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Abstract—Computational kernel of the three-dimensional vari-
ational data assimilation (3D-Var) problem is a linear system,
generally solved by means of an iterative method. The most costly
part of each iterative step is a matrix-vector product with a very
large covariance matrix having Gaussian correlation structure.
This operation may be interpreted as a Gaussian convolution, that
is a very expensive numerical kernel. Recursive Filters (RFs) are a
well known way to approximate the Gaussian convolution and are
intensively applied in the meteorology, in the oceanography and
in forecast models. In this paper, we deal with an oceanographic
3D-Var data assimilation scheme, named OceanVar, where the
linear system is solved by using the Conjugate Gradient (GC)
method by replacing, at each step, the Gaussian convolution with
RFs. Here we give theoretical issues on the discrete convolution
approximation with a first order (1st-RF) and a third order
(3rd-RF) recursive filters. Numerical experiments confirm given
error bounds and show the benefits, in terms of accuracy and
performance, of the 3-rd RF.

I. INTRODUCTION

In recent years, Gaussian filters have assumed a central role

in image filtering and techniques for accurate measurement

[26]. The implementation of the Gaussian filter in one or more

dimensions has typically been done as a convolution with a

Gaussian kernel, that leads to a high computational cost in

its practical application. Computational efforts to reduce the

Gaussian convolution complexity are discussed in [16], [24].

More advantages may be gained by employing a spatially

recursive filter, carefully constructed to mimic the Gaussian

convolution operator.

Recursive filters (RFs) are an efficient way of achieving a

long impulse response, without having to perform a long

convolution. Initially developed in the context of time series

analysis [5], they are extensively used as computational kernels

for numerical weather analysis, forecasts [17], [20], [25],

digital image processing [8], [23]. Recursive filters with higher

order accuracy are very able to accurately approximate a

Gaussian convolution, but they require more operations.

In this paper, we investigate how the RF mimics the Gaussian

convolution in the context of variational data assimilation

analysis. Variational data assimilation (Var-DA) is popularly

used to combine observations with a model forecast in order

to produce a best estimate of the current state of a system

and enable accurate prediction of future states. Here we deal

with the three-dimensional data assimilation scheme (3D-Var),

where the estimate minimizes a weighted nonlinear least-

squares measure of the error between the model forecast

and the available observations. The numerical problem is to

minimize a cost function by means of an iterative optimization

algorithm. The most costly part of each step is the multipli-

cation of some grid-space vector by a covariance matrix that

defines the error on the forecast model and observations. More

precisely, in 3D-Var problem this operation may be interpreted

as the convolution of a covariance function of background

error with the given forcing terms.

Here we deal with numerical aspects of an oceanographic 3D-

Var scheme, in the real scenario of OceanVar. Ocean data

assimilation is a crucial task in operational oceanography and

the computational kernel of OceanVar software is a linear

system resolution by means of the Conjugate Gradient (GC)

method, where the iteration matrix is relate to an errors

covariance matrix, having a Gaussian correlation structure.

In [9], it is shown that a computational advantage can be

gained by employing a first order RF that mimics the required

Gaussian convolution. Instead, we use the 3rd-RF to compute

numerically the Gaussian convolution, as how far is only used

in signal processing [27], but only recently used in the field

of Var-DA problems.

In this paper we highlight the main sources of error, introduced

by these new numerical operators. We also investigate the

real benefits, obtained by using 1-st and 3rd-RFs, through a

careful error analysis. Theoretical aspects are confirmed by

some numerical experiments. Finally, we report results in the

case study of the OceanVar software.

The rest of the paper is organized as follows. In the next

section we recall the three-dimensional variational data as-

similation problem and we remark some properties on the
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conditioning for this problem. Besides, we describe our case

study: the OceanVar problem and its numerical solution with

CG method. In section III, we introduce the n-th order

recursive filter and how it can be applied to approximate

the discrete Gaussian convolution. In section IV, we estimate

the effective error, introduced at each iteration of the CG

method, by using 1st-RF and 3rd-RF instead of the Gaussian

convolution. In section V, we report some experiments to

confirm our theoretical study, while the section VI concludes

the paper.

II. MATHEMATICAL BACKGROUND

The aim of a generic variational problem (VAR problem) is

to find a best estimate x, given a previous estimate xb and a

measured value y. With these notations, the VAR problem is

based on the following regularized constrained least-squared

problem:

min
x

J(x)

where x is defined in a grid domain D. The objective function

J(x) is defined as follows:

J(x) = ‖y −H(x)‖2 + λR(x, xb) (1)

where measured data are compared with the solution obtained

from a nonlinear model given by H(x).
In (1), we can recognize a quadratic data-fidelity term, the first

term and the general regularization term (or penalty term), the

second one. When λ = 1 and the regularization term can be

write as:

R(x, xb) = ‖x− xb‖2

we deal with a three-dimensional variational data assimilation

problem (3D-Var DA problem). The purpose is to find an

optimal estimate for a vector of states xt (called the analysis)

of a generic system S, at each time t ∈ T = {0, .., n} given:

• a prior estimate vector xb
t (called the background)

achieved by numerical solution of a forecasting model

Lt−1,t(xt−1) = xb
t , with error δxt = xb

t − xt;

• a vector yt of observations, related to the nonlinear model

by δyt that is an effective measurement error:

yt = H(xt) + δyt.

At each time t, the errors δxt in the background and the errors

δyt in the observations are assumed to be random with mean

zero and covariance matrices B and R, respectively. More

precisely, the covariance R =< δyt, δy
T
t > of observational

error is assumed to be diagonal, (observational errors statis-

tically independent). The covariance B =< δxt, δx
T
t > of

background error is never assumed to be diagonal as justified

in the follow. To minimize, with respect to xt and for each

t ∈ T , the problem becomes:

min
xt∈D

J(xt) = min
xt∈D

{1
2
‖yt −H(xt)‖2R +

1

2
‖xt − xb

t‖2B} (2)

In explicit form, the functional cost of (2) problem can be

written as:

J(xt) =
1
2 (yt −H(xt))

TR−1(yt −H(xt))+

+ 1
2 (xt − xb

t)
TB−1(xt − xb

t)
(3)

It is often numerically convenient to approximate the effects

on H(xt) of small increments of xt, using the linearization of

H . For small increments δxt, follows [18], it is:

H(xt) ≃ H(xb
t) +Hδxt

where the linear operator H is the matrix obtained by the first

order approximation of the Jacobian of H evaluated at xb
t .

Now let dt = yt −H(xb
t) be the misfit. Then the function J

in (3) takes the following form in the increment space:

J(δxt)=
1
2 (dt−Hδxt)

TR−1(dt−Hδxt)+
1
2δx

T
t B

−1δxt (4)

At this point, at each time t, the minimum of (4) is obtained

by requiring ∇J = 0. This gives rise to the linear system:

(B−1 +HTR−1H)δxt = HTR−1dt

or equivalently:

(I +BHTR−1H)δxt = BHTR−1dt (5)

For each time t = 0, ..., n, iterative methods, able to converge

toward a practical solution, are needed to solve the linear sys-

tem (5). However this problem, so as formulated, is generally

very ill conditioned. More precisely, by following [15], and

assuming that

Ψ = HTR−1H (6)

is a diagonal matrix, it can be proved that the conditioning of

I +BΨ is strictly related to the conditioning of the matrix B

(the covariance matrix). In general, the matrix B is a block-

diagonal matrix, where each block is related to a single state

of vector xt and it is ill conditioned.

This assertion is exposed in [14] starting from the expression

of B for one-state vectors as:

B = σ2
bC

where σ2
b is the background error variance and C is a matrix

that denotes the correlation structure of the background error.

Assuming that the correlation structure of matrix C is homo-

geneous and depends only on the distance between states and

not on positions, an expression of C as a symmetric matrix

with a circulant form is given; i. e. as a Toeplitz matrix.

By means of a spectral analysis of its eigenvalues, the ill-

conditioning of the matrix C is checked. As in [7], it follows

that B is ill-conditioned and the matrix I +BΨ, of the linear

system (5), too. A well-known technique for improving the

convergence of iterative methods for solving linear systems is

to preconditioning the system and thus reduce the condition

number of the problem.

In order to precondition the system in (5), it is assumed that

B can be written in the form B = VVT , where V = B1/2 is

the square root of the background error covariance matrix B.
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Because B is symmetric Gaussian, V is uniquely defined as

the symmetric (VT = V) Gaussian matrix such that V2 = B.

As explained in [18], the cost function (4) becomes:

J(δxt)=
1
2 (dt−Hδxt)

TR−1(dt−Hδxt)+
1
2δx

T
t (VVT)−1δxt

= 1
2 (dt−Hδxt)

TR−1(dt−Hδxt) +
1
2δx

T
t (V

T)−1V−1δxt

Now, by using a new control variable vt, defined as vt =
V−1δxt, at each time t ∈ T and observing that δxt = Vvt
we obtain a new cost function:

J̃(vt) =
1

2
(dt −HVvt)

TR−1(dt −HVvt) +
1

2
vTt vt. (7)

Equation (7) is said the dual problem of equation (4). Finally,

to minimize the cost function J̃(vt) in (7) leads to the new

linear system:

(I +VΨV)vt = VHTR−1dt (8)

Upper and lower bounds on the condition number of the matrix

I +VΨV are shown in [14]. In particular it holds that:

µ(I +VΨV) << µ(I +BΨ).

Moreover, under some special assumptions, it can be proved

that I +VΨV is very well-conditioned (µ(I +VΨV) < 4).

The OceanVar model

As described in [9], at each time t ∈ T , OceanVar software

implements an oceanographic three-dimensional variational

DA scheme (3D Var-DA) to produce forecasts of ocean

currents for the Mediterranean Sea. The computational kernel

is based on the resolution of the linear system defined in (8).

To solve it, the Conjugate Gradient (CG) method is used and

a basic outline is described in Algorithm 1.

Algorithm 1 CG Algorithm

1: k = 0; x0, the initial guess;

2: r0 = b−Ax0;

3: ρ0 = r0;

4: while
(
‖rk‖/‖b‖ > ǫ .and. k ≤ n

)
do

5: qk = Aρk;

6: αk = (rk, rk)/(ρk,qk); xk+1 = xk + αkρk;

7: rk+1 = rk − αkqk; βk = (rk+1, rk+1)/(rk, rk);

8: ρk+1 = rk+1 + βkρk; k = k + 1;

9: end while

We focus our attention on step 5.: at each iterative step, a

matrix-vector product A ρk is required, where

A = I+VΨV,

ρk is the residual at step k and Ψ depends on the number

of observations and is characterized by a bounded norm (see

[15] for details). More precisely, we look to the matrix-vector

product

qk = (I +VΨV)ρk

which can be schematized as shown in Algorithm 2.

Algorithm 2 (I +VΨV)ρk Algorithm

1: z1 = Vρk;

2: z2 = Ψz1;

3: z3 = Vz2;

4: qk = ρk + z3;

The steps 1. and 3. in Algorithm 2 consist in a matrix-vector

product. These products, as detailed in next section, can be

considered discrete Gaussian convolutions and the matrix V,

for one-dimensional state vectors, has Gaussian structure. Even

for state vectors defined on two (or more) dimensions, the

matrix V can be represented as product of two (or more)

Gaussian matrices. Since a single matrix-vector product of this

form becomes prohibitively expensive if carried out explicitly,

a computational advantage is gained by employing Gaussian

RFs to mimic the required Gaussian convolution operators.

In the previous OceanVar scheme, it was implemented a 1st-

RF algorithm, as described in [21], [20]. Here, we study the

3rd-RF introduction, based on [27], [23].

The aim of the following sections is to precisely reveal how

the n-th order recursive filters are defined and, through the

error analysis, to investigate on their effect in terms of error

estimate and perfomences.

III. GAUSSIAN RECURSIVE FILTERS

In this section we describe Gaussian recursive filters as

approximations of the discrete Gaussian convolution used in

steps 1. and 3. of Algorithm 2. Let denote by

g(x) =
1

σ
√
2π

exp

(
− x2

2σ2

)

the normalized Gaussian function and by V the square matrix

whose entries are given by

Vi,j = g(i− j) =
1

σ
√
2π

exp

(
− (i− j)2

2σ2

)
. (9)

Now let be s0 = (s01, . . . , s
0
m)T a vector; the discrete Gaussian

convolution of s0 is a new vector s = (s1, . . . , sm)T defined

by means of the matrix-vector product

s = V ⊗ s0 ≡ V s0. (10)

The discrete Gaussian convolution can be considered as a dis-

crete representation of the continuous Gaussian convolution.

As is well known, the continuous Gaussian convolution of a

function s0 with the normalized Gaussian function g is a new

function s defined as follows:

s(x) = [g ⊗ s0](x) =

∫ +∞

−∞

g(x− τ)s0(τ)dτ. (11)

Discrete and continuous Gaussian convolutions are strictly

related. This fact could be seen as follows. Let assume that

I = {x1 < x2 < . . . < xm+1}
is a grid of evaluation points and let set for i = 1, . . . ,m

si ≡ s(xi), s0i ≡ s0(xi) and ∆xi = xi+1 − xi = 1.
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By assuming that s0 is 0 outside of [x1, xm+1] and by

discretizing the integral (11) with a rectangular rule, we obtain

si =

∫ +∞

−∞

g(xi − τ)s0(τ)dτ =

∫ xm+1

x1

g(xi − τ)s0(τ)dτ =

=
m∑

j=1

∫ xj+1

xj

g(xi−τ)s0(τ)dτ ≈
m∑

j=1

∆xjg(xi−xj)s
0
j =

=
m∑

j=1

g(i− j)s0j =
m∑

j=1

Vi,js
0
j = (Vs0)i. (12)

An optimal way for approximating the values si is given by

Gaussian recursive filters. The n-order RF filter computes the

vector sK = (sK1 , . . . , sKm)T as follows:




pki = βis
k−1
i +

n∑

j=1

αi,jp
k
i−j i = 1, . . . ,m

ski = βip
k
i +

n∑

j=1

αi,js
k
i+j i = m, . . . , 1

. (13)

The iteration counter k goes from 1 to K, where K is the

total number of filter iterations. Observe that values pk1 , . . . p
k
n

are computed taking in the sums terms αi,jp
k
i−j provided that

i − j ≥ 1. Analogously values skm, . . . skm−n+1 are computed

taking in the sums terms αi,js
k
i+j provided that i + j ≤ m.

The values αi,j and βi, at each grid point xi, are often called

smoothing coefficients and they obey to the constraint

βi = 1−
n∑

j=1

αi,j .

In this paper we deal with first-order and third-order RFs. The

first-order RF expression (n = 1) becomes:




pk1 = β1s
k−1
1 ,

pki = βis
k−1
i + αip

k
i−1 i = 2, . . . ,m

skm = βmpkm,
ski = βip

k
i + αis

k
i+1 i = m− 1, . . . , 1.

(14)

If Ri is the correlation radius at xi, by setting

σi =
Ri

∆xi
and Ei=

K∆x2
i

R2
i

=
K

σ2
i

,

coefficients αi e βi are given by [21]:

αi=1+Ei−
√
Ei(Ei+2), βi=

√
Ei(Ei+2)−Ei. (15)

The third-order RF expression (n = 3) becomes:




pki = βis
k−1
i +

3∑

j=1

αi,jp
k
i−j i = 1, ...,m

ski = βip
k
i +

3∑

j=1

αi,js
k
i+j i = m, . . . , 1.

(16)

Third-order RF coefficients αi,1, αi,2, αi,3 and βi, for one only

filter iteration (K = 1), are computed in [11]. If

ai = 3.738128 + 5.788982σi + 3.382473σ2
i + σ3

i .

the coefficients expressions are:

αi,1 = (5.788982σi + 6.764946σ2
i + 3σ3

i )/ai

αi,2 = −(3.382473σ2
i + 3σ3

i )/ai

αi,3 = σ3
i /ai

βi = 1− (αi,1 + αi,2 + αi,3) = 3.738128/ai.

In [23] the use of a value q = q(σi) instead of σi is proposed.

The q value is:

q(σi) =

{
0.98711σi − 0.96330 if σi > 2.5

3.97156− 4.14554
√
1− 0.26891σi oth.

(17)

In order to understand how Gaussian RFs approximate the

discrete Gaussian convolution it is useful to represent them in

terms of matrix formulation. As explained in [5], the n-order

recursive filter computes sK from s0 as the solution of the

linear system

(LU)KsK = s0, (18)

where matrices L and U are respectively lower and upper band

triangular with nonzero entries

Ui,i = Li,i =
1

βi
, Li,i−j = Ui,i+j = −αi,j

βi
. (19)

By formally inverting the linear system (18) it results

sK = F(K)
n

s0, (20)

where F
(K)
n ≡ (LU)−K . A direct expression of F

(K)
n and

its norm could be obtained, for instance, for the first order

recursive filter in the homogenus case (σi = σ). However, in

the following, it will be shown that F
(K)
n has always bounded

norm, i.e.

‖F(K)
n

‖∞ ≤ 1. (21)

Observe that F
(K)
n is the matrix operator that substitutes the

Gaussian operator V in (10), then a measure of how well sK

approximates s can be derived in terms of the operator distance

‖V − F(K)
n

‖∞.

Ideally one would expect that ‖V − F
(K)
n ‖ goes to 0 (and

sK → s) as K approaches to ∞, yet this does not happen due

to the presence of edge effects. In the next sections we show

the numerical behaviour of the distance ‖V−F
(K)
n ‖ for some

case study and we will show its effects in the CG algorithm.

IV. RF ERROR ANALYSIS

Here we are interested to analyze the error introduced on

the matrix-vector operation at step 5. of Algorithm 1, when

the Gaussian RF is used instead of the discrete Gaussian

convolution. As previously explained, in terms of matrices, this

is equivalent to change the matrix operator, then Algorithm 2

can be rewritten as shown in Algorithm 3.

Now we are able to give the main result of this paper: indeed

the following theorem furnishes an upper bound for the error
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Algorithm 3 (I + F
(K)
n ΨF

(K)
n )ρ̃k Algorithm

1: z̃1 = F
(K)
n ρ̃k;

2: z̃2 = Ψz̃1;

3: z̃3 = F
(K)
n z̃2;

4: q̃k = ρ̃k + z̃3;

qk−q̃k, made at each single iteration k of the CG (Algorithm

1). This bound involves the operator norms

‖F(K)
n

‖∞, ‖Ψ‖∞, ‖V‖∞,

the distance ‖V−F
(K)
n ‖∞ and the error ρk− ρ̃k accumulated

on ρk at previous iterations.

Theorem 4.1: Let be ρk, ρ̃k, qk, q̃k as in Algorithm 2 and

Algorithm 3. Let be ‖ · ‖ = ‖ · ‖∞ and let denote by

ek = ρk − ρ̃k

the difference between values ρk and ρ̃k. Then it holds

‖qk − q̃k‖ ≤ (1 + ‖V‖·‖Ψ‖·‖V‖)·‖ek‖+

+‖F(K)
n

−V‖·‖Ψ‖·
(
‖V‖+‖F(K)

n
‖
)
·‖ρ̃k‖. (22)

Proof: A direct proof follows by using the values zi and z̃i
introduced in Algorithm 2 and in Algorithm 3. It holds:

‖z1−z̃1‖=‖Vρk−F(K)
n

ρ̃k‖=‖Vρk−Vρ̃k+Vρ̃k−F(K)
n

ρ̃k‖≤
≤ ‖Vρk−Vρ̃k‖+‖Vρ̃k−F(K)

n
ρ̃k‖≤

≤ ‖V‖ · ‖ek‖+ ‖V − F(K)
n

‖ · ‖ρ̃k‖.
Then, for the difference z2 − z̃2, we get the bound

‖z2 − z̃2‖ = ‖Ψz1 −Ψz̃1‖ ≤ ‖Ψ‖ · ‖z1−z̃1‖ ≤
≤ ‖Ψ‖ · ‖V‖ · ‖ek‖+ ‖Ψ‖ · ‖V − F(K)

n
‖ · ‖ρ̃k‖.

Hence, for the difference z3 − z̃3, we obtain

‖z3−z̃3‖=‖Vz2−F(K)
n

z̃2‖=‖Vz2−Vz̃2+Vz̃2−F(K)
n

z̃2‖≤
≤ ‖V‖ · ‖z2 − z̃2‖+ ‖V − F(K)

n
‖ · ‖z̃2‖ ≤

≤ ‖V‖·‖z2−z̃2‖+‖V−F(K)
n

‖·‖Ψ‖·‖F(K)
n

‖ · ‖ρ̃k‖ ≤
≤ ‖V‖·‖Ψ‖·‖V‖·‖ek‖+‖V‖·‖Ψ‖·‖V−F(K)

n
‖·‖ρ̃k‖

+‖V−F(K)
n

‖·‖Ψ‖·‖F(K)
n

‖ · ‖ρ̃k‖ =

‖V‖·‖Ψ‖·‖V‖·‖ek‖+‖V−F(K)
n

‖·‖Ψ‖
(
‖V‖+‖F(K)

n
‖
)
·‖ρ̃k‖

In the second-last inequality we used the fact that

‖z̃2‖ = ‖Ψz̃1‖ = ‖ΨF(K)
n

ρ̃k‖ ≤ ‖Ψ‖ · ‖F(K)
n

‖ · ‖ρ̃k‖.
Finally, observing that

‖qk − q̃k‖ = ‖ρk + z3 − (ρ̃k + z̃3)‖ ≤
≤ ‖ρk − ρ̃k‖+ ‖z3 − z̃3‖ = ‖ek‖+ ‖z3 − z̃3‖,

and taking the upper bound of ‖z3− z̃3‖, the thesis is proved.

⋄
Previous theorem shows that, at each iteration of the CG

algorithm, the error bound on the computed value qk at step

5., is characterized by two main terms: the first term can be

considered as the contribution of the standard forward error

analysis and it is not significant, if ‖ek‖ is small; the second

term highlights the effect of the introduction of the RF. More in

detail, at each iteration step, the computed value qk is biased

by a quantity proportional to three factors:

• the distance between the original operator (the Gaussian

operator V) and its approximation (the operator F
(K)
n );

• the norm of Ψ;

• the sum of the operator norms ‖F(K)
n ‖ and ‖V‖.

Table 1: Operator norms

σ ||F(1)
1

||∞ ||F(1)
3

||∞
5 0.9920 0.9897

20 0.9012 0.8537

50 0.9489 0.8950

As shown in (21) the norm Ψ is bounded. Besides, the norm

of V is always less or equal to one (because it comes from the

discretization of the of the continuous Gaussian convolution).

The norm of F
(K)
n is bounded by one too. This fact can be seen

by observing the Table 1, where we consider several tests by

varying data distributions in the homogeneous case (σi = σ),

for 1st-RF and 3rd-RF. Starting from these considerations, the

error estimate of Theorem 4.1 can be specialized as:

‖qk − q̃k‖ ≤ (1+‖Ψ‖) ‖ek‖+ 2‖F(K)
n

−V‖ · ‖Ψ‖‖ρ̃k‖. (23)

V. EXPERIMENTAL RESULTS

In this section we report some experiments to confirm the

discussed theoretical results. In the first part, we deal with the

approximations of the discrete operator V with the first order

and of the third order F
(K)
1

and F
(1)
3

respectively. In the last

subsection, we analyze the improving in the performance and

in the accuracy terms of the third order RF applied to the case

study.

A. 1st-RF and 3rd-RF operators

In the following experiments, we construct the operators V,

F
(1)
1

, F
(50)
1

and F
(1)
3

in the case of m = 601 samples of a

random vector s0. We assume that s0 comes from a uniform

grid with homogeneous condition σi = σ = 15. In Figure

1, it is highlighted that the involved discrete operators have

different structures. In particular, a first qualitative remark

is that the operator F
(1)
1

is a poor approximation of V.

Conversely, the operator F
(50)
1

(Figure 2 on the top) is very

close to V but, as for F
(1)
1

, there are significant differences

with V in the bottom left and in the top right corners. These

dissimilarities in the edges, by a numerical point of view,

give some kind of artifacts in the computed convolutions, that

determine a vector s with components, in the initial and final

positions, that decay to zero.

Figure 2 bottom shows that the operator F
(1)
3

is closer then

F
(1)
1

and F
(50)
1

to the discrete convolution V. In particular,

this recursive filter is able to reproduce V more accurately in

the bottom left corner, but unfortunately it does not give good
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Discrete Convolution Operator V

1−st order filter F
1

(1)

Fig. 1. Top. Discrete Gaussian convolution operator V. Bottom. 1-st
order recursive filter operator F1

results on top right corner. In Table 2, for random distributions

with homogeneous condition (σi = σ), we underline the

edge effects by measuring the norms between the discrete

convolution V and the RF filters. Although the ||F(K)
n −V||∞

ideally goes to zero as k goes to +∞, this does not happen

in practice as observed below.

Table 2: Distance metrics

σ ||F(1)
1

−V||∞ ||F(50)
1

−V||∞ ||F(1)
3

−V||∞
5 0.2977 0.3800 0.5346

10 0.3895 0.4397 0.5890

25 0.4533 0.4758 0.6221

50 0.4686 0.4809 0.6125

In order to bring out these considerations, we show the

application of V, F
(K)
1

and F
(1)
3

to a periodic signal s0. We

choose m = 252 samples of the cos function in [−2π, 2π]
and we perform simulations by using the 1-st RF with 1, 5
and 50 iterations and 3-rd RF with one iteration. In Figure

3 it is shown the computed Gaussian convolution and the

poor approximation of Vs0 on the right side of the test

1−st order filter F
1

(50)

3−rd order filter F
3

(1)

Fig. 2. Top. 1-st order recursive filter operator F
(50)
1 with 50

iterations. Bottom. 3-rd order recursive filter operator F
(1)
3

interval, due to the edge effects. A nice result is that our F
(1)
3

convolution operator gives better results on the left side of

the domain.

Finally, we give some considerations about the accuracy of

the studied Gaussian RF schemes, when they are applied to

the Dirac rectangular impulse

s0 = (0, . . . , 0, 1, 0, . . .).

We choose a one-dimensional grid of m = 301 points, a

constant correlation radius R = 120, km , a constant grid

space ∆x = 6 km and σ = R/∆x = 20. In the numerical

experiments to avoid the edge effects, we only consider

m̄ = 221 central values of sK , i.e.

s̄K = (sK2σ, s
K
2σ+1, . . . , s

K
m−2σ−1, s

K
m−2σ).

Similarly, in Table 3 we measure the operator distances we

use ||F̄(1)
1

− V̄||∞ and ||F̄(1)
3

− V̄||∞, where V̄ , F̄
(1)
1 and

F̄
(1)
3 indicate the submatrices obtained, neglecting first and

last 2σ − 1 rows and columns.

592 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



−8 −6 −4 −2 0 2 4 6 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

V

F
1

F
(5)

1

F
(50)

1

F
3

Fig. 3. Discrete convolution V and Gaussian recursive filtering F
(K)
1

with 1, 5, 50 iterations and F
(1)
3

applied to n = 252 samples of the
periodic function s0 = cos(x) in [−2π, 2π].

Table 3: Convergence history

K ||F̄(K)
1

− V̄||∞ ||F̄(K)
3

− V̄||∞
1 0.211 0.0424

2 0.13 –

5 0.078 –

50 0.048 –

100 0.0429 –

500 0.0414 –

These case studies show that , neglecting the edge effects,

the 3-rd RF filter is more accurate the the 1st-RF order with

few iterations. This fact is evident by observing the results

in Figure 4 and the operator norms in Table 3. Finally, we

remark that the 1-st order RF has to use 100 iteration in order

to obtain the same accuracy of the 3-rd order RF. This is a

very interesting numerical feature of the third order filter.

B. A case study: Ocean Var

The theoretical considerations of the previous sections are

useful to understand the accuracy improvement in the real

experiments on Ocean Var. The preconditioned CG is a nu-

merical kernel intensively used in the model minimizations.

Implementing a more accurate convolution operators gives

benefits on the convergence of GC and on the overall data

assimilation scheme [11] . Here we report experimental results

of the 3rd-RF in a Global Ocean implementation of OceanVar

that follows [22], [12]. These results are extensively discussed

in the report [11]. In real scenarios [4], [10], scientific libraries

and high performance computing environments are needed.

The case study simulations were carried-out on an IBM cluster

using 64 processors. The model resolution was about 1/4
degree and the horizontal grid was tripolar, as described in

[19]. This configuration of the model was used at CMCC

for global ocean physical reanalyses applications (see [13]).

The model has 50 vertical depth levels. The three-dimensional

Fig. 4. Top. The discrete Gaussian convolution Vs0 (blue) and

F
(K)
1

s0 for K = 1, 5, 10 (red). Bottom The discrete Gaussian

convolution Vs0 (blue) and F
(1)
3

s0 (red).

model grid consists of 736141000 grid-points. The comparison

between the 1st-RF and 3rd-RF was carried out for a realistic

case study, where all in-situ observations of temperature and
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salinity from Expendable bathythermographs (XBTs), Con-

ductivity, Temperature, Depth (CTDs) Sensors, Argo floats and

Tropical mooring arrays were assimilated. The observational

profiles are collected, quality-checked and distributed by [3].

The global application of the recursive filter accounts for

spatially varying and season-dependent correlation length-

scales (CLSs). Correlation length-scale were calculated by

applying the approximation given in [2] to a dataset of monthly

anomalies with respect to the monthly climatology, with inter-

annual trends removed.
The obtained performances of a 3Dvar application that uses

the 1st-RF with 1, 5 and 10 iterations and the 3rd-RF are

shown in Figure 5 with a zoom in the same area of Western

Pacific Area as in Figure 5, for the temperature at 100 m

of depth. The Figure also displays the differences between

the 3rd-RF and the 1st-RF with either 1 or 10 iterations.

The patterns of the increments are closely similar, although

increments for the case of 1st-RF (K=1) are generally sharper

in the case of both short (e.g. off Japan) or long (e.g. off

Indonesian region) CLSs. The panels of the differences reveal

also that the differences between 3rd-RF and the 1st-RF

(K=10) are very small, suggesting once again that the same

accuracy of the 3rd-RF can be achieved only with a large

number of iterations for the first order recursive filter. Finally,

in [12] was also observed that the 3rd-RF compared to the

1st-RF (K=5) and the 1st-RF (K=10) reduces the wall clock

time of the software respectively of about 27% and 48%.

VI. CONCLUSIONS

Recursive Filters (RFs) are a well known way to appro-

ximate the Gaussian convolution and are intensively applied

in the meteorology, in the oceanography and in forecast

models. In this paper, we deal with the oceanographic 3D-Var

scheme OceanVar. The computational kernel of the OceanVar

software is a linear system solved by means of the Conjugate

Gradient (GC) method. The iteration matrix is related to an

error covariance matrix, with a Gaussian correlation structure.

In other words, at each iteration, a Gaussian convolution is

required. Generally, this convolution is approximated by a first

order RF. In this work, we introduced a 3rd-RF filter and we

investigated about the main sources of error due to the use of

1st-RF and 3rd-RF operators. Moreover, we studied how these

errors influence the CG algorithm and we showed that the

third order operator is more accurate than the first order one.

Finally, theoretical issues were confirmed by some numerical

experiments and by the reported results in the case study of

the OceanVar software.
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Fig. 5. Analysis increments of temperature at 100 m of depth for the Western Pacific for different configurations of the recursive filter (first
two rows of panels). Differences of 100 m temperature analysis increments between 3rd-RF and 1st-RF (K=1) and between 3rd-RF and
1st-RF (K=10) (bottom panels).
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