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Institute of Mathematics

Maria Curie Skłodowska University
Pl. M. Curie-Skłodowskiej 5

20-031 Lublin, Poland
Email: kamil.pawel.powroznik@gmail.com

Abstract—Let H = (V (H), E(H)) be a simple connected
graph of order n with the vertex set V (H) and the edge set
E(H). We consider a blow-up graph G[H ].

We are interested in the following problem. We have to decide
whether there exists a blow-up graph G[H ], with edge densities
satisfying special conditions (homogeneous or inhomogeneous),
such that the graph H does not appear in a blow-up graph as a
transversal.

We study this problem for unicyclic graphs H with the cycle
C3. We show an efficient algorithm to decide whether a given
set of edge densities ensures the existence of H in the blow-up
graph G[H ].

Index Terms—blow-up graph; density; Turán density problem;
unicyclic graph.

I. INTRODUCTION

T
URÁN [10] stated the first results in extremal graph
theory. Then many authors extended this subject and

formulated similar and new Turán density problems. [1], [3],
[4], [6], [8], [9] and [11] obtained interesting results for some
families of graphs.

In this paper we present an algorithm for testing whether a
unicyclic graph with a given set of edge densities is a factor
(transversal) of a blow-up graph. Our algorithm has the time
complexity at most O(n2), where n is the number of vertices
of the unicyclic graph.

Csikvári and Nagy [5] discovered some interesting algo-
rithm for testing whether a tree with a given set of edge
densities is a factor of a blow-up graph. We extend their
algorithm to the family of unicyclic graphs with the cycle C3.

Now we define some notions and notations. Other defini-
tions one can find in [2] and [7].

Let H = (V (H), E(H)) be a simple connected graph of
order n with the vertex set V (H) and the edge set E(H).
By Pk we denote the path with k vertices. By Ck we denote
the cycle with k vertices. The set S ⊂ V (H) is called an

independent vertex set if the subgraph of H induced by S has
empty set of edges.

Let

NH(v) = {x ∈ V (H) | {v, x} ∈ E(H)}

be the neighbourhood of the vertex v ∈ V (H) in the graph
H . |NH(v)| is called the degree of v in V (H). Each vertex
of degree 1 in a graph H is called a leaf of the graph H .

We say that the graph H is r-regular if each vertex of H

has degree r. The set M ⊂ E(H) is called the matching (or
independent edge set) in the graph H if the subgraph of H

induced by M is 1-regular.
For a connected graph H we define a blow-up graph G[H ]

of the graph H as follows. First we replace each vertex i ∈
V (H) by an independent set of vertices Ai. Throughout this
paper Ai is called a cluster. Next we connect vertices between
the clusters Ai and Aj if i and j are adjacent in H , i, j ∈
V (H). The graph induced by Ai ∪Aj in G[H ] is a subgraph
of a complete bipartite graph. See Fig. 2 and Fig. 3 which
present examples of a blow-up graphs G[H ] of the graph H

presented in Fig. 1.
For any two clusters we define the density between them

by the following formula

d(Ai, Aj) =
e(Ai, Aj)

|Ai||Aj |
,

where e(Ai, Aj) denotes the number of edges between the
clusters Ai and Aj .

The graph H is a transversal of G[H ] if H is a subgraph
of G[H ] such that we have a homomorphism

φ : V (H) → V (G[H ])

for which φ(i) ∈ Ai for all i ∈ V (H). Other terminology: H
is a factor of G[H ]. An edge e = {i, j} of the graph H we
denote by e = ij.

The density Turán problem can be defined as follows.
Let us determine the critical edge density, denoted by dcrit,
which ensures the existence of the subgraph H of G[H ] as a
transversal. Precisely, assume that all edges e = {i, j} in the
graph H satisfy the condition

d(Ai, Aj) > dcrit,

where i, j ∈ V (H). Then, no matter how we construct the
blow-up graph G[H ], it contains the graph H as a transversal.

Proceedings of the 2014 Federated Conference on
Computer Science and Information Systems pp. 479–486

DOI: 10.15439/2014F297
ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 479



Fig. 1. The graph H ∈ Un,3 with the vertex set V (H) = {x, y, z, v}.

On the other words, for any value d < dcrit there exists a
blow-up graph G[H ] such that

d(Ai, Aj) > d

for all edges ij ∈ E(H) and it does not contain H as a
transversal. This problem was studied in [9].

By [5] we know that it is useful to consider more general
problem. Let us assume that for every edge e ∈ E(H) a
density γe is given. Now our task is to decide if the set of
densities {γe}e∈E(H) ensure the existence of the graph H as
a transversal or we can construct a blow-up graph G[H ] such
that

d(Ai, Aj) ≥ γij ,

but it does not induce the graph H as a transversal. This more
general setting allows to use inductive proofs (see the proof of
Theorem 7). We call this general case as the inhomogeneous

condition on the edge densities, while the above condition of
having a common lower bound dcrit(H) for densities is called
the homogeneous case.

Let Un,p be a family of unicyclic graphs of order n with the
cycle Cp. The path P2 and the cycle C3 are trivial unicyclic
graphs for further considerations. In this paper we study the
inhomogeneous density Turán problem for unicyclic graphs in
the family Un,3, i.e. with the unique cycle C3 (see Fig. 1).

Fig. 2 and Fig. 3 present two blow-up graphs G1[H ] and
G2[H ] of the graph H presented in Fig. 1. In both cases we
have the following values of the densities between clusters

d(Ax, Ay) = d(Ay , Az) =
3

20
,

d(Ax, Av) =
3

16
,

d(Ay , Av) =
1

10
.

Let us recall the definition of the multivariate matching

polynomial of the graph. The polynomial is the useful tool
for the proof of our results.

Definition 1. Let H be a graph and let xe be the vector of

variables xe, e ∈ E(H). We define the multivariate matching

polynomial FH of the graph H as follows

FH(xe, t) =
∑

M∈M

(

∏

e∈M

xe

)

(−t)|M|,

Fig. 2. An example of the blow-up graph G[H] of the graph H presented
in Fig. 1 with a transversal H .

Fig. 3. An example of the blow-up graph G[H] of the graph H presented
in Fig. 1 without a transversal H .

where the summation goes over all matchings of the graph H ,

including the empty matching.

Fig. 4 and Fig. 5 present the paths P2, P4 and the unicycle
graph H ∈ U6,3 with variables xe assigned to each edge.

Fig. 4. Paths P2 and P4 with variables xe assigned to each edge.

Fig. 5. Graph H ∈ U6,3 with variables xe assigned to each edge.

By definition of the multivariate matching polynomial we
have

FP2
(xe, s) = 1− sx1,

FP4
(xe, s) = 1− s(x1 + x2 + x3) + s2x1x3,

FH(xe, s) = 1− s(x1 + x2 + x3 + x4 + x5 + x6)+

s2(x1x4 + x1x5 + x1x6 + x2x6 + x3x6 + x4x6)− s3x1x4x6.
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II. SOME RESULTS FOR THE HOMOGENEOUS CASE

For the completness of this paper we present some results
for the homogeneous Turán density problem in this section.
For this case Nagy [9] presented the following lower and upper
bounds for the critical density dcrit.

Theorem 1 (Nagy [9]). For a graph H we have
(

1−
1

∆(H)

)

≤ dcrit(H) ≤

(

1−
1

∆2(H)

)

,

where ∆(H) is the maximal degree of H .

Then Csikvári and Nagy [5] improved the upper bound.

Theorem 2 (Csikvári and Nagy [5]). Let ∆(H) be the largest

degree of the graph H . Then we have

dcrit(H) ≤ 1−
1

e(2∆(H)− 1)
,

where e is the base of the natural logarithm.

Now let us recall the definition of the matching polynomial

of the graph.

Definition 2. Let H be a weighted graph with constant weight

function w(e) = 1 for all edges e ∈ E(H). Then the matching

polynomial is defined as

M(H, t) =

n/2
∑

k=0

(−1)kmk(H)tn−2k,

where mk(H) denotes the number of k independent edges in

the graph H .

Using this polynomial Csikvári and Nagy [5] stated the
upper bound for the critical density as in Theorem 3.

Theorem 3 (Csikvári and Nagy [5]). Let ∆(H) be the largest

vertex degree in the graph H and let t(H) be the largest root

of the matching polynomial. Then we have

dcrit(H) ≤ 1− 1
(t(H))2 .

In particular,

dcrit(H) < 1−
1

4(∆(H)− 1)
.

What is more Nagy [9] showed the exact value of the critical
density for trees.

Theorem 4 (Nagy [9]). Let T be a tree. Then we have

dcrit(T ) = 1−
1

λ2
max(T )

,

where λmax(T ) is the maximum eigenvalue of the adjacency

matrix of the tree.

Furthermore, Nagy [9] showed that for the cycle of order n
and for the path of order n+1 the critical densities are equal.

Theorem 5 (Nagy [9]). Let Cn be a cycle on n vertices and

Pn+1 be a path on n+ 1 vertices. Then we have

dcrit(Cn) = dcrit(Pn+1) = 1−
1

4 cos2 π
n+2

.

We formulate the followig open problem.
Open problem: count the critical density dcrit(H) for H ∈

Un,p, p ≥ 3.

III. INHOMOGENEOUS CASE: UNICYCLIC GRAPHS WITH

THE CYCLE C3

In this section we study the inhomogeneous case when
graph H ∈ Un,3, e.i. H is unicyclic with the cycle C3 and
for each edge e ∈ E(H) the edge density γe is given. We
extend some results presented in [5], where authors studied
the inhomogeneous case for trees and proved the following
theorem.

Theorem 6. (Csikvári, Nagy [5]) Let T be a tree of order n

and let v be a leaf of T . Assume that for each edge of T a

density γe = 1−re is given. Let T
′

be a tree obtained from T

by deleting the leaf v and the edge uv, where u is the unique

neighbour of v. Let the edge densities γ
′

e in T
′

be defined as

follows

γ
′

e =











γe = 1− re, if e is not incident to u,

1− re
1−ruv

, if e is incident to u.

Then the set of densities {γe}e∈E(T ) ensures the existence

of the factor T if and only if all γ
′

e ∈ (0, 1] and the set of

densities {γ
′

e}e∈E(T ′) ensures the existence of the factor T
′

.

Theorem 6 provides authors of [5] with an efficient al-
gorithm to decide whether a given set of edge densities in
tree ensures the existence of a transversal or does not ensure.
Their algorithm is presented below as Algorithm T for the
completeness of our paper.

We extend the algorithm (Algorithm T ) to the family
of unicyclic graphs with the cycle C3. The new algorithm
(Algorithm Un,3) is based on the following Theorem 7 proved
below by an extension of the method discovered in [5].

Theorem 7. Let H ∈ Un,3 be a unicyclic graph of order n

with the cycle C3 and assume that for each edge e ∈ E(H)
a density γe = 1 − re is given. If the order of H is greater

then 3, let v be a leaf of H and u be the unique neighbour

of v, then let H
′

be a graph obtained from H by deleting the

leaf v and an edge uv. Let the densities γ
′

e in H
′

be defined

as follows

γ
′

e =











γe = 1− re, if e is not incident to u,

1− re
1−ruv

, if e is incident to u.

If the order of H is equal to 3 (i.e., H is isomorphic to C3

with V (H) = {a, b, c}), then let H
′

be a graph obtained from

H by deleting the vertex a and edges ab and ac. H
′

is a path

Pbc. Let the density γ
′

bc in H
′

be defined as follows

γ
′

bc = 1−
rbc

(1− rab)(1− rac)
.
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Algorithm T

Step 0.

Let there be given a tree T 0 and edge densities γ0
e . Set T := T 0 and re = 1− γ0

e .

Step 1.

Consider (T, re).

• if |V (T )| = 2 and 0 ≤ re < 1 then

STOP: the densities γ0
e ensure the existence of a factor T 0.

• if |V (T )| ≥ 2 and there exists an edge for which re ≥ 1 then

STOP: the densities γ0
e do not ensure the existence of a factor T 0.

Step 2.

if |V (T )| ≥ 3 and 0 ≤ re < 1 for all edges e ∈ E(T ) then

DO pick a vertex v of degree 1 and let u be its unique neighbour. Let T
′

:= T − v and

r
′

e =











re, if e is not incident to u,

re
1−ruv

, if e is incident to u.

Jump to Step 1 with (T, re) := (T
′

, r
′

e).

Then the set of densities {γe}e∈E(H) ensures the existence

of the factor H if and only if all γ
′

e ∈ (0, 1] and the set of

densities {γ
′

e}e∈E(H′ ) ensures the existence of the factor H
′

.

Proof. Let H ∈ Un,3 and let the set of densities γe = 1− re
be given for each e ∈ E(H). First we prove the following
statement: if all γ

′

e are indeed densities and they ensure the
existence of a factor H

′

, then the original densities γe ensure
the existence of a factor H .

Let G[H ] be a blow-up of the graph H such that the density
between Ai and Aj is at least γij , where Ai is a cluster of
the vertex i ∈ V (H). We show that it contains a factor H .

Let us consider a graph H ∈ Un,3 with n > 3 vertices.
Let v, u ∈ V (H), where v is a leaf of H and u ∈ NH(v).
Define Rv,u as the subset of Au in the following way (see

Fig. 6).

Rv,u = {x ∈ Au | x is incident to some edge between

Au and Av}.

Note that

|Rv,u||Av| ≥ e(Rv,u, Av) = γuv|Au||Av|.

Hence
|Rv,u| ≥ γuv|Au|.

Now we show the lower bound for the number of edges
incident to Rv,u. Let k ∈ NH(u). By the inclusion - exclusion

Fig. 6. Clusters Av and Au with the set Rv,u.

formula we count the lower bound for the number of edges
between Rv,u and Ak as follows.

e(Rv,u, Ak) ≥ e(Au, Ak)− (|Au| − |Rv,u|)|Ak| =

|Rv,u||Ak|+ (γku − 1)|Ak||Au| ≥

|Rv,u||Ak|+ (γku − 1)
1

γuv
|Rv,u||Ak| =

(

1−
rku

1− ruv

)

|Rv,u||Ak| = γ′
ku|Rv,u||Ak|.

Now, by deleting the vertex set Av and Au\Rv,u from
G[H ], we obtain a graph which is a blow-up of H

′

with edge
densities ensuring the existence of the factor H

′

.
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Fig. 7. Clusters Aa, Ab and Ac with the sets Ra,b and Ra,c.

Moreover, by the definition of Rv,u the factor H
′

can be
extended to a factor H .

Now consider the situation when n = 3 and graph H is a
cycle C3 with the vertex set {a, b, c}. Let Aa be a cluster of
vertex a. Define sets Ra,b and Ra,c in the following way (see
Fig. 7).

Ra,b = {x ∈ Ab | x is incident to some edge between

Ab and Aa},

Ra,c = {x ∈ Ac | x is incident to some edge between

Ac and Aa}.

Note that

|Rb||Aa| ≥ e(Rb, Aa) = γab|Aa||Ab|,

|Rc||Aa| ≥ e(Rc, Aa) = γac|Aa||Ac|.

Hence we have the following lower bounds for the cardi-
nalities of Ra,b and Ra,c

|Ra,b| ≥ γab|Ab|

and
|Ra,c| ≥ γac|Ac|.

Next we show how many edges are incident to Ra,b and
Ra,c. Using the inclusion - exclusion formula we count the
lower bound for the number of edges between Ra,b and Ra,c

e(Ra,b, Ra,c) ≥ e(Ab, Aa)− (|Ab| − |Ra,b|)|Ac|−

(|Ac| − |Ra,c|)|Ab|+ (|Ab| − |Ra,b|)(|Ac| − |Ra,c|) =

|Ra,b||Ra,c|+ (γbc − 1)|Ab||Aa| ≥

|Ra,b||Ra,c|+ (γbc − 1)
1

γab

1

γac
|Ra,b||Ra,c| =

(

1−
rbc

(1− rab)(1 − rac)

)

|Ra,b||Ra,c| = γ
′

bc|Ra,b||Ra,c|.

Now, by deleting the vertex sets Aa, Ab\Ra,b and Ac\Ra,c

from G[C3], we obtain a graph which is a blow-up of C
′

3 = P2,
V (P2) = {b, c}, with edge densities ensuring the existence of

Fig. 8. We assume that G
′

[H
′

] is without transversal H
′

. The construction
of the blow-up graph G[H] without transversal H for the case where v is a
leaf in H and H

′

= H−v. The cluster A
′

u is in G
′

[H
′

]. Let Au = A
′

u∪u∗

and Av = {v} be clusters in G[H].

Fig. 9. We assume that G
′

[H
′

] is without transversal H
′

. The construction
of the blow-up graph G[H] without transversal H for the case where c is
a vertex of C3, V (C3) = {a, b, c} in H and H

′

= H − c. The clusters
A

′

a and A
′

b
are in G

′

[H
′

]. Let Aa = {a∗} ∪ A
′

a, Ab = {b∗} ∪ A
′

b
and

Ac = {c} be clusters in G[H].

the factor P2. Moreover, by the definition of Ra,b and Ra,c

the factor P2 can be extended to a factor C3.
Note that if

γ
′

ku < 0,

then
γku + γuv < 1.

So there exists a construction which does not induce the path
P3 with the consecutive vertices k, u, v, where i ∈ Ai (i ∈
{k, u, v}) in this case. Therefore, if some γ

′

ku < 0 then there
exists a construction for a blow-up graph of H without a factor
of H .

Next assume that all the γ
′

e are proper densities, but there
is a construction of a blow-up graph, say G

′

[H
′

], with edge
densities at least γ

′

e, but which does not induce a factor
H

′

. Thus we construct a blow-up G[H ] of the graph H not
inducing H . We consider two possible cases. First let the
picked vertex v be a leaf in H and H

′

= H − v. Then set
Au = {u∗}∪A

′

u and Av = {v}. We connect v to all elements
of A

′

u but do not connect to u∗ without changing densities in
G

′

[H
′

] and with density γvu (see Fig. 8).
Now let H

′

= H − c, where c is a vertex of C3, V (C3) =
{a, b, c}. Then set Aa = {a∗} ∪ A

′

a, Ab = {b∗} ∪ A
′

b and
Ac = {c}. We connect c to all elements of A

′

a and A
′

b but do
not connect to a∗ and b∗ without changing densities in G

′

[H
′

]
and with densities γca and γcb (see Fig. 9).
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Theorem 7 provides us with the algorithm (Algorithm Un,3)
to decide whether a given set of edge densities ensures the
existence of a transversal H in a blow-up graph G[H ] or does
not ensure, where H ∈ Un,3.

For further considerations recall some results presented in
papers [3] and [5]. First lemma gives condition on edge
densities in the triangle C3 which allows us to check if these
densities ensure existing of C3 in a blow-up graph G[C3]. The
second results gives condition on existing graph H as a factor
in a blow-up graph G[H ] in terms of the multivariate matching
polynomial FH .

Lemma 1. (Bondy, et al. [3]) Let α, β, γ be the edge densities

between the clusters of a blow-up graph of the triangle - a

cycle C3. If

αβ + γ > 1, βγ + α > 1, γα+ β > 1,

then the blow-up graph contains a triangle as a transversal.

Theorem 8. (Csikvári, Nagy [5]) Assume that for the graph

H we have

FH(re, t) > 0

for all t ∈ [0, 1] and some vector re of weights, where re ∈
[0, 1] for each edge e ∈ E(H). Then the densities γe = 1− re
ensure the existence H as a transversal.

Let H := C3 with vertices a, b, c and edge densities γe =
1− re, where e ∈ {ab, bc, ac}. Assume that all re ∈ [0, 1) and
run the Algorithm Un,3 by deleting vertex a from the graph
C3 with edges incident to it (means ab and ac). As a result
we get a graph H

′

as a path P2 = bc with edge density

γ′
bc = 1− r′bc = 1−

rbc

(1− rab)(1− rac)
.

For H
′

we have

FH′ (re, t) = 1− tr′bc.

By Theorem 8 we need

FH′ (re, t) > 0

for t ∈ [0, 1].
Hence

1

r′bc
> 1,

(1 − rab)(1 − rac)− rbc > 0

and
γabγac + γbc > 1.

Similar inequalities are received when, instead of a vertex a,
we delete in Algorithm Un,3 vertex b or c. As we can see
we have a result presented in Proposition 1 consensual with
Lemma 1.

Proposition 1. Let a, b, c be vertices in a triangle C3. Assume

that γe = 1 − re be an edge density assigned to each edge

e ∈ E(C3), where E(C3) = {ab, ac, bc}. If

rab

(1 − rac)(1− rbc)
< 1,

rac

(1− rab)(1 − rbc)
< 1

and
rbc

(1− rab)(1 − rac)
< 1,

then the set of densities {γe}e∈E(C3) ensures existence of a

transversal C3 in a blow-up graph G[C3].

By running Algorithm Un,3 on some unicyclic graph H ∈
Un,3 with γe = 1 − tre and using the multivariate matching
polynomial FH(re, s) we can prove the following lemma.

Lemma 2. Let H be a weighted unicyclic graph of order

n > 2 with the cycle C3. Let γe = 1−tre be densities assigned

to each edge e ∈ E(H), where re ∈ [0, 1). Assume that after

running Algorithm Un,3 we get a cycle C3 with

FC3
(re, t) = 0,

then t is a root of the multivariate matching polynomial

FH(re, s) of the graph H .

Proposition 2. Let H be a weighted unicyclic graph of order

n > 2 with the cycle C3. Let γe = 1 − tre be the densities

assigned to each edge e ∈ E(H). Assume that after running

Algorithm Un,3 we get a cycle C3 with the vertex set V (C3) =
{a, b, c} and with FC3

(re, t) = 0 and, after restart Algorithm

Un,3, we get a path P2 (by deleting the vertex a and edges

ab, ac), then

FP2
(r

′

e, s) =
t2rabrac + trbc

(1− trab)(1 − trac)
− s

trbc

(1− trab)(1− trac)
.

Proof. Assume that after running Algorithm Un,3 we get a
cycle C3 with edge densities γe = 1 − tre. Let V (C3) =
{a, b, c} and rab, rac, rbc ∈ [0, 1). The multivariate matching
polynomial

FC3
(re, s) = 1− s(rab + rac + rbc)

has exactly one root

t =
1

(rab + rac + rbc)
.

By deleting vertex a from the cycle C3 with the edges eab =
ab and eac = ac we obtain a path P2 = bc. By Theorem 7 we
get that

FP2
(r

′

e, s) = 1− sr
′

bc = 1− s
trbc

(1 − trab)(1 − trac)
.

By multiplying both sides by

(1 − trab)(1 − trac)

we have
(1− trab)(1− trac)FP2

(r
′

e, s) =

(1− trab)(1 − trac)− strbc =

1− t(rab + rac + rbc) + trbc+ t2rabrac − strbc.

So

(1− trab)(1− trac)FP2
(r

′

e, s)− t2rabrac − trbc + strbc =

FC3
(re, t) = 0.
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Algorithm Un,3

Input: a unicyclic graph H ∈ Un,3 with the set of edge densities {γe}e∈E(H).

Output: a boolean value

D =











TRUE, the densities γe ensure the existence of a factor H,

FALSE, the densities γe does not ensure the existence of a factor H.

Consider a weighted graph (H, re), where re = 1− γe.

Step 1.

• if |V (H)| = 2 (means H is a path P2) and 0 ≤ re < 1 then

STOP: D :=TRUE.

• if |V (H)| ≥ 2 and there exists an edge for which re ≥ 1 then

STOP: D :=FALSE.

Step 2.

• if |V (H)| = 3 (means H is a cycle C3) and 0 ≤ re < 1 for all edges e ∈ E(H) then

pick a vertex c of the graph H and let a, b be its neighbours. Let H
′

:= H − c and

r
′

ab =
rab

(1− rac)(1− rbc)
.

• if |V (H)| > 3 and 0 ≤ re < 1 for all edges e ∈ E(H) then

pick a vertex v of degree 1 and let u be its unique neighbour. Let H
′

:= H − v and

r
′

e =











re, if e is not incident to u,

re
1−ruv

, if e is incident to u.

Go to Step 1 with (H, re) := (H
′

, r
′

e).

Hence

FP2
(r

′

e, s) =
t2rabrac + trbc

(1 − trab)(1 − trac)
− s

trbc

(1− trab)(1− trac)
.

By the definition of FP2
(r

′

e, s) we have

t2rabrac + trbc

(1 − trab)(1 − trac)
= 1

and
t(rac + rab + rbc) = 1.

Note that if

γ
′

bc = 1−
trbc

(1− trab)(1− trac)
= 0,

then

trbc = (1− trab)(1− trac)

and
t2rabrac

(1− trab)(1− trac)
= 0,

trabtrac = 0.

Therefore,

t(rac + rab + rbc) = 1 + trabtrac = 1.

So t is the root of FC3
(re, t).
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From above consideration we deduce that Algorithm Un,3

works correctly with time complexity at most O(n2). Algo-

rithm Un,3 can be implemented in such a way that a vertex
of the subgraph C3 be considered (picked) in the last step of
the algorithm.

IV. CONCLUSION

We have presented Algorithm Un,3 for testing whether
the unicyclic graph H ∈ Un,3 with the set of edge densities
{γe}e∈E(H) is a factor of a blow-up graph G[H ]. Precisely,
we have the answer whether the edge densities ensure the
existence of the factor or do not ensure. In future work
we will study the density Turán problem for an arbitrary
graph of the family Un,p, p ≥ 4, and for other families of
graphs. Moreover, we wish to construct efficient algorithms
for testing the existence of blow-up graphs with factors of
the families.

Open problem: Look for the density Turán problem al-
gorithm for families of connected graphs with blocks (i.e.,
2-connected components) isomorphic to cycles and/or P2 .
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