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Abstract—In this paper we present two algorithms for perform-
ing sparse matrix-dense vector multiplication (known as SpMV
operation). We show parallel (multicore) version of algorithm,
which can be efficiently implemented on the contemporary
multicore architectures. Next, we show distributed (so-called
multinodal) version targeted at high performance clusters. Both
versions are thoroughly tested using different architectures,
compiler tools and sparse matrices of different sizes. Considered
matrices comes from The University of Florida Sparse Matrix
Collection. The performance of the algorithms is compared to
the performance of SpMV routine from widely used Intel Math
Kernel Library.
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I. INTRODUCTION

I
N THIS paper we consider multiplication of a sparse matrix

by a dense vector, which is called SpMV operation. This

operation is fundamental part of many numerical algorithms

[4], [8]. In particular SpMV is used for iterative solving of

systems of linear equations, e.g. in projective GMRES method

or CG method.

Given a n× n square, sparse matrix A and a dense vector

x of dimension n we define operation SpMV as

y← Ax.

Let us denote ith row of matrix A by A(i, 1 : n). Then, to

compute ith element of vector y, we have to compute the dot

product of A(i, 1 : n) and x vectors. So the whole operation

of computing y vector can be easy parallelized, since the

computations of all resulting elements are independent. Hence

SpMV operation can be treated as n distinct tasks, which have

ith row of A and x as a input data and produce ith element

of y. Note that x is shared between all computing tasks.

In the paper [11] authors focus on SpMV operation in

the case of multicore platforms. They survey some low level

optimization techniques related to hardware properties, while

using CSR format for storing sparse matrices. All techniques

are then benchmarked on a few multicore environments.

In the article [12] authors show a new format suitable for

multicore architectures, which they call Compressed Sparse

Block (CSB). It allows effective storage and efficient com-

putations. It also uses special optimizations in the case of

multiplication of banded matrices.

The aim of this paper is to present our research on the

efficient implementation of a sparse matrix by a dense vector

multiplication with the use of contemporary parallel multicore

and distributed computer architectures to gain high perfor-

mance at low cost.

We propose a parallel SpMV algorithm based on modified

SPARSKIT library routine [9] targeted at multicore platforms.

We investigate the performance of this algorithm using various

architectures, compilers and a few sparse matrices, which

arises in real life problems. These matrices comes from The

University of Florida Sparse Matrix Collection [3]. We include

optimized SpMV routine from Intel Math Kernel Library [5]

in the comparison.

Next we introduce a distributed algorithm for computing

SpMV on computer clusters consisting of multiple nodes.

Our universal approach allows to use any existing SpMV

implementation locally within one node. For performance

comparison we use the same set of sparse matrices as pre-

viously.

The paper is structured as follows. Section II describes

data structures suitable for representing sparse matrices and

their usability for the implementation of SpMV operation.

Next section contains short description of standard, sequential

SpMV algorithm. In Section IV we present multicore version

of existing SPARSKIT SpMV routine. The description of

SpMV algorithm for distributed environments is included

in Section V. Then we present some numerical results and

concluding remarks in sections VI and VII respectively.

II. STORAGE FORMATS FOR SPARSE MATRICES

Special data structures and algorithms are used for storing

sparse matrices (for efficient memory usage) and performing

basic mathematical operations. The survey of many storage

formats can be found in [8]. Note, that the same formats

are used in algorithms designed for sequential and parallel

architectures. However, due to different properties of these

architectures, different formats may be preferred in each case.
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A =













−4 0 0 0 1
0 −1 0 8 0
0 0 0 5 0
−1 31 0 21 −1
0 0 0 0 −8













Fig. 1. Sparse matrix stored in dense format

data =
[

−4 1 −1 8 5 −1 31 21 −1 −8
]

col =
[

0 4 1 3 3 0 1 3 4 4
]

row =
[

0 0 1 1 2 3 3 3 3 4
]

Fig. 2. Matrix from Fig. 1 stored in COO format

Below we shortly present three widely used formats for

storage of sparse matrices. Fig. 1 shows square, sparse matrix

of dimension 5 stored in dense format, which, from the

programmers point of view, is equivalent to using one two-

dimensional array.

A. Coordinate Format (COO)

The simplest and the most flexible format for storing any

sparse matrix is so-called Coordinate Format or COO for

short. In this format, only nonzero values are stored, together

with rows and columns indexes. Technically, it uses three one-

dimensional arrays:

• data for storing nonzero elements,

• col for storing indexes of columns of nonzero elements

in the original matrix,

• row for storing indexes of rows of nonzero elements in

the original matrix.

On Fig. 2 we see COO storage scheme for the matrix from Fig.

1. Unfortunately, there are some disadvantages of this format,

namely it is not memory and computationally efficient (espe-

cially in the case of SpMV operation). Note that MATLAB

software uses this format [6].

B. Matrix Market Format (MM)

The University of Florida Sparse Matrix Collection [3] is

large repository of sparse matrices, which comes from real life

applications. It uses Matrix Market format (MM) for storing

sparse matrices. This format is based on COO with some

optimizations added, e.g. it can store only the half of the

matrix, in case it is symmetric [7].

C. Compressed Sparse Row Format (CSR)

Another way to store sparse matrix is to use Compressed

Sparse Row format (CSR). As in the case of COO, only the

nonzero elements are stored and their columns indexes, while

the rows indexes are kept in somewhat different way. There

are also three one-dimensional arrays used:

• data which keeps nonzero elements,

• col which keeps indexes of columns of nonzero elements

in the original matrix,

data =
[

−4 1 −1 8 5 −1 31 21 −1 −8
]

col =
[

0 4 1 3 3 0 1 3 4 4
]

ptr =
[

0 2 4 5 9 10
]

Fig. 3. Matrix from Fig. 1 stored in CSR format

do 100 i = 1,n

t = 0.0d0

do 99 k=ptr(i), ptr(i+1)-1

t = t + data(k)*x(col(k))

99 continue

y(i) = t

100 continue

Fig. 4. Standard implementation of SpMV for CSR storage

• ptr which keeps indexes of the beginnings of the con-

secutive rows in data array.

Fig. 3 shows sparse matrix stored in CSR format.

III. SEQUENTIAL SPMV ALGORITHM

CSR is the most common format used, when dealing

with applications containing many SpMV operations. Basic,

sequential implementation of SpMV is presented on Fig. 4.

We assume that data, col and ptr arrays keeps a sparse

matrix in CSR format, while x is given vector and y is the

result of the operation.

IV. MULTICORE SPMV ALGORITHM

SPARSKIT [9] is Fortran library for dealing with sparse

matrices. It provides several formats for storing matrices

(including CSR) and routines for performing fundamental

mathematical operations. There is SpMV routine in this library

for matrices stored in the CSR format, however it is strictly

sequential, hence it doesn’t take advantage of contemporary

parallel architectures. We used OpenMP [10] directives for

simple and effective parallelization (use of all present CPU

cores) of available source code. The modified source code

using omp parallel do directive is presented on Fig. 5.

We will refer to this algorithm as the multicore algorithm.

V. MULTINODAL SPMV ALGORITHM

In this section we present distributed version of SpMV for

clusters consisting of multicore nodes, which we will call the

multinodal algorithm.

Assume that A ∈ Rn×n matrix is divided into p2 blocks

(with possible different dimensions)

A =







A00 . . . A0,p−1

...
. . .

...

Ap−1,0 . . . Ap−1,p−1






,
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subroutine pamux (n, x, y, a,ja,ia)

real*8 x(*), y(*), a(*)

integer n, ja(*), ia(*)

real*8 t

integer i, k

!$omp parallel do private(t,k)

do 100 i = 1,n

t = 0.0d0

do 99 k=ia(i), ia(i+1)-1

t = t + a(k)*x(ja(k))

99 continue

y(i) = t

100 continue

!$omp end parallel do

return

end subroutine pamux

Fig. 5. Implementation of SPARSKIT SpMV routine using OpenMP

where Aij ∈ Rni×nj and
∑p−1

i=0
ni = n. Vectors x and y are

also divided into p blocks, where xi,yi ∈ Rni . Then






y0

...

yp−1






←







A00 . . . A0,p−1

...
. . .

...

Ap−1,0 . . . Ap−1,p−1













x0

...

xp−1







and

yi ←

p−1
∑

j=0

Aijxj , i = 0, . . . , p− 1. (1)

Algorithm 1 describes the multiplication of sparse matrix

by dense vector using computer cluster, which has at least p2

distinct CPUs. The matrix is appropriately distributed between

the grid of p×p tasks denoted by Pij , 0 ≤ i, j < p. Algorithm

comprises the following steps:

1) sending the data from the first column of tasks to

"diagonal" tasks,

2) broadcasting the data columnwise,

3) performing actual computations,

4) performing global reduction.

We assume that each computing task is running on different

CPU, however there can be more than one CPU installed in

one cluster node.

On figure 6 we see the grid of tasks in the case of dimension

2× 2. The grid in the case of 4× 4 dimension, together with

communication scheme is presented on Fig. 7.

To implement Algorithm 1 we used routines from BLACS

(Basic Linear Algebra Communication Subprograms) [1] and

MKL (Intel Math Kernel Library) [5] libraries. BLACS rou-

tines were used for organizing task grid and transferring data

between tasks, while optimized multicore mkl_dcsrgem

from MKL was used for performing SpMV. The most im-

portant part of Fortran implementation of this algorithm is

presented on Fig. 8. We used the following variables in the

implementation:

P00 P01

P11P10

Fig. 6. Task grid of dimension 2× 2

• proc_row, proc_col are coordinates of current task

in the task grid,

• arrays data, col, ptr store block Aproc_row,proc_col

of sparse matrix in CSR format,

• arrays x and y keep vectors x and y respectively,

• nrows and ncols denotes the number of rows and the

number of columns of the Aproc_row,proc_col block,

• context describes appropriate BLACS context.

Note, that this algorithm is not tied to mkl_dcsrgem

routine. Instead, it can use implementation from Section IV

or any other available code.

VI. NUMERICAL EXPERIMENTS

In this section we review the tests of our SpMV implemen-

tations for multicore (Section IV) and distributed (Section V)

systems.

A. Data

We used several sparse matrices from The University of

Florida Sparse Matrix Collection [3]. All matrices were down-

loaded in the Matrix Market format and then were converted

to CSR format, which was used in all numerical experiments.

We present the results for 4 matrices: parabolic_fem, bmw3_2,

torso1, nd24k. Detailed parameters are shown in Table I, where

we have:

• n is the number of rows and columns,

• nz is the number of nonzero elements,

• d = nz/n denotes the density of the matrix.

Fig. 9 shows the sparsity patterns of these matrices.

Considered matrices were first read from the files and

then distributed between all running MPI tasks using BLACS

dgesd2d routine. We used simple distribution scheme, in

which we divided the matrices into the blocks of almost the

same sizes.

Note, that instead of reading data from files it is possible

to generate matrices locally in each node.

B. Test environment

We used two hardware platforms for testing: E5-2660 and

X5650. Their specifications are presented in Table II.
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P00 P01 P02 P03

P20 P21 P22 P23

P30 P31 P32 P33

P10 P11 P12 P13

P00 P01 P02 P03

P20 P21 P22 P23

P30 P31 P32 P33

P10 P11 P12 P13

P00 P01 P02 P03

P20 P21 P22 P23

P30 P31 P32 P33

P10 P11 P12 P13

P00 P01 P02 P03

P20 P21 P22 P23

P30 P31 P32 P33

P10 P11 P12 P13

Fig. 7. Communication scheme for the 4× 4 task grid: 1) sending the data from the first column of tasks to "diagonal" tasks (top left), 2) broadcasting the
data columnwise (top right), 3) performing actual computations (no communication, bottom left), 4) performing global reduction (bottom right)

! step 1) sending the data to "diagonal" tasks

if ((proc_col.eq.0).and.(proc_row.ne.0)) then

call dgesd2d(context, nrows, 1, y, 1, proc_row, proc_row)

else

if ((proc_row.eq.proc_col).and.(proc_row.ne.0)) then

call dgerv2d(context, nrows, 1, x, 1, proc_row, 0)

end if

end if

! step 2) broadcasting the data columnwise

if (proc_row.eq.pcol) then

call dgebs2d(context, ’C’, ’ ’, ncols, 1, x, 1)

else

call dgebr2d(context, ’C’, ’ ’, ncols, 1, x, 1, proc_col, proc_col)

end if

! step 3) performing actual computations

call mkl_dcsrgemv(’N’, nrows, data, col, ptr, x, y)

! step 4) performing global reduction

call dgsum2d(context, ’R’, ’ ’, nrows, 1, y, 1, proc_row, 0)

Fig. 8. Main part of Fortran implementation of Algorithm 1
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Algorithm 1 Outline of the multinodal SpMV algorithm

Require: Each Pij task holds Aij matrix, each Pi0, 0 ≤ i < p, task stores xi and yi

Ensure: Each Pi0, 0 ≤ i < p, task holds resulting yi vector obtained using equation (1)

1: Each Pi0, 0 < i < p, task sends xi to Pii

2: Each Pjj, 0 ≤ j < p, task broadcasts xj to Pij, 0 ≤ i < p
3: Each Pij, 0 ≤ i, j < p, task performs tij ← Aijxj

4: Global reduction yi ←
∑p−1

j=0
tij is performed by Pij, 0 ≤ j < p tasks {yi vector is held by Pi0, 0 ≤ i < p}

TABLE I
PARAMETERS OF CONSIDERED SPARSE MATRICES

name n nz d symmetricity

parabolic_fem 525825 3674625 6.98 symmetric
bmw3_2 227632 11288630 49.59 symmetric
torso1 116158 8516500 73.32 symmetric
nd24k 72000 28715634 398.83 non-symmetric

Fig. 9. Sparsity patterns of parabolic_fem (top left), bmw3_2 (top right),
torso1 (bottom left) and nd24k (bottom right) matrices

Our algorithms were implemented in Fortran 95 using

appropriate parallel and numerical libraries (OpenMP, MPI,

SPARSKIT, MKL). Two Fortran compilers, namely ifort

by Intel and pgfortran by The Portland Group, were used

for compiling source codes with compiler flags, which are

shown in Table III.

For time measurement we used the following routines:

• omp_get_wtime() for the multicore version,

• MPI_Wtime() in the multinodal case.

C. Results for multicore algorithm

On figures 10, 11, 12 and 13 we see the performance

(in Gflops) of the multicore version of SpMV multiplication.

The performance is shown for two platforms (X5650, E5-

2660), two compilers (Intel, pgi), and we also include the

TABLE IV
PERFORMANCE (GFLOPS) OF THE MULTINODAL SPMV ALGORITHM

matrix 1 task 4 tasks 16 tasks

parabolic_fem 1.91 0.31 0.41
bmw3_2 2.69 2.02 3.05
torso1 3.12 4.49 8.25
nd24k 3.31 4.39 12.00

performance chart of SpMV routine from Intel MKL library

optimized for multicore CPUs (denoted by mkl).

Using obtained results we conclude that:

• For small number of running threads the performance is

similar in each case.

• For growing number of threads E5-2660 architecture

outperforms X5650, due to its older architecture. We were

expecting this result.

• Compiler version has negligible impact on the perfor-

mance of the algorithms, however there is a drop in the

performance in the case of pgfortran dealing with

large number of threads.

• Simple SPARSKIT implementation with OpenMP direc-

tives (Fig. 5) gives as good performance as the optimized

MKL version of SpMV.

D. Results for multinodal algorithm

Table IV shows the performance of our multinodal SpMV

implementation (Algorithm 1). In the column denoted by

"1 task" we see the performance of the multicore version

compiled by ifort with MKL support and running on X5650

system. Multinodal version was compiled using mpiifort

compiler and was running on cluster consisting of 2 or 8

X5650 nodes, connected using 40Gbit/s Infiniband. To opti-

mize the workload of each node we used the following number

of MPI tasks:

• 4 tasks were running on 2 nodes with 4 CPUs (as in Fig.

6),

• 16 tasks were running on 8 nodes with 16 CPUs (as in

Fig. 7).

Each MPI task was using multithreaded version of SpMV from

MKL.

Looking at Table IV we see, that:

• there are cases, when the algorithm achieves very high

scalability (e.g. nd24k matrix)

• for some matrices (e.g. parabolic_fem), the performance

decreases,
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TABLE II
SOFTWARE AND HARDWARE PROPERTIES OF E5-2660 AND X5650 SYSTEMS

E5-2660 System X5650 System

CPU 2x Intel E5-2660 (20M Cache, 2.20 GHz, 8 cores with HT) 2x Intel Xeon X5650 (12M Cache, 2.66 GHz, 6 cores with HT)
CPU memory 48GB DDR3 48GB DDR3
Operating system CentOS 5.5 (Linux 2.6.18-164.el5) Debian (GNU/Linux 7.0)
Libraries OpenMP, SPARSKIT, Intel Composer XE 2013 OpenMP, MPI, SPARSKIT, Intel Composer XE 2013
Compilers The Portland Group, Intel The Portland Group, Intel

TABLE III
COMPILER FLAGS

Algorithm version Compiler Compiler flags

Multicore for E5-2660 ifort by Intel -O3 -openmp -xAVX

Multicore for X5650 ifort by Intel -O3 -openmp -xSSE4.2

Multicore for E5-2660 and MKL ifort by Intel -O3 -openmp -mkl=parallel -xAVX

Multicore for X5650 and MKL ifort by Intel -O3 -openmp -mkl=parallel -xSSE4.2

Multicore (both systems) pgfortran by The Portland Group -O3 -mp -fastsse

Multinodal for X5650 and MKL mpifort by Intel -O3 -openmp -mkl=parallel -xSSE4.2
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E5-2660 pgi

Fig. 10. The performance of SpMV operation for parabolic_fem matrix

TABLE V
DISTRIBUTION OF TORSO1 AND PARABOLIC_FEM MATRICES BETWEEN 4

TASKS

torso1 parabolic_fem
name n nz d n nz d

A00 58079 2407469 41.45 262912 656124 2.50
A01 58079 1693760 29.16 262912 0 0

A10 58079 1941287 33.42 262913 787970 3.00
A11 58079 2473984 42.59 262913 656131 2.50

TABLE VI
DISTRIBUTION OF TORSO1 AND PARABOLIC_FEM MATRICES BETWEEN 16

TASKS

torso1 parabolic_fem
name n nz d n nz d

A00 29039 756119 26.04 131456 131456 1.00
A01 29039 401235 13.82 131456 0 0.00
A02 29039 75227 2.59 131456 0 0.00
A03 29039 589153 20.29 131456 0 0.00

A10 29039 401361 13.82 131456 262142 1.99
A11 29039 848745 29.22 131456 262142 1.99
A12 29039 444083 15.29 131456 0 0.0
A13 29039 585297 20.15 131456 0 0.0

A20 29039 75417 2.59 131456 261886 1.99
A21 29039 444272 15.30 131456 121560 0.92
A22 29039 806323 27.77 131456 241257 1.83
A23 29039 254204 8.75 131456 0 0.00

A30 29041 737556 25.40 131457 262144 1.99
A31 29041 684042 23.55 131457 142380 1.08
A32 29041 254204 8.75 131457 185688 1.41
A33 29041 1159262 39.92 131457 229186 1.74
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Fig. 11. The performance of SpMV operation for bmw3_2 matrix

• the scalability of the algorithm is related to the distribu-

tion scheme and to the matrix properties, especially to

its density — sparser the matrix, worse the scalability.

Table V shows the division of torso1 and parabolic_fem

matrices in the case of 4 tasks. We see, that the densities

of the resulting blocks are smaller than the densities of

whole matrices (showed in the Table I). Notice, that for

parabolic_fem matrix there is a block with no nonzero

elements, hence one of the nodes stay idle. The situation

is even worse, when we consider 16 tasks division.

Looking at Table VI we see, that there are 6 empty blocks

for parabolic_fem matrix and the densities of the rest of

them are very low.

VII. CONCLUSION AND FUTURE WORK

In this work we investigated the parallelization of SpMV

operation, an important and highly-demanding numerical ker-

nel used in many numerical methods. We compared various

implementations, namely routine from MKL library, OpenMP

parallelized SPARSKIT version compiled using two compilers

and two architectures and our own distributed version. The

results show, that the most important factor of achieving

high performance is hardware architecture together with the

distribution pattern and the properties of sparse matrices. It is

worth to note, that it is possible to further optimize multin-

odal implementation (Algorithm 1) by distributing blocks of

matrices between nodes taking into account the original matrix

density to obtain balanced workload of each MPI task.
Another way to speed up computations is to use GPU cards

or MIC architecture accelerators instead of CPUs.
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Fig. 12. The performance of SpMV operation for torso1 matrix
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Fig. 13. The performance of SpMV operation for nd24k matrix
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