
Automating Acceptance Testing with tool support

Tomasz Straszak, Michał Śmiałek
Warsaw University of Technology

Warsaw, Poland

Email: {straszat, smialek}@iem.pw.edu.pl

Abstract—During acceptance testing different areas of deliv-
ered software system are reviewed. Usually these are function-
ality, business domain logic, non-functional characteristics, user
interface. Although they are related to the same particular func-
tional area, they are verified separately. This paper presents the
concept and the Requirements Driven Software Testing (ReDSeT)
tool, which allows for automatic integrated test generation based
on different types of requirements. Tests are expressed in newly
introduced Test Specification Language (TSL). The basis for func-
tional test generation are detailed use case models. Furthermore,
by combining different types of requirements, relations between
tests are created. The constructed tool acknowledges validity of
the presented concept.

I. INTRODUCTION

S
OFTWARE testing is one of the main steps of each devel-

opment process. In this step the compliance of delivered

software with the requirements is being verified. Verification

procedures of comparing the system under development to its

requirements and needs of its users are encapsulated in the

form of acceptance tests [1]. These requirements should be

understandable for the stakeholders and at the same time pre-

cise enough for the developers to produce efficient software.

To describe the expected functionality of the software

system, use cases are commonly used [2]. Use cases describe

interactions between external actors and the system, which

lead to specific goals according to the given scenarios. Such

requirements can be claimed as satisfactory to define the tests,

that will be performed during acceptance testing.

A number of automatic test generation mechanisms based

on use cases were proposed. Examples of such approaches can

be found in work by El-Attar and Miller [3], Gutiérrez et al.

[4], and Nebut et al. [5]. Beside use cases, requirement spec-

ifications contain other types of requirements, that describe

different aspects of the desired software. These requirements

should also be verified by executing corresponding tests.

Some work has been done on the generation of tests based

on business rules (see Junior et al. [6]), GUI requirements

(see Bertolini and Mota [7]), and even on non-functional

requirements (see Dyrkom and Wathne [8]).

All these mechanisms use model transformation, forming

the area of Model-based testing (MBT), which is an evolving

technique for generating suites of test cases from requirements

[9]. Although different types of tests are generated from

requirements models describing the same software system,

usually they are not related, because they verify different

aspects of the system.

Fig. 1. Acceptance test suite based on functional test cases

This article extends the basic description of the idea pre-

sented in our previous work [10]. It focuses on automatic

generation of different types of tests, integrated in functional

test cases with test scenarios executed during acceptance

testing. These tests are generated on the basis of interrelated

requirements describing many aspects of the developed soft-

ware system, making this idea MBT-compliant. The element

that joins the different types of testing is the functional test

case related to the use case scenario as shown in Figure 1.

This concept is based on the test metamodel defined as the

Test Specification Language (TSL) and implemented within

the ReDSeT tool (Requirements Driven Software Testing). The

tests are generated automatically based on the requirement

specification created with the Requirements Specification Lan-

guage (RSL) [11]. As RSL provides notation for precise use

case scenarios, generation of test cases verifying the system

behaviour is significantly facilitated. Additional information

contained in scenario sentences (notions from the domain vo-

cabulary) and other related requirements allow for generating

tests of different types. All the tests generated on the basis

of RSL-based requirements form a complete test suite for

acceptance testing.

II. DETAILED REQUIREMENTS EXPRESSED IN RSL

As in other test generation solutions, the basis for automatic

generation of tests is the precise specification of requirements.

As mentioned above, the described solution is based on re-

quirements specifications created with RSL. The main features

of this language are: clear separation of descriptions of the

system’s behaviour and descriptions of the system’s domain.

Functional requirements can be presented in three equivalent

forms: structured text with hyperlinks to domain elements,

an activity diagram or a sequence diagram. The elements

describing the system’s domain are depicted as notions on so-

called notion diagrams. Each notion has operations that can be

performed in regard to the particular notion. RSL allows for

precise specification of requirements, which is understandable

even for ordinary people who do not have technical expertise.

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 1569–1574

DOI: 10.15439/2014F342

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1569

Fig. 2. Example of requirement specification structure, use cases and notion
diagrams expressed with RSL

Fig. 3. Use case scenarios - textual representation

The language has a precise specification of its syntax and

semantics [11] with methods of its use explained e.g. by

Nowakowski et al. [12]. Figures 2, 3 and 4 shows an example

requirements specification, created in RSL.

All the elements of a requirement specification are grouped

in packages in a tree structure. Simple requirements described

with free text can be used to define business rules or non-

functional aspects of the system. Use cases defining the func-

tionality of the system are described with structured scenarios

(see Figure 3). Scenarios consist of numbered sentences in a

simple grammar called SVO-O (Subject Verb Object - indirect

Object). These sentences are constructed with notions stored in

the domain vocabulary. This is illustrated with two scenarios

(main and alternative) of the Add new book use case. The same

information is presented in Figure 4 in the form of an activity

diagram that is generated automatically from the scenarios.

The notions are referred-to in scenario sentences through

hyperlinks (book, book list, edit book button, edit book page)

and are presented on a notion diagram, that is similar to a

class diagram. The relationships between notions, and notion

operations are defined automatically according to the scenario

sentences where these notions appear or are defined manually

by the requirements engineer. The notions and their operations

used in use case scenarios, describe the business logic and the

Fig. 4. Use case scenarios - activity representation

user interface elements.

All the requirements can be related. To depict relations

between use cases, a special invoke relationship is used (see

Figures 2 and 4). It allows to determine under what conditions

and in which step of a use case scenario another use case is

to be called (see Nowakowski et al. [12] for more details).

What is important, RSL is based on a formal metamodel. This

allows for automatic processing of information contained in

the requirement specification. This characteristics of RSL will

be used for generating test cases.

III. AUTOMATING TEST GENERATION

To define acceptance test suite and to ensure accurate

and automatic transition from RSL-based requirements to

tests, Test Specification Language (TSL) was developed. This

language is based on a metamodel defined in the Eclipse

Modeling Framework (EMF) [13] and is out of scope of this

paper.

The main idea of TSL is to provide notation for reusable

tests, that are understandable for non technical people and

precise enough for detailed verification of the software system.

All tests are grouped in a tree structure, called the Test

Specification (see Figure 5), that groups tests assigned to

a specific release of software. Each test contained in a test

specification represents a procedure for verifying software in

the context of a single requirement. Such a verification is made

by examining all the check points defined inside the test.

The basic structure of a TSL test specification consists of

two packages: Abstract Tests and Concrete Tests. The first of

these includes tests generated directly from the requirement

specification: mostly use case tests, notions, as well as tests

of other types. A use case test corresponds to a use case, and

includes test scenarios, as shown in Figure 5. Tests of other

types, in addition to use case tests (verifying the behaviour of

the system), can verify the business logic, user interface, non-

functional aspects (performance, usability, etc.) or any other

aspect of the system that is described through requirements.

A use case test scenario includes the initial condition (a

precondition sentence) that must be met before the execution

1570 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 5. Test generation based on the requirement specification

of actions described in this scenario and the final condition (a

postcondition sentence) that describes the desired state of the

system after the scenario is executed.

Every use case test scenario, generated from an RSL use

case scenario, is a sequence of actions forming a dialogue

between the primary actor and the system. Every such action

is expressed by a single sentence in the SVO grammar (see

Graham [14] for an original idea). These sentences describing

single actions can have check points assigned. In addition to

action sentences, two additional sentence types were intro-

duced: condition and control sentences. They are used in a

scenario to express the flow of control between alternative

scenarios of the same use case as well as between scenarios

of different use cases (see work by Śmiałek et al. [15]).

An important feature of requirement specified with RSL,

is the possibility to create relationships. Due to generation

of test specifications on the basis of these requirements, also

relationships between tests can be created. The invocation

relations between use cases are translated to become relations

between use case tests. This provides information on the

steps of the use case test scenario and on the conditions

under which scenarios of other use case tests should be

called. Relationships to other requirements are translated to

relationships from use case tests to tests of other types.

Having two languages (RSL and TSL), which have defini-

tions that are based on metamodels, automatic transformation

from requirements to tests becomes possible also allowing

for further acceptance test composition. There is a couple of

common rules applied in the transformation:

• The structure of the packages containing use cases and

notions is reflected in the structure of the packages in the

Test Specification.

• Each element of a Test Specification that reflects an

element of a requirement specification holds the identifier

and the tree path of that element.

The transformation is performed in several steps according

to the transformation procedure, that is presented in Figure 6.

At the beginning of the transformation a new Test Specification

structure is created (step 1). The basic Test Specification

structure consists of a root node named using the pattern of

"Software Case Name - date" and two child Test Packages

named "Abstract Tests" and "Concrete Tests".

Fig. 6. RSL to TSL transformation procedure

All SVO sentences within the use case test scenarios are

built of the notion’s domain statements. For this reason, RSL

notions should be transformed first (step 2). For each RSL

notion, a TSL notion is created. The name, description and

attached notion attributes are transferred.

For all TSL notions, domain statements contained in corre-

sponding RSL notions are created (step 3). For each RSL no-

tion, its domain statements are transferred into a TSL domain

statement. The phrases contained in the RSL domain statement

notions, used as direct and indirect objects, are pointed to by

the directNotion and the indirectNotion attributes.

Having the notions with the domain statements transferred,

the use case tests can be processed (step 4). For each RSL

use case, a use case test is created and placed in a proper

test package within the use case test structure. The name

and the description are transferred directly. All the scenarios

contained by the RSL use case are transferred into a use

case test scenario. On the basis of the RSL scenario pre- and

postcondition, adequate pre- and postonditions are created and

attached to the use case test scenario. The sentences of the

RSL scenarios are transferred into the correct specialisation

of the use case test scenario sentence. The ordering number

and the sentence text are set. For every SVO sentence, a proper

domain statement is found and a relation to the corresponding

domain statement is created. For every control sentence, a test

invocation relationship is created with an empty use case test

as its target.

The target use case tests of the test invocations are set after

all the use cases are transferred into the use case tests (step 5).

For each test invocation relationship contained in the control

sentences, a correct use case test is found and set.

At the end of the transformation (step 6), tests of other

kinds are created. Each RSL requirement that is not a use

TOMASZ STRASZAK, MICHAŁ SMIAŁEK: AUTOMATING ACCEPTANCE TESTING WITH TOOL SUPPORT 1571

Fig. 7. Test scenarios composed of test cases

case and is classified as a requirement of specific type (e.g.

business logic requirement, user interface requirement, non-

functional requirement) is the basis for generating a test, which

supplements use case tests, scenarios, sentences or notions.

RSL requirements relations between use cases, notions and

requirements of specific types are transformed into test rela-

tionships. As RSL currently does not support basic require-

ments of specific types, only non-functional requirements are

automatically transformed into non-functional tests.

IV. INSTANTIATING TESTS

A scenario of a use case test determines the conditions,

steps and check points that will be subject to verification for

the use case implementation. These elements will be used in

acceptance testing after placing them in test scenarios and

assigning specific test data values. Test scenarios are grouped

within second-level packages in the basic structure of a test

specification named Concrete Tests, as shown in Figure 7.

They are defined by a test engineer as a set of ordered

instances of use case test scenarios, that we call test cases. A

test case describes a procedure for verification of a system’s

functionality and is composed of ordered steps in the form

of SVO sentences. Each step can contain check points with

assigned test data values and can be related with instances of

other type tests. These other test instances are automatically

created during instantiation. They are related to a test case,

just as abstract tests of other types are related to use case test

scenarios and particular scenario sentences.

A test scenario constructed with test cases also builds the

context for the test data. The initial test data values are set by

the test engineer as the precondition values of the test scenario.

Test data values describe basic business objects as well as

GUI elements. The test data in the scope of one test scenario

is passed between test cases as their pre- and postcondition

values. The test data values are changing according to the

functionality and the business logic that is under tests. It can

be noted that although the test cases cannot be formally related

to each other, within the manually created test scenarios, they

indirectly refer to business processes that are implemented

within the system being tested.

The instantiation procedure of a use case test scenario

is performed in at least as much steps as the test scenario

is supposed to have. Figure 8 presents the procedure for

Fig. 8. Test Scenario creation procedure

Fig. 9. Test Case instantiation procedure

test scenario creation. The test scenarios are inserted in the

instance tests package. During creation, the name and the

description of the test scenario should be given. All the steps

of a test scenario are created as test cases. The number of

test cases depends on the test engineer, who defines the steps

of the test scenario. Each time a new test case is created,

the instantiation procedure is performed. The procedure is

presented in Figure 9.

At the beginning of the procedure, the test case order

number is set. For each nested test case, the order number is

segmented, e.g.: 2.3.1. The name of the chosen use case test

scenario and the description of the corresponding use case test

are transferred into the test case (step 1), the same as for the

use case test scenario pre- and postcondition (step 2).

Having the test case created, SVO, condition and invoke

sentences are being created. SVO sentences (step 3) are

transferred with their sentence order number and sentence

text. Direct and indirect objects of the sentence predicates are

1572 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 10. TSL as UML Testing Profile complement

created on the basis of the direct and the indirect notions of

the domain statement (step 5). All abstract tests of other types,

related to the domain statement pointed to by the predicate

relation and by the domain statements’ direct notion and

indirect notion relations, are transferred into adequate instance

test specialisations (step 4 and 6). These instance tests of other

types are contained in the SVO sentences of the test case and

in the direct or the indirect object. The condition sentences are

transferred with the sentence order number and the sentence

text (step 7).

Depending on the test engineer’s decision, the nested test

case depicted by the control sentence can be created on the

basis of a use case test related through a test invocation rela-

tionship to the currently processed use case test (step 8 and 9).

If the use case test invocation is used, one of the invoked

use case test scenarios in instantiated recursively. At the end

all other abstract tests related to a use case test scenario are

transferred into adequate instance test specialisations (step 10).

These tests are contained within the test case.

V. TSL AS AN EXTENSION OF THE UML TESTING PROFILE

TSL can be seen as a stand-alone language but it can be

easily interfaced with other languages for model-based testing.

Prominently, it can be used in conjunction with the UML

Testing Profile [16].

Figure 10 presents an appropriate usage scenario. Starting

from requirements, a system developer delivers UML models,

which are the basis for developing the system. The same

requirements are used for manual creation of UTP models. On

the basis of these test models, detailed unit and integration

tests can be executed. However, this does not include high-

level acceptance tests. Here, TSL offers an extension allowing

to derive such tests directly and automatically from functional

requirements.

The usage of RSL for defining application logic allows

for automatic transformation of requirements into code and

into acceptance tests in TSL. During these transformations,

requirements-to-UML models and requirements-to-TSL-test

traces are being created. These traces facilitate linking of UTP

models with corresponding acceptance tests in TSL through

UML models.

VI. TOOL SUPPORT

The tool supporting the described idea of automatic test

generation based on requirements is called ReDSeT (Require-

ments Driven Software Testing). It is based on the Eclipse Rich

Client Platform. This enables integration with the ReDSeeDS

tool (www.redseeds.eu, [17]) which provides advanced editors

for requirements (for use cases, notions and other require-

ments) described with RSL. The generated test specification

can be included in the same Eclipse project as the requirements

specification and code. This allows for integration of activities

at different stages of the software development project. As

the repository of the test specification is based on the EMF

technology [13], the TSL meta-model can be easily extended

in order to handle other types of tests that are adapted to

different types of requirements associated with use cases.

To start working with the ReDSeT tool, the requirement

specification should be transformed into the test specifica-

tion. When the automatic transformation is complete, the test

engineer is able to manage the test specification organised

in a tree structure using the Test Specification Browser and

other dedicated editors enclosed in the ReDSeT perspective.

Use case tests and use case test scenarios, along with test

scenarios and test cases are presented in the Test Editor area.

The Detailed Test View is dedicated for viewing check points

and editing test values contained in all the types of tests. To

create test scenarios and to instantiate use case test scenarios

as test cases, dedicated wizards are available.

In order to perform acceptance tests according to test

scenarios defined in the ReDSeT tool, the test execution scripts

need to be generated. The test scripts, that are composed of

test cases, contain detailed steps for the testers in the form

of structured text. Each line represents one test with its name,

description, input data values and expected state of the system

for the specified elements.

The example of test execution script in the form of a

CSV text file is presented in figure 11. The rows describing

steps of a test scenario have solid background and are shown

as numbered test cases. Each sentence of the test case is

numbered with the test case number and the SVO sentence

number. For each direct and indirect object of the SVO

sentence, an additional row for data input or output appears.

For example, in the step 2.1 SVO 3, there are presented the

input test data and the values for the author attribute (row

number 2.1.SVO 3 DirObj). Additional tests of other types,

related to a sentence or to a direct or indirect object appear

as separate rows. For example, a GUI test is presented in the

step 2 SVO 2 DirObjGui Test. This test is attached to the direct

object of the step 2 SVO 2.

On the basis of such a test execution script, the testers can

verify the delivered software system. The results of each test

step can be noted in an additional column. In case the test

fails, the corresponding requirement can be found by tracing

to the appropriate requirements element. The implementation

units can be precisely located by examining traces to code, as

described by Śmiałek et al. [18].

TOMASZ STRASZAK, MICHAŁ SMIAŁEK: AUTOMATING ACCEPTANCE TESTING WITH TOOL SUPPORT 1573

Fig. 11. Test execution script - attached test and SVO sentence object test

VII. CONCLUSION

The proposed idea and the ReDSeT tool bring a complete

solution for creating acceptance tests for the systems that are

focused on user-system interaction. The preparation of test

specifications can begin during the requirements formulation

stage. Consecutive generation of tests allows to reach test

complexity that corresponds to the level of detail of the final

requirements. The basis for creation of a set of test scenarios

are detailed use cases. Requirements defined in RSL signifi-

cantly facilitate automatic test generation, and TSL allows for

expressing interrelated tests in a way that is comprehensible

to the audience responsible for acceptance testing. It can be

noted that the proposed method is based on black box testing

and is independent of the implementation technology of the

system under test. On the other hand, since RSL and TSL are

based on metamodels, the whole idea is close to Model Based

Testing which goes into the details of system design.

In terms of future work, traces from requirements to test

cases are planned to be used for generating requirements with

test coverage reports. These traces will be subject to further

research on regression test selection. Another area that is

planned to be a subject of further research is using RSL,

TSL and model transformations [19] as implementation of

Test Driven Development (TDD) [20] and Behaviour Driven

Development (BDD) [21]. These ideas assume that test effort

is already incorporated at an earlier point of software develop-

ment process. The proposed solution seems to have potential

for automating the process of generating unit and acceptance

tests and executing them on the basis of RSL requirements.

It is also planned to develop the mechanism for extracting of

test scripts as input for tools that automate test execution (e.g.

IBM Rational Functional Tester, Selenium). It would bring a

complete solution for detailed use case based testing.

REFERENCES

[1] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,
3rd ed. Wiley Publishing, 2011.

[2] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2000.
[3] M. El-Attar and J. Miller, “Developing comprehensive acceptance

tests from use cases and robustness diagrams,” Requir. Eng.,
vol. 15, no. 3, pp. 285–306, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1007/s00766-009-0088-6

[4] J. J. Gutiérrez, M. J. Escalona, M. Mejías, and J. Torres, “An
approach to generate test cases from use cases,” in Proceedings of

the 6th international conference on Web engineering, ser. ICWE ’06.
New York, NY, USA: ACM, 2006, pp. 113–114. [Online]. Available:
http://doi.acm.org/10.1145/1145581.1145606

[5] C. Nebut, F. Fleurey, Y. L. Traon, and J. marc Jézéquel, “Automatic
test generation: A use case driven approach,” IEEE Transactions on

Software Engineering, vol. 32, pp. 140–155, 2006. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2006.22

[6] E. Mendes Bizerra Junior, D. Silva Silveira, M. Lencastre Pinheiro
Menezes Cruz, and F. Araujo Wanderley, “A method for generation
of tests instances of models from business rules expressed in
ocl,” Latin America Transactions, IEEE (Revista IEEE America

Latina), vol. 10, no. 5, pp. 2105–2111, 2012. [Online]. Available:
http://dx.doi.org//10.1109/TLA.2012.6362355

[7] B. C. and M. A., “A framework for gui testing based on use case
design,” in Proceedings of the 2010 Third International Conference on

Software Testing, Verification, and Validation Workshops, ser. ICSTW
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
252–259. [Online]. Available: http://dx.doi.org/10.1109/ICSTW.2010.37

[8] K. Dyrkorn and F. Wathne, “Automated testing of non-functional
requirements,” in Companion to the 23rd ACM SIGPLAN conference on

Object-oriented programming systems languages and applications, ser.
OOPSLA Companion ’08. New York, NY, USA: ACM, 2008, pp. 719–
720. [Online]. Available: http://doi.acm.org/10.1145/1449814.1449828

[9] S. R. Dalal and et al., “Model-based testing in practice,” in Proceedings

of the 21st international conference on Software engineering, ser.
ICSE ’99. New York, NY, USA: ACM, 1999, pp. 285–294. [Online].
Available: http://doi.acm.org/10.1145/302405.302640

[10] T. Straszak and M. Śmiałek, “Acceptance test generation based on
detailed use case models,” in Advances in Software Development,
J. Swacha, Ed. PIPS, 2013, pp. 116–126.

[11] H. Kaindl, M. Śmiałek, P. Wagner, and et al., “Requirements spec-
ification language definition,” ReDSeeDS Project, Project Deliverable
D2.4.2, 2009, www.redseeds.eu.

[12] W. Nowakowski and et al., “Requirements-level language and tools for
capturing software system essence,” Computer Science and Information

Systems, vol. 10, no. 4, pp. 1499–1524, 2013. [Online]. Available:
http://dx.doi.org/10.2298/CSIS121210062N

[13] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse

Modeling Framework 2.0, 2nd ed. Addison-Wesley Professional, 2009.
[14] I. M. Graham, “Task scripts, use cases and scenarios in object-oriented

analysis,” Object-Oriented Systems, vol. 3, no. 3, pp. 123–142, 1996.
[15] M. Śmiałek and et al., “Complementary use case scenario representations

based on domain vocabularies,” Lecture Notes in Computer Science,
vol. 4735, pp. 544–558, 2007, mODELS’07. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-75209-7_37

[16] “UML Testing Profile (UTP) Version 1.2,” Object Management
Group, Tech. Rep. formal/2013-04-03, Sep. 2012. [Online]. Available:
http://www.omg.org/spec/UTP/1.2/

[17] M. Smialek and T. Straszak, “Facilitating transition from requirements
to code with the ReDSeeDS tool,” in Requirements Engineering

Conference (RE), 2012 20th IEEE International. IEEE, 2012, pp. 321–
322. [Online]. Available: http://dx.doi.org/10.1109/RE.2012.6345825

[18] M. Smialek and et al., “Translation of use case scenarios to Java code,”
Computer Science, vol. 13, no. 4, pp. 35–52, 2012. [Online]. Available:
http://dx.doi.org/10.7494/csci.2012.13.4.35

[19] M. Smialek, W. Nowakowski, N. Jarzebowski, and A. Ambroziewicz,
“From use cases and their relationships to code,” in MoDRE. IEEE,
2012, pp. 9–18. [Online]. Available: http://dx.doi.org/10.1109/MoDRE.
2012.6360084

[20] Beck, Test Driven Development: By Example. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

[21] D. North. (2006, Mar.) Introducing BDD. [Online]. Available:
http://dannorth.net/introducing-bdd/

1574 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

