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Abstract—This work describes the whole process of 3D model
reconstruction. It begins with the representation of the method
that is used to find the matching between photographs and the
methodology to use the data to form the initial structure of
the reconstructed model, represented by a point cloud. As a
next stage, a refinement process is performed, using the bundle
adjustment method. A set of stereovision methods is used later
on to find a more detailed solution. Those algorithms use pairs
of images, therefore as a prerequisite a set of routines that
aggregates those results is studied. The paper is concluded with
a description of how the point cloud is processed, including

the surface reconstruction, to form the result. The described
methodology is illustrated with reconstructions of three series
of professional photographs from a public repository and one
series of amateur photographs created especially for this work.
The results were evaluated by the proposed area matching and
contour matching measures. Index Terms—3D Reconstruction,
Image Matching, Epipolar Geometry, Features Extraction, Mod-
els Evaluation

I. INTRODUCTION

A
RECONSTRUCTION of three dimensional (3D) models

is one of the areas of the Computer Vision discipline

that is quickly gaining momentum c.f. [1], [2], [3]. The

development of information systems and the advancement in

3D graphics in general made it possible to create models

that would depict real life objects. It has become even more

important to be able to create models using two–dimensional

photographs, taken using regular commodity digital cameras.

As one of the contributions of the following work, a

computer tool has been developed that accomplishes the whole

model reconstruction process. Out of a sequence of two–

dimensional photographs, it can create a three dimensional

full–colour model of the photographed object. The method is

a mixture of algorithms based on features and solutions used

in stereovision. The following project includes a description

of this method. It also presents and comments on the results

of applying the theory on a set of exemplary data series of

digital photographs.

What follows is the main part of the work where the very

process of 3D model reconstruction is explained. It begins

with the representation of the method that is used to find the

matching between photographs and the methodology to use the

data to form the initial structure of the reconstructed model,

represented by a point cloud. As a next stage, a refinement

process is performed, using the bundle adjustment method. A

set of stereovision methods is used later on to find a more

detailed solution. Those algorithms use pairs of images, so as

a prerequisite a set of routines that aggregates those results is

studied. The description is concluded with information about

the cloud processing, including the surface reconstruction, to

form the result.

Each step of the process is illustrated with an exemplary

image that show how the process progresses. This allows the

reader to observe what the reconstruction process looks like.

As an additional deliverable, a set of reconstructed models

is presented. By comparing those images with the original

models, the reader may decide on the quality of the process.

Several works present algorithms that result in high quality

models. However, very often the reconstruction process bases

on an expensive camera [2], specialist equipment such as a

depth camera [3], or structured light [4].

The second important issue in the reconstruction based

on computer vision algorithms (c.f. [5], [6], [7]) is lack

of comparison methods. Very often, the result models are

presented with evaluation of the quality different that visual

comparison with the original object.

In this work, the proposed solution is based on low–cost

algorithms and it is tested both on professional and amateur

photographs. The snapshots from the four reconstructed model

are presented in this work as well as the evaluation of their

quality.

The paper is structured as follows. Section II presents

basis of the epipolar geometry. The reconstruction process is

briefly presented in Section III. The final models created from

three series of photographs are described in Section IV and

evaluated in Section V. Finally, the conclusions are presented

in Section VI.
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1) Input data (Section III-A)

2) Features detection and matching (Section III-B)

3) Structure and camera trajectory reconstruction (Section

III-C)

4) Bundle adjustment (Section III-D)

5) Dense cloud creation (Section III-E)

6) Filtration and reconstruction (Section III-F)

Fig. 1. Reconstruction schema

Fig. 2. Epipolar geometry defined by two cameras. C and C
′ – centres of

cameras, Π and Π
′ – projection planes, e and e′ – epipolar points, x and x′

– projection of the point X on left and right view, l and l′ – epipolar lines.

II. PRELIMINARIES

The reconstruction bases on the epipolar geometry and

essential information about its theoretical aspects are given

in this section. The basis of the epipolar geometry is given in

Figure 2. A 3D point X has projections x and x
′ on two views.

The point X, both views x and x
′, and camera centres C and

C
′ create the common plane. If the position of the point x is

known it is also known that the projection x
′ lies on the line

l
′. Therefore, the search for the point corresponding to x can

be limited to the line l
′.

The algebraic representation of epipolar geometry is given

by the fundamental matrix F . The matrix describes mapping

between a point and its epipolar line. The special form of the

fundamental matrix is the essential matrix E. The matrix E is

a fundamental matrix corresponding to the pair of normalised

cameras. A normalised camera describes the relation between

image points expressed in normalised coordinates and 3D

points. The relation is represented as the camera matrix P .

An important component of the matrix P is the calibration

matrix K . The internal parameters K of the camera may

be extracted from the matrix P by the decomposition. The

inversion of calibration matrix creates normalised point on the

basis of a point from a picture. This transformation is used to

create an initial cloud of points in the presented process.

Detailed information on the epipolar geometry and relations

between the matrices are given in [8].
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(a) dinosaur

(b) teddy bear

(c) horse

(d) troll

Fig. 3. Photographs from tested series

III. RECONSTRUCTION

The reconstruction process described in this work consists

of several stages. The schema of the process is given in

Figure 1. The process starts with input photographs. Next,

the matching between the photographs is detected. Two next

steps create sparse clouds. Before the final reconstruction, a

dense cloud is created. In the final stage, after a filtration, a

surface is reconstructed. More information about the stages is

given in the following sections.

A. Input data

The reconstruction procedure was tested on three examples

from the public repository [9] and one created especially

for this work. The data sets are series of photographs. Each

professional series consists of photographs of objects placed

on an automated turntable and photographed every 5 degrees.

The photographs have a high 3 M–pixels resolution acquired

by two Canon Powershot G1 digital cameras.

In our experiments, two series ’Teddy bear’ and ’Horse’

were represented by the full set of 72 photographs. In the

second series ’Dinosaur’, the number of photographs was

reduced to 35. The resolution of photographs is 842×822 and

1600× 1200 for the first and the second series respectively.

Fig. 4. Matching for two photographs with 20◦ rotation

The last series ’Troll’ is a bit different from the others.

The object was immobile and the photographer was moving.

The photographs were taken without a stand with an irregular

angle. The resolution of photographs is 1200 × 800. This

series has only 33 photographs. The photographs were taken

especially to test the reconstruction model presented in this

work.

The three series present different approach to creation of

data. The ’Teddy bear’ and ’Horse’ series are professional,

detailed description of the objects. In the ’Dinosaur’ series,

photographs are still professional, but the number of images

was reduced to decrease costs of documentation process. Both

series were taken in a studio.

The ’Troll’ series is an amateur documentation of the object

created in an outdoor location.

Examples of photographs from all series are given in

Figure 3.

B. Matching

In the first stage, relations between photographs are de-

tected. The same points on multiple photographs are identified

for that. In this work, the SURF method [10] was used to

define characteristic points on the photographs. Other charac-

teristic points that can be used in the matching are presented

in [11].

The SURF detector localises characteristic points on the

basis of the maximum value of Hessian. For selected points,

horizontal and vertical Haar wavelets are calculated to fix an

orientation. After these operations, a description of the point

is created. The description is invariant from a scale and a

rotation.

The matching consists in finding the common description of

two points from different images. However, to avoid a false

match the following steps are added.

All matches from the background are removed. Such

matches are easy to detect, because positions of characteristics

points are nearly constant in all photographs in a sequence.

The second group of removed matched is established on the

basis of points without a dominant match. Such points have

two or more equivalents on the second photography. If any of

them is not distinctly better than the rest then all matches that

start from this point are eliminated.

The next condition of the approval match is symmetry.

The match between two points should be confirmed by two

matching process. In the first process, the first photography is

MARCIN LUCKNER, KATARZYNA RZĄŻEWSKA: 3D MODEL RECONSTRUCTION AND EVALUATION 671



(a) dinosaur (b) teddy bear

(c) horse (d) troll

Fig. 5. Sparse clouds created in the reconstruction stage

taken as a source of characteristic points and the second one is

area of searching for equivalents. In the second process, roles

of photographs swap over.

All created matches should be confirmed by an epipolar

model. The RANdom SAmple Consensus (RANSAC) ap-

proach [12] is used to detect the fundamental matrix. The

matches that are inappropriate for the model are removed.

Finally, each match should be continued at least at three

photographs. Each matched point from the second photograph

should also be the beginning point for the subsequent math

accepted in the matching process computing for the next pair

of photographs.

The results of matching for a pair of photographs are pre-

sented in Figure 4. As can be seen, only a part of characteristic

points have an approval match with a point from the second

photograph.

C. Structure reconstruction

In the next stage, positions of detected points in 3D space

are calculated as well as camera positions.

In practice, it is not enough to use the epipolar geometry to

calculate positions of points separately for each pair of pho-

tographs. A calculation of the fundamental matrix is sensitive

to noises and a detection of relations and translations between

cameras results in errors cumulated in the final cloud.

To reduce the noises, the following solution is proposed.

A cloud of points is initiated by points localised on two first

photographs. Each next photograph is used to add new points

and calibrate the existing points from the cloud.

Before the calculation, coordinates of points from images

are normalised. The normalised point is defined as K−1
x,

where x is the coordinate in image space and K is a calibration

matrix.

(a) dinosaur (b) teddy bear

(c) horse (d) troll

Fig. 6. Sparse clouds created in the bundle adjustment stage

The K matrix is estimated as

K =





w + h 0
w

2

0 w + h h

2

0 0 1





where w and h are width and height of image respectively.

The same estimation was used in [13].

Next, for a selected pair of photographs the eight–point

algorithm is used to calculate a fundamental matrix [8].

Owning the fact that coordinates were normalised the essential

matrix can be used to detect relations between cameras.

Information about sequential photographs is added iter-

atively. However, now 2D points from a photograph are

compared with 3D points from the created cloud. If a point

has an equivalent in the cloud then the 3D coordinates are

recalculated on the basis of a new observation. Otherwise, a

new point can be added but only if it is present on at least

three following photographs.

An important aspect of the reconstruction process is that

it uses neither the camera position nor the fact of using a

turntable pedestal.

The stage results in a cloud. Examples for analysed objects

are given in Figure 5.

D. Bundle adjustment

The created clouds show recognisable views of the mod-

elling objects. However, the density of clouds is not good

enough to reconstruct object surface. Moreover, errors from

this stage may propagate on the final model. Therefore, an

additional stage is necessary to improve a quality of the cloud.

Such method is the bundle adjustment [14]. The method

minimises the total mean squared error between real positions

of points in a photograph and a position calculated from a 3D

projection and a camera position. The algorithm operates on
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(a) (b) (c) (d)

Fig. 7. Connection of the clouds:(a) the projection of the dense cloud on
the sparse could, (b) the sparse cloud extended by the dense cloud, (c) the
second dense cloud projected on the point of the sparse cloud matched to the
first dense cloud, (d) the connected dense clouds.

the cloud calculated in the previous stage and camera param-

eters calculated using the Levenberg–Marquardt method [14].
The bundle adjustment is a general method. In this work, a

specific implementation is used that calculates six parameters

for each camera (three for a rotation and three for a transla-

tion) and three for each point from the cloud. Inner camera

parameters are constant and common for all photographs.
This stage is optional, but definitely improves obtained

results. In Figure 6, clouds after the bundle adjustment are

presented. In the comparison with the previous clouds, objects

are better visualised. However, clouds are still not dense

enough to create a final reconstruction.

E. Dense cloud creation

The clouds created in the previous stages are too thin to

reconstruct a high–quality surface. However, the clouds can

be used to calculate a dense cloud, which will be a base for

the final model.
The methodology used in this work bases on stereo block

matching algorithms [15]. For a pair of photographs, equiva-

lents of the same objects (pixels or small areas) should be

localised on both photographs. A special transformation –

rectification allows the algorithm to reduce a searching area to

a line of even to a segment (under additional conditions) [16].
Collected data on the equivalents of points are stored as

information about a distance between projections of points on

a disparity map. With additional information about a camera

localisation, the disparity map can be transformed into a depth

map. The depth map codes information about the depth in the

given point as an intensity.
In the 3D model reconstruction, many depth maps are

connected and several problems arise in that process [17]. The

maps are calculated for each pair of photographs. A relative

small angle between the following photographs determines

significant areas common for several maps.
The Iterative Closest Point technique [18] is commonly used

to minimise the difference between two clouds of points. The

(a) dinosaur (b) teddy bear

(c) horse (d) troll

Fig. 8. Dense cloud created in the stage

algorithm uses the nearest neighbourhood criterion to find

equivalents of an analysed point among clouds. Next, using a

mean square cost function the transformation between clouds

is solved. An iteration process is used to reduce the calculated

cost.

When depth map are selected additional information is given

and the connection process can be improved [19]. However,

in this work, a new simple method that gives good results is

proposed.

In the proposed method, clouds are connected together

instead of disparity maps. Therefore, the filtration process

plays major role in a quality of the final model. This solution

is different that majority of solutions presented in other works,

but a similar proposition can be found in [20].

Maps are transformed into dense clouds. Created cloud

cannot be connected directly without creation of many noises.

Therefore, the dense clouds are fitted in the sparse cloud

created in the previous stage. Figure 7 presents the whole

process.

The projection of the dense cloud to the sparse clouds is

the minimalisation problem:
∑

i

||bi − sRai − t||2, (1)

where ai is a point from the sparse cloud, bi an equivalent of

the point in the dense cloud. The solution is the transformation

that consists of the rotation R, the translation t, the scale s,

and minimalises the formula (1).

The results of the stage are given in Figure 8. The created

clouds are dense, but noisy. The noises will be removed in the

next stage.

F. Surface reconstruction

In the first step of the final stage, the dense cloud is filtered.

Several algorithms are used to improve a quality of the cloud:
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Fig. 9. Filtration. From the left: dense cloud, results of the SOR filter, and results of the MLS method.

the Statistical Outlier Removal filter, Voxel Grid filter, and the

Moving Least Squares method.
The disparity maps have wide common areas. Therefore,

points from an appropriate surface are located very dense.

Otherwise, wrongly reconstructed points are located on ran-

dom positions usually with small local density. Such points

can be removed by the Statistical Outlier Removal filter [21].

For each point in the cloud, the filter calculates distances to

k nearest neighbourhoods. On this base, a rejection threshold

is calculated. When the average distance to the nearest points

exceeds the threshold, a point is removed from the cloud.
The Voxel Grid filter reduces the number of points in the

cloud. In a small neighbourhood, all points are reduced to a

single point, which is the centroid.
Next, the cloud is smoothed. Noises near an appropriate

surface could not be removed by the SOR filter. Therefore,

the Moving Least Squares method [22] is used to remove the

noises. In the method, a local surface is approximated and

points are projected on the surface.
Effects of filtration are presented in Figure 9.
The last step is a surface reconstruction. The step is done by

the Poisson method [23]. Before the reconstruction, normals

for points should be calculated. The standard method that

calculates normals [24] can be used. In the method, the

Riemann graph is created with vertices defined by points and

edges between nearest points. The graph forms the basis for

a propagation of normals orientations.
The Poisson method creates a surface on the basis of the

cloud of points with oriented normals. The method solves for

an approximate indicator function of the inferred solid, whose

gradient best matches the normals. The output scalar function

is then iso–contoured using adaptive marching cubes.

IV. RESULTS

The reconstruction time for a single model was about 6

minutes. The reconstructions were done on AMD Athlon 64

3000+ 2 GHz with Ubuntu system version 10.04.

The obtained results are presented in Figure 10. Recon-

structed objects have good quality. Colours of triangles are

interpolated from colours of corners. The colouring method is

simple but brings satisfactory results. However, results show

that a quality of the photography documentation influences the

quality of the models.

The teddy bear (described by the full, professional doc-

umentation) is very well reconstructed including original

depressions on its belly and back, while the horse model

lost some details. In the dinosaur model (described by the

professional, but reduced documentation), not all wrongly

reconstructed points were removed. The model has a projec-

tion on its back. The troll model (described by the amateur

documentation) has a distortion on the back. Moreover, a part

of the stand was recognised as a part of the statue. Probably,

this interpretation was caused by a shadow registered on the

photographs. In a studio, this problem is eliminated.
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Fig. 10. Reconstructed objects: Dinosaur, teddy bear, horse, and troll
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V. EVALUATION

The main issue of the evaluation of created model is a lack

of digital patterns to compare with the reconstruction. There-

fore, we propose the following schema of models evaluation

on the base of the series of photographs.

The projection of model was projected back on the cameras.

As a result, the initial two dimensions projection was recon-

structed. The reconstructed projection was compared with the

isolated object from the origin photograph. Figure 11 presents

all elements.

Both reconstructed object and isolated object from the origin

photograph was used to create masks. The areas are compared

and the model is evaluated using

q =
b+ c

s
, (2)

where b is the number of reconstructed pixels that are not a

part of the origin object, c is the number of pixels from the

origin object that are not reconstructed, and s is the number

of matching pixels. Figure 12 presents all elements of the area

matching.

The second proposed evaluation method is a contour match-

ing. The contour matching analyses a reconstruction of details.

For the created masks, the contour is calculated as the mor-

phological gradient with the colour structuring element and

with the 11 pixels diameter. Next, two evaluation measures

were calculated:

q′ =
s

m
, (3)

where s is the number of matching pixels for both contours

and m is the number of pixels in the model contour;

q′′ =
s

o
, (4)

where s is the number of matching pixels for both contours

and o is the number of pixels in the object contour;

The measure q′ (3) defines the percent of coverage of the

object contour by the model contour, and the measure q′′ (4)

defines the percent of coverage of the model contour by the

object contour.

Figure 13 presents all elements of the contour matching.

Table I presents evaluation of the models. We calculated

averages of the evaluating coefficients for whole series of

photographs. For the area matching coefficient q smaller values

are better, for the contour matching coefficients higher values

are better.

Studios objects have the similar area matching coefficients.

The contour matching coefficients show that solid objects (the

horse, the dinosaur) have better reconstructed contours than

fluffy (teddy bear). The worst results were obtained for the

troll model. It was caused by recognising the base of the model

as a part of the model. When we edited model manually, we

obtained better results.

TABLE I
EVALUATION OF THE MODELS: q - AREA MATCHING COEFFICIENT, q′, q′′ ,

CONTOUR MATCHING COEFFICIENTS

model avg q avg q
′ avg q

′′

dinosaur 0.10 0.68 0.65
horse 0.15 0.72 0.72
teddy bear 0.11 0.57 0.57
troll 0.91 0.33 0.31
edited troll 0.35 0.51 0.47

VI. CONCLUSIONS

In this work, the 3D models creating from photographs was

presented. The method describes all stages of the reconstruc-

tion process from the features detection and the matching,

through the creation of a sparse 3D cloud and a dense cloud,

until the filtration and the surface reconstruction. All stages

were illustrated with examples of their products.

The whole solution was implemented on the basis of open

source libraries: OpenCV, Point Cloud Library and Sparse

Bundle Adjustment. However, in several points original so-

lutions were used. Especially original approach was used to

connect the dense points clouds into one cloud using the sparse

cloud.

Although some noises can be observed after a close inspec-

tion on the dinosaur model and the troll has some distortions,

the obtained coloured reconstructions are good–looking and

results are rewarding.

The presented process, together with the created applica-

tion allows user to create complex 3D models without any

expensive staff and advanced software.
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