTopology.strgen, we construct the Topology with the
given Spouts and Bolts. The contents of the WordCount-
Topology.strgen file are shown in Example 6.1. The generated
Java code for the Topology is given in Example 6.2. The
examples of the other 3 code files are not included due
to space constraints. Only if all 4 of the source files are
specified correctly will the correct Java application code will
be generated.

Example 6.1 (Word count Topology Stormgen model):

package org . T o p o l o g i e s {
Topology WordCountTopology {

addSpout {
SpoutName : " Spout " ,
S p o u t I n s t a n c e :

S p o u t s . RandomSentenceSpout ,
P a r a l l e l i s m : 1 0

}

a d d B o l t {
BoltName : " s p l i t " ,
B o l t I n s t a n c e :

B o l t s . S p l i t S e n t e n c e B o l t ,
P a r a l l e l i s m : 5 ,
Upstream : (" Spout " , s h u f f l e)

}

a d d B o l t {
BoltName : " c o u n t " ,
B o l t I n s t a n c e :

B o l t s . WordCounterBol t ,
P a r a l l e l i s m : 5 ,
Upstream : (" s p l i t " , f i e l d s)

}

Conf ig : d e f a u l t

}

Example 6.2 (Word count Topology generated java code):

package org . T o p o l o g i e s ;

@SuppressWarnings (" a l l ")
p u b l i c c l a s s WordCountTopology {

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

b a c k t y p e . Storm . Topology . T o p o l o g y B u i l d e r
b u i l d e r = new b a c k t y p e . Storm . Topology .

T o p o l o g y B u i l d e r () ;

Conf ig con f = new Conf ig () ;
con f . se tDebug (t ru e) ;
b u i l d e r . s e t S p o u t (" Spout " ,

new S p o u t s . RandomSentenceSpout () ,
1 0) ;

b u i l d e r . s e t B o l t (" s p l i t " ,
new B o l t s . S p l i t S e n t e n c e B o l t () ,
5) .
s h u f f l e G r o u p i n g (" Spout ") ;

b u i l d e r . s e t B o l t (" c o u n t " ,
new B o l t s . WordCounterBol t () ,
5) .
f i e l d s G r o u p i n g (" s p l i t ") ;

i f (a r g s != n u l l && a r g s . l e n g t h > 0){
con f . setNumWorkers (3) ;
S t o r m S u b m i t t e r . submi tTopo logy (a r g s [0] ,

conf , b u i l d e r . c r e a t e T o p o l o g y ()) ;
}
e l s e {

con f . s e t M a x T a s k P a r a l l e l i s m (3) ;
L o c a l C l u s t e r c l u s t e r =

new L o c a l C l u s t e r () ;
c l u s t e r . submi tTopo logy (" word−c o u n t " ,

conf , b u i l d e r . c r e a t e T o p o l o g y ()) ;
Thread . s l e e p (1 0 0 0 0) ;
c l u s t e r . shutdown () ;

}
}

}

As it is evident from this case study, Stormgen greatly sim-
plifies the assembly of a Topology. With the simple, verbose
syntax of Stormgen we could generate the equivalent Java code
for the whole Topology. Further, Stormgen is abstracted to
capture just the domain concepts. Hence, only the Storm-API
related specifications need to be specified using the DSL. The
rest of the Java code can be generated once this specification
is provided.

VII. EVALUATION

As mentioned in the Related Work, there are several DSLs
available for Storm, such as Redstorm, Scala DSL, Clojure
DSL, etc. They provide a similar level of abstraction as
Stormgen. However, the user is expected to know Scala, Ruby
or Clojure, which are GPLs, but provide a simpler syntax
than Java. Stormgen provides a simple, intuitive syntax for
the development of the core components of the Topology.
This syntax is not based on any GPL. Additionally, Stormgen
permits the programmer to introduce Java code into the DSL
whenever any specific functionality has to be incorporated.

The primary use case that Stormgen is developed for, is
the deployment of third-party applications on Storm. As men-

CHANDRASEKARAN K, SIDDHARTH SANTURKAR, ABHISHEK ARORA: STORMGEN-A DOMAIN SPECIFIC LANGUAGE 1627

tioned earlier, Storm is normally used for larger data mining
or machine learning applications that need real-time, fault-
tolerant and distributed data processing. Further, additional
development effort has to be expended on understanding how
to develop Storm topologies using Java. Instead, once the
user has learnt the domain concepts, Stormgen can be directly
used to create the necessary components of the topology and
payload the various units of the third-party application on these
components.

Redstorm [12] is a DSL for Storm developed using JRuby.
All the components have to be written in Ruby. While JRuby
does permit the direct use of Java code, it requires special
configuration when access to non-bundled Java libraries is
required. Non-bundled Java libraries will be required when a
third-party application is being deployed on Storm. Stormgen
solves this problem by permitting ordinary Java imports to
be mentioned in the DSL file, which is added in verbatim to
the generated code. This alleviates the need for any special
configuration and the user can directly focus on the Topology
development.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented our DSL, Stormgen,
describing the motivation behind developing it, and further
explaining in detail what went on in the whole software
development process. In the analysis phase, the Abstract
syntax was specified with the help of domain-specific meta-
models. These meta-model concepts were then mapped to the
concrete textual Syntax during the design phase. The next
phase involved mapping the textual syntax to code by the
construction of the code generator. Finally, we tested Stormgen
with the popular WordCount application. All this was done
entirely using tools such as Ecore, XText and Xtend, provided
by EMF.

As explained throughout the paper, Stormgen allows the
user to develop Topologies for Storm by simply applying do-
main knowledge and concepts to the domain model. Stormgen
also allows the user to import external Java code, so that any
other Java applications can be deployed seamlessly into Storm.

In future, Stormgen can be upgraded to incorporate support
for additional Bolt/Spout interfaces apart from the BaseRich
and IRich Bolt/Spout. While the existing implementation is
sufficient to cover most use cases, providing the support for the
other interfaces would cover each and every feature provided
by Storm. Finally, using the Eclipse Graphical Modelling
Framework (GMF) [23], a graphical DSL can be developed
to supplement the textual DSL. The graphical DSL would
provide a simple graphical user interface (GUI) to draw the
graph of the Topology and a convenient technique to configure

each node and stream (edge). This would provide a more
intuitive visualization to the Storm Topology development.

REFERENCES

[1] Dean, Jeffrey, and Sanjay Ghemawat. “MapReduce: simplified data
processing on large clusters”, Communications of the ACM 51.1 (2008):
107-113. http://dx.doi.org/10.1145/1327452.1327492

[2] White, Tom. “Hadoop: The Definitive Guide: The Definitive Guide.”
O’Reilly Media, 2009.

[3] Marz, Nathan. "Storm-distributed and fault-tolerant realtime computa-
tion." Open Source Conference (OSCON). 2012.

[4] Marz, Nathan. "Storm wiki." https://github.com/nathanmarz/Storm/wiki
(2012).

[5] Marz, Nathan. "Storm Javadoc." http://nathanmarz.github.io/storm/
doc-0.8.1 (2012).

[6] Fowler, Martin. Domain-specific languages. Pearson Education, 2010.
[7] Eysholdt, Moritz, and Heiko Behrens. "Xtext: implement your lan-

guage faster than the quick and dirty way." Proceedings of the
ACM international conference companion on Object oriented program-
ming systems languages and applications companion. ACM, 2010.
http://dx.doi.org/10.1145/1869542.1869625

[8] Demirkol, Sebla, et al. "A DSL for the development of soft-
ware agents working within a semantic web environment." Com-
puter Science and Information Systems 10.4 (2013): 1525-1556.
doi:10.2298/CSIS121105044D

[9] Kartalija, Sasa, et al. "One solution of implementation assem-
bler editor on the Java platform using the XText framework."
Telecommunications Forum (TELFOR), 2012 20th. IEEE, 2012.
http://dx.doi.org/10.1109/TELFOR.2012.6419547

[10] Kowalski, Marcin, and Kazimierz Wilkosz. "A Domain Specific Lan-
guage in Dependability Analysis." Dependability of Computer Systems,
2009. DepCos-RELCOMEX’09. Fourth International Conference on.
IEEE, 2009. http://dx.doi.org/10.1109/DepCoS-RELCOMEX.2009.14

[11] Gates, Alan F., et al. "Building a high-level dataflow system on top of
MapReduce: the Pig experience." Proceedings of the VLDB Endowment
2.2 (2009): 1414-1425. http://dx.doi.org/10.14778/1687553.1687568

[12] Superenant, Colin. "Red Storm" https://github.com/colinsurprenant/
redstorm (2012).

[13] Benhardus, James, and Jugal Kalita. "Streaming trend detection in
twitter." International Journal of Web Based Communities 9.1 (2013):
122-139. doi:10.1504/IJWBC.2013.051298

[14] Stephan, Matthew, and Michal Antkiewicz. "Ecore. fmp: A tool for
editing and instantiating class models as feature models." University
of Waterloo, Tech. Rep 8 (2008).

[15] Behrens, Heiko, et al. "XText user guide." DostupnÃl’ z WWW:
http://www.eclipse.org/Xtext/documentation/1_0_1/xtext.pdf (2008).

[16] Garshol, Lars Marius. "BNF and EBNF: What are they and how do they
work." acedida pela Ãžltima vez em 16 (2005).

[17] Efftinge, Sven, et al. "Xbase: implementing domain-specific languages
for Java." ACM SIGPLAN Notices. Vol. 48. No. 3. ACM, 2012.
http://dx.doi.org/10.1145/2480361.2371419

[18] Bettini, Lorenzo. Implementing Domain-Specific Languages with XText
and Xtend. Packt Publishing Ltd, 2013.

[19] Klatt, Benjamin. "Xpand: A closer look at the model2text transformation
language." Language 10.16 (2007): 2008.

[20] Budinsky, Frank, ed. Eclipse modeling framework: a developer’s guide.
Addison-Wesley Professional, 2004.

[21] Five good reasons to port your code generator to Xtend -
http://blog.efftinge.de/2013/06/five-good-reasons-to-port-your-code.html

[22] Dean, Jeffrey, and Sanjay Ghemawat. "Distributed programming with
Mapreduce." Beautiful Code. Sebastopol: O’Reilly Media, Inc 384
(2007).

[23] Eclipse Consortium. "Eclipse Graphical Modeling Framework
(GMF)(2007)."

1628 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

